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Abstract – We study the directed polymer of length t in a random potential with fixed endpoints
in dimension 1+1 in the continuum and on the square lattice, by analytical and numerical
methods. The universal regime of high temperature T is described, upon scaling “time” t∼ T 5/κ
and space x= T 3/κ (with κ= T for the discrete model) by a continuum model with δ-function
disorder correlation. Using the Bethe Ansatz solution for the attractive boson problem, we obtain
all positive integer moments of the partition function. The lowest cumulants of the free energy
are predicted at small time and found in agreement with numerics. We then obtain the exact
expression at any time for the generating function of the free-energy distribution, in terms of a
Fredholm determinant. At large time we find that it crosses over to the Tracy-Widom distribution
(TW) which describes the fixed-T infinite-t limit. The exact free-energy distribution is obtained
for any time and compared with very recent results on growth and exclusion models.

Copyright c© EPLA, 2010

The directed polymer (DP) in a random potential
provides the simplest example of a glass phase induced
by quenched disorder [1] and has numerous applications,
e.g. vortex lines [2], domain walls [3], biophysics [4]. It
is closely related to much studied growth models in the
KPZ class [5], such as asymmetric exclusion processes
(ASEP) [6,7], and to Burgers turbulence [8]. It belongs to
the broader class of disordered elastic manifolds, known to
exhibit statistically scale invariant ground states. Within
the functional RG (FRG) [9] these were described in a
dimensional expansion by T = 0 fixed points, where the
ratio temperature/disorder is irrelevant and scales with
internal size with exponent −θ.
Exact results were obtained in dimension d= 1+1 [1].

Johansson proved [10,11] that i) the minimal energy
path of length t on a square lattice with fixed endpoints
has transverse roughness x∼ tζ with ζ = 23 , ii) the
fluctuation of the ground-state energy grows as tθ with
θ= 13 and its scaled distribution coincides with the one
of the smallest eigenvalue of a Hermitian random matrix,
the GUE Tracy-Widom (TW) distribution [12]. The TW

(a)E-mail: ledou@lpt.ens.fr

distribution was found in many other related models,
polynuclear growth [13], TASEP [6], random subse-
quences [14,15] and others [16–18]. The unifying concept
of determinantal space-time process and edge scaling was
studied to account for such universality [19]. An exact
result for the space-time scaling function of the two-point
correlator of the height in KPZ was obtained [20].
On the other hand, in d= 1+1 the model can be

mapped onto the quantum mechanics of n attractive
bosons in the limit n= 0, where t plays the role of
(imaginary) time. It can be solved with the Bethe Ansatz
(BA) for δ-function interactions. Until now only the
ground-state energy E0(n) was studied, i.e. the limit
t→∞ first. Pioneering attempts at its direct analytical
continuation at n= 0 for a system of transverse size L=∞
led to scaling behavior [21,22], but not to free-energy
distribution. The possible dominance of rare events is
also a problem of the infinite system. From continuation
at fixed L, Brunet and Derrida obtained [23] the large
deviation function for the fluctuations of the free energy
δF ∼L1/2 of the DP on the cylinder. This, however, is
different from the distribution of free energy at fixed t,
which requires a summation over excited states. Also, it
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has been a long-standing question whether the δ-function
model captures the low-T physics. For example, the FRG
suggests otherwise, i.e. that some structure of the disorder
correlator matters. In fact, Brunet’s BA result [24] for the
diffusion coefficient around the cylinder, D∼ (κT )−1/2,
does not reproduce the expected finite T = 0 limit. This
remains to be reconciled with the standard argument of
a single glass phase controlled by the T = 0 fixed point,
which suggests a single universality. These issues are also
outstanding for Burgers and KPZ growth, and related
ASEP models also solvable via Bethe Ansatz [6,7].
In this letter we perform the sum over excited states

and obtain the exact expression for the free-energy distri-
bution from the Bethe Ansatz. The lowest cumulants of
the free energy are computed at small time and checked
with numerics. The generating function of the free-energy
distribution is obtained at any time as a Fredholm deter-
minant. At large time it shows that the free-energy distri-
bution crosses over to the Tracy-Widom distribution. The
probability distribution of the free energy is also obtained
at any time. Our study, started independently, parallels
a recent work by Dotsenko and Klumov [25]. Although
we agree on the starting sum over states in [25], our
analysis allows to recover the TW distribution. Finally,
we discuss the behaviour of the amplitudes as a function
of the temperature.
Let us recall the various definitions of the DP model.

i) Continuum model: the partition sum with fixed end-
points is defined by the path integral Z =Z(0, 0, t) with

Z(x, y, t) =

∫ x(t)=y
x(0)=x

Dxe−
1
T

∫
t
0
dτ [κ2 (

dx
dτ )

2+V (x(τ),τ)] (1)

for a given realization of the centered Gaussian
random potential V (x, t) of correlator V (x, t)V (x′, t) =
δ(t− t′)R(x−x′). Upon replication of (1), disorder
averaging and Feynman-Kac formula, one finds that the
disorder averages Zn :=Z(x1, y1, t) . . . Z(xn, yn, t) satisfy
∂tZn =−Hrepn Zn with the Hamiltonian

Hrepn =− T
2κ

n∑
i=1

∂2xi −
1

2T 2

∑
ij

R(xi−xj) (2)

and attractive interaction −R(x)/T 2. It is known from
FRG that to describe low-T physics one must retain some
features of R(x), i.e. that it is a decaying function on the
correlation scale rf . At high T , however, if one defines

x= T 3κ−1x̃, t= 2T 5κ−1t̃ (3)

in coordinates x̃ and t̃ one has Z =
∫
Dx̃e−S , with

S =
∫
dt̃[ 14 (∂t̃x̃)

2+W (x̃, t̃)], where W (x̃, t̃)W (x̃′, t̃′) =
R̃(x̃− x̃′)δ(t̃− t̃′) and R̃(x̃) = 2T 3κ−1R(T 3κ−1x̃). When
T →∞ one has R̃(z)→ 2c̄δ(z) with c̄= ∫ duR(u). Hence
in that limit the general model (2), expressed in the coor-
dinates x̃, t̃ becomes the Lieb-Liniger (LL) model [26],
i.e. tHrepn = t̃HLL|xi→x̃i of Hamiltonian

HLL =−
n∑
j=1

∂2

∂x2j
+2c

∑
1�i<j�n

δ(xi−xj), (4)

where c=−c̄ is the interaction parameter. The LL model
is thus the simultaneous limit T, x, t→∞ of the DP
problem with x̃ and t̃ fixed. It should also describe the
region where T 3(c̄κ)−1� rf , i.e. T � Tdep, the crossover
“thermal depinning” temperature, well known in vortex
physics [2,27,28]. For T > Tdep the thermal fluctuations
average out partially the disorder andR can be replaced by
a δ correlator1, while for T < Tdep the finite range of R(x)
is essential for the physics of pinning. One outstanding
question is whether, for a fixed T � Tdep the LL model
describes the system all the way as it flows to the T = 0
fixed point, or whether fixed but large t̃ is a distinct limit
from T = 0.
ii) Discrete model: For the numerics we define the

partition sum Z̃i,j =
∑
γ e
−β∑(r,s)∈γ Vr,s over all paths γ

directed along the diagonal on a square lattice, with only
(1, 0) or (0, 1) moves, starting in (0, 0) and ending in (i, j),
where the Ṽr,s are i.i.d. random site variables. Introducing

“time” t̂= i+ j and space x̂= i−j2 , Zx̂,t̂ = Z̃i,j satisfies

Zx̂,t̂+1 = (Zx̂− 12 ,t̂+Zx̂+ 12 ,t̂)e
−βVx̂,t̂+1 (5)

with Zx̂,0 = δx̂,0. We are interested in the free energy
F =−T lnZ with Z =Zx̂=0,t̂ of paths of length t̂ return-
ing to the origin. At T = 0 and for a geometric distribu-
tion Johansson proved [11] that the ground-state energy
FT=0 ≈ e0t̂+σωt̂1/3 with Prob(ω >−s) = F2(s) the TW
distribution [12].
In the high-T limit this model maps onto the continuum

one (1) with κ= 4T and δ-function correlation when
expressed in the variables (3), i.e. x̃= 4x̂/T 2 and t̃=
2t̂/T 4. Following [29] one checks that Z(x̃, t̃)/Z̄ with Z̄ =

2t̂e
1
2β
2 t̂ is given by the LL model (4) and we find that the

unit Gaussian on the lattice corresponds to c̄= 1.
We now use the Bethe Ansatz solution of the LL

model (4). The moments of (1), expressed in x̃, t̃ coor-
dinates (we drop the tilde below except when stated
otherwise) can be expressed as a quantum mechanical
expectation:

Zn = 〈x0 . . . x0|e−tHLL |x0 . . . x0〉, (6)

=
∑
µ

|〈x0 . . . x0|µ〉|2
||µ||2 e−tEµ , (7)

i.e. all n replica start and end at x0 = 0, and we used
the resolution of the identity in terms of the eigenstates
|µ〉 of HLL of energies Eµ. The crucial observation, which
makes the calculation tractable, is that only symmetric
(i.e. bosonic) eigenstates contribute to this average. The
eigenfunctions are superpositions of plane waves [26] Ψµ =
F [λ]

∑
P AP

∏n
j=1 e

iλP�x� over all permutations P of the

rapidities λj and F [λ] =
∏
n��>�′�1

λ�−λ�′√
(λ�−λ�′ )2+c2

. The

coefficients AP =
∏
n��>k�1(1− ic sgn(x�−xk))λP�−λPk ) are func-

tions of the two-particle scattering phase shifts obtained
from (4), and periodicity of the wave function requires

1In model (5) Tdep represents unbinding from one defect.
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the set of rapidities {λ} to be solution to the Bethe
equations. Major simplifications occur in this compli-
cated equations in the attractive case c̄ > 0 for L=∞.
They have complex, i.e. bound-states solutions [30]. A
general eigenstate is built by partitioning the n parti-
cles into a set of ns bound states formed by mj � 1
particles with n=

∑ns
j=1mj . The rapidities associated to

a bound-state form a regular pattern in the complex
plane which is called string λj,a = kj +

ic̄
2 (j+1− 2a)+

iδj,a. Here, a= 1, . . . ,mj labels the rapidities within the
string. δj,a are deviations which fall off exponentially
with system size L. Perfect strings (i.e. with δ= 0) are
exact eigenstates in the limit L→∞ for arbitrary n. Such
eigenstates have definite momentumKµ =

∑ns
j=1mjkj and

energy Eµ =
∑ns
j=1(mjk

2
j − c̄

2

12mj(m
2
j − 1)). The ground-

state corresponds to a single n-string with k1 = 0. The
string-states are commonly believed to be a complete set,
although a rigorous proof is still missing.
To evaluate (7), we first obtain the string wave function

at coinciding point 〈0 · · · 0|µ〉=Ψµ(0, . . . ,0) = n!F [λ]. The
computation of the norms ||µ|| of string states is more
involved, but was solved in the context of algebraic Bethe
Ansatz [31] (see also [32]). It reads

||µ||2 = n!(Lc̄)
ns

(c̄)n
F [λ]2

Φ[k,m]

ns∏
j=1

m2j ,

Φ[k,m] =
∏

1�i<j�ns

(ki− kj)2+(mi−mj)2c2/4
(ki− kj)2+(mi+mj)2c2/4 .

(8)

Expressing the sum over states in (7) as all partitioning
of n particles into ns strings and using that for L→∞
the string momenta mjkj correspond to free particles [31],

i.e.
∑
kj
→mjL

∫ dkj
2π we obtain [33]

Ẑn =

n∑
ns=1

n!

ns!(2πc̄)ns

×
∑

(m1,...,mns )n

∫ ns∏
j=1

dkj
mj
Φ[k,m]

ns∏
j=1

em
3
j
c̄2t
12 −mjk2j t,

(9)

where (m1, . . . ,mns)n stands for all the partitioning of
n such that

∑ns
j=1mj = n with mj � 1. We defined Z =

c̄e−
c2t
12 Ẑ, a trivial shift in the free energy (we drop the hat

below). This equation agrees with the one in [25], although
our derivation was made simpler by using results from
algebraic Bethe ansatz.
This formula first leads to prediction at small time. As

in [25] we define the dimensionless parameter

λ= (c2t̃/4)1/3 (10)

and z =Z/Z. Tedious calculation then yields

z2 = 1+
√
2πλ3/2e2λ

3

(1+ erf(
√
2λ3/2)), (11)

ln z = −
√
π

2
λ3/2+

(
32π

9
√
3
− 2− 3π

2

)
λ3+ · · ·,

Fig. 1: z2− 1 (4 · 106 samples) for t̂= 128 (triangle), t̂= 256
(circle) function of t̃ compared to formula (11) with c̄= 1.

Fig. 2: From top to bottom the cumulants (4 · 106 samples)
(ln z)2

c
(dashed line, triangle), −(ln z) (solid line, circle), and

(ln z)3
c
(dotted line, square) for t̂= 256 as compared with the

analytical formula (12) with c̄= 1.

(ln z)2
c
=
√
2πλ3/2+

(
4+5π− 32π

3
√
3

)
λ3+ · · ·,

(ln z)3
c
=

(
32

3
√
3
− 6
)
πλ3+ · · · . (12)

The skewness of the distribution of ln z is thus γln z1 ≈
16
√
3−27
9 (2π)1/4λ3/4 ∼ t1/4 at small time. The skewness

for the free energy F =−T lnZ is thus γF1 =−γln z1 and
negative. Figure 1 and fig. 2 show that the agreement with
numerics is excellent with no free parameter. This is a non-
trivial test that the LL model is valid here and that the
starting formula (9) is correct.
To study any λ, we avoid the explicit n= 0 limit by

introducing the generating function of the distribution
P (f) of the scaled free energy F = Tλf :

g(x) = 1+

∞∑
n=1

(−eλx)n
n!

Zn = exp(−eλ(x−f)) (13)

from which P (f) is immediately extracted at λ→∞:
lim
λ→∞

g(x) = θ(f −x) = Prob(f > x). (14)

20002-p3
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Z(ns, x) =

∞∑
m1,...,mns=1

(−1)
∑
j mj

(4πλ3/2)ns

ns∏
j=1

∫
dkj
mj

∏
1�i<j�ns

(ki− kj)2+(mi−mj)2λ3
(ki− kj)2+(mi+mj)2λ3

ns∏
j=1

e
1
3λ
3m3j−mjk2j+λxmj . (17)

At finite λ the probability distribution of the free energy
can also be extracted from g(x) using a Borel transform,
equivalently described as follows. One writes (formally)
Z =Z0Z̃, where Z0 = e

λu0 is a positive random vari-
able independent of Z̃, with an exponential distribution
P0(Z0) = e

−Z0 (i.e. λu0 has a unit Gumbel distribution)
such that Zn = n!Z̃n. The distribution P (Z̃) of the vari-
able Z̃ = eλu is obtained from the cut in the grand canon-

ical partition function Z(z) =∑∞n=0 z−nZ̃n = z

z−Z̃ as
2

zP (z) =
1

π
ImZ(z+ iε) = 1

π
Im g

(
eλx→− 1

z− iε
)
(15)

with ε= 0+.
The constraint

∑ns
i=1mi = n in (9) can then be relaxed,

and rescaling kj→ kj/t1/2, it leads to

g(x) = 1+

∞∑
ns=1

1

ns!
Z(ns, x), (16)

as an expansion in the number of strings with3:

see eq. (17) above

The difficulty is the prefactor which introduces “interac-
tions” between the strings. Let us study it in two stages:
i) Independent string approximation. Z(1, x) can be

computed exactly, integrating over momentum:

Z(1, x) =

∫
v>0

dv v1/2

2πλ3/2
dyAi(y)

∞∑
m=1

(−1)meλmy−vm+λxm,

where, as in [25], we used that for R[w]> 0:∫ ∞
−∞
dyAi(y)eyw = ew

3/3. (18)

Rescaling v→ λv, shifting y→ y+ v−x we obtain

Z(1, x) =−
∫
v>0

dv v1/2

2π
dyAi(y+ v−x) e

λy

1+ eλy

after performing the sum. At large λ the integration is
only over y > 0 and one obtains

lim
λ→∞

Z(1, x) =−
∫
w>0

dw

3π
w3/2Ai(w−x). (19)

2Note that P (Z̃) and p(u) are not necessarily positive functions,
the only requirement is that after after convolution with the Gumbel
distribution, i.e. lnZ = λu0+λu, the distribution of lnZ is positive
and normalized to unity.
3Expression (17) can be defined as a series in λ at fixed X = λx.

We use everywhere the Airy representation (18) to define it at
fixed λ.

Now we note that replacing in (17) Z(ns, x)→Z(1, x)ns
provides an approximation to the exact g(x) identical to
setting the prefactor in (17) to unity :

gind(x) = exp(Z(1, x)) (20)

with (19) for λ=∞ and Probind(f > x) = gind(x). One
easily checks that this distribution Pind(f) is the one
obtained in ref. [25]. Indeed, the algebraic manipulations
there are equivalent to setting the prefactor to unity at
large λ (see footnote 4). However this distribution has
skewness γ1 = 0.96029, incompatible with our numerics
which shows instead for all λ a negative skewness γF1
bounded by (minus) the TW skewness γ1=− 0.224084 . . . .
Although one checks that it reproduces the leading tail for
f →−∞ of the TW distribution, it differs from it. As we
now show, including interactions between strings leads to
TW.
ii) Exact result for the generating function at any time.

We now derive an expression of g(x) valid for any λ, in
terms of a Fredholm determinant. Using the identity:

det

[
1

i(ki− kj)λ−3/2+(mi+mj)
]
=

∏
i<j

(ki− kj)2+(mi−mj)2λ3
(ki− kj)2+(mi+mj)2λ3

ns∏
i=1

1

2mi
(21)

and manipulations as above, starting from (17), one finds

Z(ns, x) =

∫
vi>0

ns∏
i=1

dvi det[Kx(vi, vj)], (22)

g(x) =Det[1+P0KxP0], (23)

where Det is a Fredholm determinant (FD) defined with
integration on the real positive axis

∫
v>0
, i.e. here and

below we define Ps the projector on [s,+∞[. The kernel
Kx(v, v

′) =Φx(v+ v′, v− v′), where we have defined the
function

Φx(u,w) =−
∫
dk

2π
dyAi(y+ k2−x+u)e

λy−ikw

1+ eλy
. (24)

These formula generate the small λ expansion but they
are valid for all λ.
iii) Free-energy distribution in the large-time limit. For

large λ one can replace eλy

1+eλy
→ θ(y). Then one obtains

for λ=+∞:
Prob(f > x) = g(x) = det(1+P− x2 K̃P− x2 ), (25)

K̃(v, v′) =−
∫
y>0

dk

2π
dyAi(y+ k2+ v+ v′)e−ik(v−v

′),

4The flaw in [25] presumably originates from use of undefined
integrals, while here we use convergent ones.
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where all integrals in the FD are for
∫
v>−x/2. One

recovers in particular Z(1, x) = TrKx =
∫
v>−x/2 K̃(v, v)

which yields (19) above. We can now use the following
identity between Airy functions [34]:

∫
dkAi(k2+ v+ v′)eik(v−v

′) = 22/3πAi(21/3v)Ai(21/3v′),

(26)
which immediately implies that

K̃(v, v′) =−21/3KAi(21/3v, 21/3v′), (27)

where KAi(v, v
′)=(Ai(v)Ai′(v′)−Ai′(v)Ai(v′))/(v− v′) =∫

y>0
Ai(v+ y)Ai(v′+ y) is the Airy kernel. Upon rescaling

v, v′ by a factor 2−1/3 we obtain

Prob(f > x=−22/3s) =Det(1−PsKAiPs) = F2(s), (28)
i.e. the Tracy-Widom distribution. Hence in the large-time
limit one recovers the TW distribution.
iv) Free-energy distribution for any time. We now

extract the free-energy distribution for any time. We
use (15) which expresses the distribution of lnZ as a
convolution, i.e. lnZ = λu0+λu where λu0 is a unit
Gumbel independent random variable and the distribution
of the variable λu= ln Z̃ is obtained as

p(u) =
1

2iπ
(Det(1+P0KP0)−Det(1+P0K∗P0))

K(v, v′) =
∫
dk

2π
dyAi(y+ k2+ v+ v′)

eλy−ik(v−v
′)

eλu− iε− eλy ,
(29)

where all
∫
v>0
and ∗ denotes complex conjugation. Using

1/(x− iε) = PV 1
x
+ iπδ(x), the complex kernel is written

K =K1+ iK2, where, using (26) one finds

K1(v, v
′) = 2

1
3PV

∫
dy
Ai(2

1
3 v+ y))Ai(2

1
3 v′+ y))

eλu−22/3λy − 1 (30)

and

K2(v, v
′) =

π

21/3λ
PAi(2

1/3v+2−2/3u, 21/3v′+2−2/3u),
(31)

where PAi(v, v
′) =Ai(v)Ai(v′) is a rank-one projector.

The latter property implies that p(u) is a linear function
of K2 hence

p(u) =Det

(
1+P0

(
K1+

λ

π
K2

)
P0

)
−Det(1+P0K1P0)

(32)
which is our final expression (see footnote 2).
We can now compare our result with the very recent

works [35] on KPZ growth with the narrow wedge initial
condition, to which our work also applies (see also [36]).
The correspondence reads that λKPZ2ν h≡ lnZ, 2ν ≡ T/κ
and Dλ2KPZ ≡ c̄/κ2. There the distribution of h was
obtained, which translated here yields (up to an additive

Fig. 3: (Colour on-line) (ln z)2
c
/(24/3λ2) plotted as a function

of T , for increasing polymer length t̂. Triangles correspond
to t̂= 4096, Circles to t̂= 256 and the dotted line to the
TW variance 0.81319 . . . . Averages are performed over 20000
samples.

constant) lnZ = γξt where γ = 2
2/3λ and the distribution

of ξt becomes identical to TW distribution at large t.
Upon rescaling of v, v′ by 2−1/3 our result (32) can also
be rewritten as

22/3p(u) = Det[1−P
2−

2
3 u
(Bt−PAi)P

2−
2
3 u
]

−Det[1−P
2−

2
3 u
BtP

2−
2
3 u
], (33)

where Bt is the kernel defined in [35] hence the results
coincide.
Let us close by discussing the temperature dependence

for experimentally relevant models, e.g. either R(u) with
a finite-range correlation, or a discrete model. For any

fixed T one expects ∆F ≡ F 21/2 =A(T )tθ at large t, with
θ= 13 . Concerning the amplitude A(T ) it is clear that the
δ-function model reproduces only its high-T behaviour.
Indeed, here we found ∆F = Tf(t̃), with f(t̃)∼ t̃1/4 at
small t̃ from (12) and f(t̃)∼ t̃θ from our large λ analysis.
Hence large λ yields the amplitude A(T )∼ κ1/3T−2/3 and
this can only be interpreted as a high-T limiting behavior,
i.e. there is no way the δ-function model can predict
the amplitude for the distinct T < Tdep regime, where
it crosses over to a constant A(0). This is illustrated

in fig. 3 where σ2 = (ln z)2
c
/(24/3λ2) is plotted as a

function of T , for increasing t. The fixed-T and large-
t behavior is σ2 ∼A(T )2 T 4/3κ−2/3, hence at low T it
behaves, for the discrete model as ∼A(0)2 T 2/3 with a non-
universal prefactor. At high T we know from the small λ
prediction (12) with c̄= 1 that it behaves as ∼T 2/3t−1/6.
For intermediate T a plateau is thus predicted to develop.
Its approach from above is described by the large λ limit
of the (universal) crossover function computed here. The
low-T behaviour below the plateau is out of reach of the δ-
function model. The value of the plateau should equal the
variance of the TW distribution σ2 = σ2TW = 0.81319 . . . .
However one sees that the convergence is slow and requires
very large polymer lengths [33].
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Similarly, one surmises that ∆x∼ T 3 g(t/T 5) with
g(y)∼ y1/2 at small y and g(y) = yζ at large y interpolat-
ing between thermal diffusion x∼√Tt and x∼B(T )t2/3
with B(T )∼ (κT )−1/3 at high T , while for T � Tdep,
B(T )≈B(T = 0). A similar interpretation of Brunet’s
result for the winding D∼ (κT )−1/2 can be given. Note
that if the exponents were to assume their Flory values,
ζF =

3
5 , θF =

1
5 , then high- and low-T regimes would

merge without need for a plateau (i.e. A(T ) is constant
at high T ), and this is indeed the case in the mean-field
method [37]. This is not the case here, and this is because
in the high-T regime more typical paths contribute,
∆F =O(T ), while the low-T problem is dominated by
the lowest energy path, ∆F =O(1).
To conclude we have obtained the distribution of the

free energy of directed polymers in the high-T regime
described by the attractive Lieb Liniger model, from the
Bethe Ansatz. It becomes identical to the Tracy-Widom
distribution at large time, although the amplitudes exhibit
a distinct low-temperature behavior.
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Note added in proofs: After submission we learned of
independent work [38], which also recovers the TW
distribution. Reference [36] proves the result for the
δ-correlated continuum model, and proves short-time
results. In ref. [39] general scaling with T is studied. For
tails of P (f) see also ref. [40].
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