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Abstract – We reveal a phase transition with decreasing viscosity ν at ν = νc > 0 in
one-dimensional decaying Burgers turbulence with a power-law–correlated random profile of
Gaussian-distributed initial velocities v(x, 0)v(x′, 0)∼ |x−x′|−2. The low-viscosity phase exhibits
non-Gaussian one-point probability density of velocities, continuously dependent on ν, reflecting
a spontaneous one-step replica symmetry breaking (RSB) in the associated statistical-mechanics
problem. We obtain the low orders cumulants analytically. Our results, which are checked numer-
ically, are based on combining insights in the mechanism of the freezing transition in random
logarithmic potentials with an extension of duality relations discovered recently in the random
matrix theory. They are essentially non–mean-field in nature as also demonstrated by the shock
size distribution computed numerically and different from the short-range–correlated Kida model.
We also provide some insights for the finite-viscosity behaviour of velocities in the latter model.

Copyright c© EPLA, 2010

The analysis of the solutions of the Burgers equation
∂tv+(v∇)v= ν∇2v+ f(x, t) with either random forcing
f(x, t) �= 0 or unforced but subject to random initial
conditions v(x, t= 0) �= 0 (the latter case being frequently
referred to as the “decaying Burgers turbulence” (dBt))
attracted a considerable interest in the last two decades,
see [1] for an accessible introduction and a detailed
literature overview. The problem appears as an impor-
tant reference model not only in fluid dynamics, but
also in such diverse physical contexts as statistics of
growing interfaces [2], statistical mechanics of systems
with quenched disorder [3–7], and formation of large
scale structures in cosmology [8]. In particular, the
cosmological applications stimulated interest in dBt
for vanishing viscosity ν→ 0 and scale-free power-law
random initial conditions v(x, 0)v(x′, 0)∼ |x−x′|−n−1
at large distance, see, e.g., [9] and references in [1].
The latter are more properly defined via the Fourier-
transformed value, the mean initial energy spectrum
E0(k)∼ kd−1v(k, 0)v(−k, 0)∼ |k|n, d being the space
dimension. The model can be mapped, via the Cole-Hopf
transformation [1], to the statistical mechanics of a

particle in a d-dimensional random potential at tempera-
ture T = 2ν. Although intensive analytical and numerical
work resulted in a good qualitative understanding of
general features of emerging velocity structures, detailed
analytical results are mainly available in d= 1 for the
following particular cases: i) the white-noise initial
velocity [6,10] (n= 0) ii) the Kida case of short-range
(SR) potentials (n= 2) [11] iii) Brownian motion initial
velocity (n=−2) [12]. It is believed that the general case
n< 1 leads to a self-similar evolution with persistence of
the kn spectrum Et>0(k) at small k (called persistence
of large eddies in turbulence [13], or equivalently long-
range (LR) fixed points in the RG study of the particle
model [6]), while n> 1 leads to Kida’s SR k2 spectrum,
with however, a crossover region 2>n> 1 where both
types of behaviours can be found depending on the
scale [13,14]. Interestingly, it seems that the limiting case
n= 1 has not been studied in any detail although as we
show below it is in many respects special. The goal of our
letter is to fill in that gap.
To achieve this we develop a method allowing one

to get analytical insights into the velocity statistics of
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dBt for the “marginal” case n= 1. We concentrate on
analyzing the simplest quantity, namely the probability
density function (p.d.f.) P(v) of a single-point velocity
v= v(x, t), at any viscosity ν > 0. Our main finding is
that the shape of the function P(v) experiences an abrupt
change at a finite viscosity value ν = νc > 0. Namely, for
ν > νc the probability density is Gaussian, which is the
natural and expected result, but P(v) ceases to retain the
Gaussian shape in the low-viscosity phase, i.e. everywhere
for 0� ν < νc. We reveal that such a change is in fact a
manifestation of the so-called freezing phase transition in
the associated statistical-mechanics problem of a single
particle in random logarithmically correlated landscape.
The transition of such a type was discovered long ago in
mean-field–type models [15], see [16] for recent activity,
and is identified with the simplest (one-step) pattern
of spontaneous replica symmetry breaking (RSB). More
recently, accumulated evidences pointed towards exis-
tence of a similar transition in finite dimensions [17–19],
although well-known challenges of extending RSB pattern
beyond the mean-field level remained outstanding. In the
present study we show how to incorporate the one-step
RSB into the finite-dimensional calculation by further
developing and adopting to the situation a method
suggested in [5]. Such a procedure when combined with
recent progress in Random Matrix Theory (RMT) yields
highly non-trivial predictions for the velocity cumulants
in the low-viscosity phase. Comparing them to numerical
results on the particle model which solves the Burgers
equation shows a good agreement and provides a rather
convincing support to validity of the method. The fact
that our results are essentially of non–mean-field nature
is also demonstrated by the shock size distribution, which
we compute numerically and find different from the
short-range–correlated Kida model, itself well described
by a mean-field one-step RSB ansatz. Finally, we get
some analytical insights into the finite-viscosity behaviour
of velocities in the delta-correlated case by extending [5].
Our starting point is the standard mapping [1] of the

dBt problem to the equilibrium statistical mechanics of a
single classical particle in a potential V (x) at the effective
temperature T played by the viscosity: T = 2ν. The initial
velocity profile v(x, 0) in this approach is related to V (x)
as v(x, 0) = d

dxV (x). To ensure n= 1 power-law spatial
decay of the initial conditions we choose the random
potential V (x) to be Gaussian with the two-point function
given by

V (x)V (x′) =−2 ln [|x−x′|/L], ε < |x−x′|<L, (1)

where L� 1 and ε� 1 are the infrared and ultraviolet
cutoff scales, correspondingly. We further assume
V (x)V (x′) = 2 lnL/ε for |x−x′|� ε and V (x)V (x′) = 0
for |x−x′|�L.
The solution to the unforced Burgers equation for t > 0

with chosen initial conditions is given by v(x, t) = ∂xV,
where V(x, t) =−T lnZV (x, t) is the “renormalized poten-
tial” (effective free energy functional) corresponding to the

Hamiltonian H(y;x) = (y−x)22t +V (y), with the partition
function defined as

ZV (x, t) = ε
β2
∫ +∞
−∞

dy√
2πTt

exp− 1
T
H(y;x). (2)

where β = 1
T
and the ε-factor is chosen to facilitate the

comparison with our earlier work [19].
To this end we note that in the language of

statistical mechanics the velocity p.d.f. is given by

P(v) = δ (v+ 1
t
≺ y	T

)
, where we introduced the ther-

mal average ≺O	T=Z−1V
∫

dy√
2πTt

O(y) exp−H(y; 0)/T
and set x= 0 in view of the translational invariance of the
disorder. To understand better thermodynamics of
our system and the nature of the anticipated freezing
transition it turns out to be instructive to consider also
a different object: PY (Y ) =≺ δ(Y − y)	T interpreted
as the averaged p.d.f. of the coordinate of a particle
equilibrated at a given temperature T in the random
energy landscape H(y; 0). At T → 0 the thermal average
is obviously dominated by the deepest minimum of
the landscape whose position ymin fluctuates from one
realization of disorder to the other. This mechanism
immediately implies for velocity p.d.f. in zero-viscosity
limit the relation P(v)|T=0 = tPY (vt)|T=0.
The disorder averaging procedure for PY (Y ) can be

performed via the standard replica trick after representing
Z−1V =Z

n−1
V |n→0 and using the Gaussian nature of the

random potential V (y). Employing eq. (1) yields the
relation

PY (Y ) = lim
n→0

〈
1

n

n∑
j=1

δ(Y − zj
√
Tt)

〉
n,−γ

, (3)

where γ = β2 > 0 and we have defined for 1� n< 1/γ

〈. . .〉n,λ =
1

Sn(λ)

∫ ∞
−∞
(. . .)

n∏
i<j

|zi− zj |2λ
n∏
j=1

dzj√
2π
e−

z2j
2 ,

(4)

with Sn(−γ) =
∏j=n
j=1 [Γ(1− jγ)/Γ(1− γ)] being the

famous Selberg integral. For finite integer n� 1 and
−γ = λ> 0 the above expression is nothing else but the
mean density of the so-called λ-Hermite ensemble of
RMT introduced by Dumitriu and Edelman (DE) [20].
Although a closed-form expression for the eigenvalue
density for that ensemble does not seem to be avail-
able yet, DE developed analytic tools to compute a
few lower moments of that density for any integer
n> 0. We noticed that their result can be recast in
terms of cumulants as 〈z21〉cn,−γ = 1− γ(n− 1), and for
integer q > 1, 〈z2q1 〉cn,−γ =−γ(n− 1)(γn− 1)P2q(n, γ) in
terms of polynomials of n and γ, which read to low
orders P4(n, γ) = 1, P6(n, γ) =−2+ γ(5n− 2). P8(n, γ) =
6+26γ+6γ2− 47γn− 47γ2n+56γ2n2. They satisfy a
remarkable duality relation γq−2P2q(nγ, 1γ ) = P2q(n, γ),
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and since their order does not grow too fast, we could
obtain them by direct evaluation of 〈z2q1 〉n,−γ for (small)
integer n and γ < 0, up to order 2q= 16 (we also used
DE’s algorithm up to 2q= 12 as a check). Performing the
analytical continuation n→ 0 and 0<γ < 1 (where the
corresponding RMT-like integrals are still convergent) and
assuming S0(−γ) = 1 we obtained the lower non-vanishing
momentsM2q =

∫ PY (Y )Y 2qdY up to 2q= 16, i.e. in term
of their cumulants C2q =≺ y2q 	cT=−(Tt)qγP2q(0, γ),
yielding: C2 = t(T +T

−1), C4 =−t2, C6 = 2t3(T +T−1),
C8 =−t4

[
26+6

(
T 2+T−2

)]
,

C10 = t
5
[
300
(
T +T−1

)
+24

(
T 3+T−3

)]
and similar but longer expressions for C2q, q= 6, 7, 8. The

second cumulant agrees with the exact relation ≺ y2 	T =
t2v2+Tt valid at any T due to statistical translational
invariance of the random potential V (x). The main feature
apparent from the above (and proved in full generality)
is that all the cumulants (and hence the whole function
PY (Y )) are invariant with respect to the duality transfor-
mation T → 1/T . Duality of this kind was first discovered
in our work on logarithmically correlated random poten-
tials [19] where it was conjectured that it implies freez-
ing transition at the self-dual point Tc = 1: the self-dual
functions retain down to zero temperature the shape they
acquired at the critical point T = Tc. Here we thus predict
that the whole probability distribution PY (Y ) freezes at
T = 1 providing a vivid picture of what freezing entails. If
this scenario were correct, the values of the above cumu-
lants evaluated at T = 1 should immediately provide, in
view of the discussed zero-temperature correspondence,
the cumulants of the velocity p.d.f. in zero-viscosity limit:

v2|ν=0 = 2
t
, v4

c
=
[
v4− 3v22

]
|ν=0 =− 1

t2
(5)

and more generally v2q|ν=0 = t−2qC2q|T=1. Due to the
above exact relation it also predicts v2 = 1

t
(2−T ) in the

whole low-T phase, as recovered below. Note that at T = 0
all positive integer moments of v

√
t are integers!

The above cumulants are the non-trivial predictions
of the developed approach, and are now tested against
a numerical study of the Hamiltonian H(y;x). We
discretize y= ai and x= aj with i, j = 1, . . . ,M and

study H(i; j) = a
2(i−j)2
2 +Vi, where Vi are Gaussian

log-correlated variables. Generally, a sample of M
correlated variables has high numerical cost (∼M2 or
M3 operations), a major simplification occurs when
the correlation matrix is circulant and direct diag-
onalization via Fast Fourier Transform is possible
(M logM operations) Our results are obtained using
the log-circular ensemble [18,19] of Gaussian variables

with correlations ViVi′ =−2 ln 2| sin(π(i−i
′)

M
)|, i �= i′,

and V 2i = 2 lnM . For this ensemble it is possible to
generate a sample up to M ∼ 220 points. This ensemble,
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Fig. 1: (Colour on-line) Numerical evaluation of v2 and v4
c

in the inviscid limit T = 0 for M = 210, 214, 218 compared to
the prediction (5) at t= 1 (averaged over 106 samples). Small
oscillations are observed in v4

c
when Ma∼ 1 and the periodic

boundary conditions cannot be neglected, and disappear when
Ma� 1.
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Fig. 2: (Colour on-line) The top solid line is the analytical
prediction (from C2 in the text) for ≺ y2 �T , and the bottom
solid line for t2v2 ≡≺ y�2T for t= 1 from (14). Circles are
simulations with a= 1/8, M = 214, triangles are simulations
with a= 1/1024, M = 218 (averaged over 5× 104 samples).

for L≡Ma� 1 reproduces the model on the line (1)
for |x−x′| �L. We compute in the discrete model
a2 ≺ (i− j)	T , which in the limit a→ 0 at fixed
L=Ma� 1 identifies to the velocity of the continuum
model v(x= aj, t= 1) with a cutoff ε∼ a. This yields the
result at all times for the continuum model, using the
exact rescaling v(x, t)|ε,L = 1√

t
v( x√

t
, 1)|ε/√t,L/√t which

shows self-similarity in the limit ε� t�L.
As a first check of the freezing scenario, one can see

in fig. 1 that the prediction (5) is well obeyed if one
takes into account finite-size corrections as a→ 0. It is
apparent from this result that the velocity distribution is
non-Gaussian in the inviscid limit T = 0. A second check,
see fig. 2, is the temperature dependence of both ≺ y2 	T
and t2v2 ≡≺ y	2T . In the high-T phase the agreement

60004-p3



Y. V. Fyodorov et al.

with the analytical prediction is perfect. For T < 1 the
convergence becomes much slower, but in agreement with
the freezing predictions, e.g. that ≺ y2 	T should freeze at
a constant value for T � 1.
After satisfying ourselves with the validity of the freez-

ing scenario, we are going to briefly demonstrate how such
a transition can be recovered from the replica calculation,
which eventually yields the expression for the velocity
cumulants for any viscosity below critical. To illustrate
the method we consider the simplest object, the partition
function moments

ZnV = ε
nβ2
∫ ∞
−∞

n∏
j=1

[
dyj√
2πTt

e−
y2j
2Tt

]
exp− 1

T

n∑
j=1

V (yj),

(6)
where n is the replica number eventually set to zero. In
doing this we adopt to the continuum model the scheme
of incorporating one-step RSB mechanisms proposed in [5]
for the simplest case of discrete Random Energy Model
without spatial correlations. The basic idea behind this
scheme is that for T < Tc and 0<n< 1 the configurations
which give the leading-order contributions to the above
integral are obtained by grouping n replica indices into
k= n/m groups of m replica each, and assuming that all
coordinates yi for the replica indices i1, . . . , im inside the
same group are “frozen” around the common value, i.e.
approximately equal: yi1 ≈ yi2 ≈ . . .≈ yim . More precisely,
they are allowed to fluctuate within a distance of order
of the small-scale cutoff ε around their common centre
of mass 1

m

∑
il
yil . At the same time k coordinates of

the centres of masses of different groups play the role of
new effective degrees of freedom and can take any values.
Integrating out the “frozen” coordinates yields the factor
of the order of εn−k, so that eq. (6) is replaced with

ZnV ∝ εnβ
2+n−kCn,m

×
∫ ∞
−∞

k∏
j=1

[
dyj√
2πTt

e−m
y2j
2Tt

]
exp−m

T

k∑
j=1

V (yj), (7)

where the combinatorial factor Cn,m = n!/k!m!
k takes into

account the number of ways we can built the groups.
At this stage we can perform the disorder average in
the standard way using eq. (1) and find that the above
expression is proportional to the m-dependent large factor
exp− [n ( 1

m
+ m
T 2

)
ln ε
]
. The parameter m is then found

from extremizing (in fact, minimizing) this factor, which
selects m= T as long as T < Tc = 1. Performing the calcu-
lation to the end one reproduces, up to a constant shift
in free energy the expressions of the moments ZnV , 0<
n< 1 above and below Tc = 1, precisely those following
from the freezing scenario for logarithmic models [18,19].
The details of this and other calculations outlined in the
paper will be given elsewhere [21], here we give only
very brief account. Following the method of [19] we first
find exactly arbitrary complex moment of the normalized

partition function Z̃V =ZV (2π)
β−1
2 Γ(1−β2). In the high-

temperature phase β < 1 they are given by

Z̃−sV =L
s2β2 β

−
(
1−β2
2 s+ β

2

2 s
2
)
Gβ
[
β−1
]

Gβ [βs+β−1]
, (8)

where s is arbitrary complex and we use the same conven-
tion for the generalized Barnes functionGβ(x) as discussed

in [19]. Note that the factor =Ls
2β2 (which amounts to a

convolution with a Gaussian of large variance 2β2 lnL�1)
ensures the convexity of the moments and makes the prob-
lem of restoring the corresponding probability distribu-
tion of Z̃V well defined. This expression, combined with
the conjecture of freezing of all self-dual functions allows
to restore after due manipulations the partition function
moments below the freezing temperature. The results coin-
cide with the direct replica calculation outlined above.
To find the shape of the velocity p.d.f. P(v) for T > 0 it

is convenient to exploit the generating function G(q) =
ln [1− iq∂xV(x, t)] which can be further calculated via
a variant of the replica trick G(q) = limn→0 1n (Wn(q)−
Wn(0)) where for integer n> 0

Wn(q) =
n∑
k=0

(
n
k

)
(iqT )k(∂xZV )

k
ZV
n−k. (9)

Following the same steps as before, we arrive at the
identity

Wn(q)

Ln
2γ(
√
Tt)−n(n−1)γSn(−γ)

=

〈
n∏
j=1

(iq

√
T

t
zj +1)

〉
n,−γ

.

(10)
To continue to n= 0 we exploit the relation〈
n∏
j=1

(zj + τ)

〉
n,λ

=

∫ ∞
−∞

dw√
2π
e−

w2

2 (τ + i
√
λw)n, (11)

where τ is an arbitrary parameter. Although it was
originally proved in the RMT context assuming integer
n� 1 and λ> 0 (see Theorem 4.1 in [20]) we conjecture it
can be analytically continued beyond the original domain
as long as all integrals make sense. Applying eq. (11) for
λ=−γ with 0< γ < 1 and performing the replica limit
n→ 0 in eq. (10) we find after due manipulations the
velocity probability density P(v). It turns out to be a
simple Gaussian with zero mean and variance v2 = 1/T t.
The idea of freezing suggests that the above result

should be valid as long as T > 1. To calculate the
generating function G(q) for the velocity moments in
the low-temperature phase T < Tc = 1 we again have to
employ the same 1-step RSB scheme as described earlier
in the paper. Up to factors tending to unity in the replica
limit n→ 0 we arrive at the relation

Wn(q)∼
〈
k∏
l=1

(1+ iq
√
tzl)

m

〉
k= nT ,−γm2=−1

, m= T.

(12)
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Fig. 3: (Colour on-line) Non-Gaussian character of the rescaled

velocity ṽ= v/
√
v2 below the freezing temperature, as shown

by the difference between their cumulative distributions. Simu-
lations are performed over 106 samples of M = 218 points
and a= 0.002. Circles are data at T = 0, squares are data at
T = 0.5<Tc.

Finally, we notice that one can perform the replica limit
n→ 0 by exploiting a powerful duality relation for the λ-
Hermite RMT ensemble discovered in [22] for k,m positive
integer, λ> 0 and any complex s:〈

k∏
l=1

(zl+ s)
−mλ
〉
k,λ

=

〈
m∏
l=1

(zl+ s)
−kλ
〉
m,λ

. (13)

We conjecture that the relation remains valid if contin-
ued to λ=−1 and furthermore to 0<k, m< 1. This
allows to perform straightforwardly the n→ 0 limit
leading to the expression of the velocity p.d.f P(v) =
limm→T 〈δ(v+ z1√

t
)〉m,−1 as eigenvalue density in the

DE ensemble. At T = 0 it indeed identifies with (3)
which confirms the freezing scenario. At any 0� T � 1 the
velocity cumulants are thus again given by the above poly-
nomials tqv2q = limm→T 〈z2q1 〉m,−1 =−(1−T )2P2q(T, 1),
which we computed up to 2q= 16. Hence we find

v2|T<1 = 1
t
(2−T ), [v4− 3v22]|T<1 =− 1

t2
(1−T )2, (14)

which fully agrees with the zero-viscosity limit and
matches high-temperature phase moments at the tran-
sition point Tc = 1. These results are in agreement with
numerics in fig. 1, and show that the velocity p.d.f. P(v)
is non-Gaussian everywhere in the low-viscosity phase,
as seen in fig. 3. The shape is consistent with a negative
kurtosis and the difference increases at low temperature.
We now put our results in context, compare with the SR

Kida behaviour (obtained here by replacing ViVj = σδij),
and discuss shocks. Let us recall the expected scaling for
the LR fixed points n� 1, either from FRG arguments
for the particle problem [6], or from the Burgers literature
[1,13] (although there n= 1 was not specifically discussed):

self-similarity holds with v(x, t)≡inlaw t ζ2−1ṽ(xt−ζ/2) and

0.01

0.1

1

0.001 0.01 0.1 1

p(
s)

s
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v(
x)

x

Fig. 4: (Colour on-line) Distribution of the rescaled shock
sizes s= S/S at T = 0. Continuous line: Kida’s predic-

tion p(s) = π
2
se−

π
4
s2 . Open circles: SR Kida discrete model

with 1/a= 256. Filled circles, squares: logarithmic model,
for 1/a= 64, 1024, respectively, with M = 216. Inset: plot
of a typical velocity field v(x, t= 1) for the logarith-
mic model with M =217 and 1/a=1024 and 2ν=T =0,
1/3, 10. The jumps at T = 0 are the shocks.

energy decay E(t)∼ 1/t−2+ζ , with ζ = 4/(3+n) the Flory
value. For n< 1 the energy exponent for the particle,
θ= 2(ζ − 1)> 0, with the effect that the size of the viscous
layer of the shocks vanishes when rescaled by the average
shock distance. The case n= 1 studied here clearly belongs
to this LR family with θ= 0, ζ = 1 and indeed velocity
and energy decay respectively as v∼ 1/√t and E(t)∼ 1/t
(see footnote 1). This is distinct from the Kida SR behav-
iour E(t)∼ 1/t(ln t)1/2. We expect that the relative shock
width/t1/2 remains constant and T -dependent, consistent
with θ= 0 marginality (fig. 4, inset). The (one point)
shock size distribution at T = 0 has been computed numer-
ically, with S = v(x+, t)− v(x−, t). The SR case repro-
duces correctly Kida’s exact result [11] P (S)∼ S−τe−AS2
with τ =−1. However, the present model yields a differ-
ent distribution, as seen in fig. 4. Examination of the
cumulative distribution (not shown here) reveals that
the exponent τ is consistent with τ ≈ 0 which would be
the prediction of the general conjecture [23] τ = 2− 2

D+ζ .

With D= 0 for decaying Burgers it predicts τ = 1−n2 for
the LR fixed points n� 1, which also recovers the exact
result τ = 1/2 for n= 0 [6,10]. It shows that despite its
one-step RSB character the present model is quite differ-
ent from the mean-field behaviour (which in the one-step

case always yields P (S)∼ Se−AS2 [24]).
Finally, one can apply our method to the SR Kida

problem, hereby extending to T > 0 the results of [11] and
adding to some of the observations in [5]. Considering the
above discrete model with ViVj = σδij , with σ=O(1), and

1The FRG to one-loop approximation yields [6] v2 = 2

t
√
4+T2+T

,

i.e. the correct scaling and high-T behaviour v2 ∼ 1/T t, but misses
the freezing transition.
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Fig. 5: (Colour on-line) Rescaled energy decay and comparison
with eq. (15) using the saddle point solution for ρ. Squares
correspond to T = 1/4, triangles to T = 1/8 and circles to T = 0
forM = 216 over 105 samples. The fast drop, which corresponds
to t/ρ∼M2, is a finite-size effect. The critical time tc is given
by extrapolating the decaying linear part.

t= 1/a2, one finds for 1� t/ρ�M2:

v2 =
1

t

((
σ

ln(2πt/ρ)

)1/2
−T
)
, t < tc =

1

2πT
e
σ

T2 ,

(15)

where ρ=m/T is the solution of the saddle point equation
σρ2 = 1+ ln(2πt/ρ). The freezing corresponds to the range
0�m< 1 and the condition m= 1 yields the above value
of tc for a given temperature T . For t� tc one recovers
the T = 0 decay law of Kida, while for t > tc the energy
has fully decayed and v= 0. Equation (15) thus describes
what happens in-between, as the system effectively heats
up: for t < tc the system is in the glass phase (i.e. here
Tc ∼ (ln t)−1/2 obtained setting m= 1), tc being the time
at which the thermal width of the shocks ∼ Tt has reached
the distance between shocks ∼ t( σln t )1/2. This behaviour
is shown in fig. 5. Computing for that model Wn(q) and
setting v= ṽ/

√
tρ we obtain

ln(1− iqṽ) = 1
m
ln

(∫
dy√
2π
(1+ iqy)m e−

y2

2

)
,

so that ṽ2 = (1−m) and ṽ4c =−2m(1−m) and

P(ṽ) = 1√
2πΓ(1−m)

|ṽ|−2−2me−ṽ2/2
S2++S

2−+2 cos(πm)S+S−
,

where S± =
∫∞
0

dz√
2π
zme−

ṽ2

2 (z±1)2 . The asymptotics is

P (ṽ)≈ 1√
2πΓ(1−m) ṽ

−2me−ṽ
2/2 at large ṽ and P (0) is

finite.
Extension of the present theory to velocity-velocity

correlations, some moments of shock size distribution,
and comparison with the infinite-dimensional limit will
be given elsewhere [21]. The transition unveiled here

in d= 1 does extend to any dimension d for n= 1
(i.e. inverse square spatial decay initial velocity correla-
tion) with Tc = 2νc =

√
d [17]. We expect that qualitatively

the behaviour of velocity will be similar to the d= 1 case.
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