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Comisión Nacional de Enerǵıa Atómica, (8400) Bariloche, Argentina

François P. Landes and Alberto Rosso
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Many complex systems respond to continuous input of energy by accumulation of stress over
time and sudden energy releases in the form of avalanches. Avalanches are paradigmatic non-
equilibrium phenomena displaying power law size distribution and involving all the length scales
in the system. Conventional avalanche models disregard memory effects and thus miss basic fea-
tures observed in real systems. Notable examples are aftershocks and the anomalous exponent of
the Gutenberg-Richter law which characterize earthquake statistics. We propose a model which
accounts for memory effects through the introduction of viscoelastic relaxation at an intermedi-
ate time scale. We demonstrate that in the resulting dynamics, coherent oscillations of the stress
field emerge spontaneously without fine tuning of any parameter. Remarkably, in two dimensions,
which is relevant in seismicity, these oscillations generate instability patterns that produce realistic
earthquake dynamics with the correct Gutenberg-Richter exponent.

The driven dynamics of heterogeneous systems often
proceeds by random jumps called avalanches, which dis-
play scale-free statistics. This critical out-of-equilibrium
behaviour emerges from the competition between inter-
nal elastic interactions and heterogeneities, and is un-
derstood in the framework of the depinning transition
[1, 2]. Remarkably, one can often disregard the precise
details of the microscopic dynamics when considering the
large scale behavior. As a result, various phenomena such
as the Barkhausen noise in ferromagnets [2, 3, 5], the
crack propagation in brittle materials [6–8] or the wet-
ting fronts moving on rough substrate [9–11] may display
the very same avalanche statistics.

A key feature of this description is the lack of inter-
nal time scales characterizing the memory of the system
[1, 12]. However, the inclusion of processes relaxing in-
ternal constraints introduces memory effects in the dy-
namics, with their own characteristic time. The existence
of this kind of relaxation may have drastic consequences
on the macroscopic behaviour of the system, as in the
context of friction where it generates the time increase of
static friction during the contact between two surfaces at
rest [13, 14]. Here we show how these relaxation processes
generically induce a novel avalanche dynamics character-
ized by new critical exponents and bursts of aftershocks
strongly correlated in time and space.

We account for the presence of relaxation processes
by introducing viscoelastic interactions, which generate
a new, emerging time scale. Due to its simplicity, the
model allows for analytic treatment in the mean field,
and for extensive numerical simulations in finite dimen-
sions. Our main observations are twofold. First, in mean
field the new time scale is associated with a dynamical
instability, which is responsible for periodic oscillations
of the stress in the entire system. This instability, named
avalanche oscillator, was observed in numerical simula-

tions and experiments of compression of Nickel micro
crystals [15]. The viscoelastic interactions are at the root
of the avalanche oscillator: they drive the system towards
a critical point, that we prove to be unstable. Second,
in two dimensions the global oscillations found in mean
field remain coherent only on small regions. In each re-
gion the oscillations of the local stress have roughly the
same amplitude and period, but different phases, so that
at a given time the stress map displays a terraced struc-
ture.

We claim that the relaxation processes studied in our
model are essential to capture the basic features of seis-
mic dynamics. In particular, the new time scale is the one
involved in the aftershock phenomenon [16–18]. More-
over the oscillations of the stress field explain the quasi-
periodic time recurrence of earthquakes that emerges
from the data analysis of the seismic activity in some
geographical areas [19, 20]. Finally we show that in two
dimensions, the exponent of the avalanche size distribu-
tion becomes perfectly consistent with that of the actual
Gutenberg-Richter law, and the aftershock spatial corre-
lations obtained have strong similarities with the migra-
tion effect observed in real earthquakes [21].

I. FROM CONVENTIONAL DEPINNING TO
THE MODEL WITH RELAXATION

Our model with relaxation is constructed upon the
paradigmatic model of avalanche dynamics, describing
the depinning of a d-dimensional elastic interface moving
inside a d + 1 dimensional space [1]. In this model, the
interface consists in a collection of blocks (see Fig. 1a)
obeying the equation of motion:

η∂thi = k0(w − hi) + fdis
i (hi) + k1∆hi (1)
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FIG. 1: Conventional depinning model. (a) Schema
of the system for d = 1. Only disorder and elastic inter-
actions (with spring constants k0, k1) control the dynam-
ics of the blocks, located in hi, hi+1, etc. The disordered
force derives from the pinning potential pictured in grey:
fdis
i = −∂Edis

i (hi)/∂hi. (b) Numerical results showing se-
quence of avalanches sizes S and the stress σ (grey) as a
function of the drive w. The sequence displays a Poissonian
behaviour and the small fluctuations of the stress are due to
the finite size.

where (i, hi) is the d + 1-dimensional coordinate of the
block and η is the viscosity of the medium. Each block
feels elastic interactions via the (discrete) Laplacian term
k1∆hi, disorder via fdis

i (hi) and is driven towards the
position w = V0t via springs of elasticity k0. The force
per unit area applied by the drive, namely the stress, is
given by:

σ = k0(w − h), (2)

where h is the mean value of interface height. The slow
increase of w over time induces an augmentation of the
pulling force on each block. As a response, blocks typ-
ically adjust slightly their positions, but sometimes a
block reaches a mechanical unstable state and moves
far away from its position to a new local energy mini-
mum. This can in turn destabilize neighbouring blocks,
thus triggering an avalanche event that we characterize
by its size S, defined as the volume swept by the inter-
face during the event. In Fig. 1b we show the sizes S
of a sequence of avalanches obtained by driving w quasi-
statically (V0 = 0+). The sequence displays a Poissonian
behaviour, in the sense that both the sizes and the tem-
poral locations of the events are uncorrelated variables.
Moreover the stress is constant in time, with small fluc-
tuations due to finite size effects.

Our modified model consists in replacing the springs
k1 by viscoelastic elements, built using springs and dash-
pots, as depicted in Fig. 2a. Its dynamical equations
are:

η∂thi = k0(w − hi) + fdis
i (hi) + k1∆hi + k2(∆hi − ui)

(3)

ηu∂tui = k2(∆hi − ui), (4)

where the auxiliary variables ui depend on the elongation
of the neighbouring dashpots: in one dimension this vari-
able reads ui = (φi − hi) + (hi−1 − φi−1) (see Appendix
A). The relaxation constant ηu sets a new characteristic
time τu = ηu/k0, to be compared with the two scales of
the depinning model: (i) τD = z/V0 which accounts for
the slow increase of the external drive w (where z is the
typical microscopic disorder length scale), (ii) τ = η/k0,
which is the response time to a perturbation. Note that τ
corresponds to the avalanches duration, τD is the time be-
tween two consecutive main shocks and τu sets the scale
of aftershocks.

For simplicity of the analysis, we assume here that the
three scales are well separated, namely τ � τu � τD (i.e.
η � ηu). In this limit, on the time scale τ the dashpots
are completely rigid, so that the ui’s are constant in time
and the dynamics is exactly the same as for the depinning
model with elastic constant k1 + k2. However, after an
avalanche, and in a time scale τu, the hi’s are pinned and
the ui variables relax exponentially:

ui(t) = ∆hi + (ui(t0)−∆hi)e
−(t−t0)k2/ηu , ∀i, (5)

where t0 is the time at which the last avalanche oc-
curred. The effect of relaxation is to suppress the term
k2(∆hi−ui) in Eq.(D1), so that some blocks may become
unstable. This triggers secondary avalanches in the sys-
tem, identified with aftershocks in the seismic context.
Aftershocks occur without any additional driving: the
ensemble of events that occur at a single value of w will be
called a cluster of events (see Fig. 2b). When ui = (∆h)i
for all i, the system is in the fully relaxed state and new
instabilities can only be triggered by an increase of w.
Note that this state corresponds to a stable configura-
tion of the depinning model with same k0, same disorder
realization and elastic constant k1.

In Fig. 2 we show the typical behaviour of the model in
two dimension (b) and in the mean field approximation
(c). We observe that unlike depinning, the dynamics is
qualitatively very different in the two cases. In mean
field the stress displays periodic global oscillations while
in two dimensions similar oscillations are observed only
on local scales.

II. THE NARROW WELLS APPROXIMATION

To efficiently study Eqs. (1), (D1), (D2), we adopt the
so-called “narrow wells” approximation. In this scheme,
the disorder is modelled as a collection of narrow pinning
wells representing impurities (see Fig. 1a). Along the h
direction, the pinning wells are separated by random in-
tervals z with distribution g(z) and mean length z. A
natural choice for g(z) is the exponential law, which cor-
responds to the case where impurities are uncorrelated
in space. If the spatial extension of the wells is negligible
compared to z, we can safely assume that each block is
always located in one of those wells, so that its coordi-
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FIG. 2: Model with relaxation. (a) Schema of the system for d = 1. The introduction of dashpots (with relaxation constant
ηu) strongly modifies the elastic interactions between blocks: fast moving blocks feel stiff interactions (k1 + k2) while pinned
block feel softer interactions (k1). Numerical results showing sequence of avalanches sizes S and stress σ (grey) as a function of
the drive w for the d = 2 dimensional case (b) and in mean field approximation (c). In two dimensions, we observe aftershocks
which corresponds to clusters of avalanches that occur at the same value of w. Dashed and dotted grey lines correspond to the
local stress of two distant regions: their oscillations have roughly the same period and amplitude, but are not synchronized. In
mean field approximation, the dynamics acquires a global periodic time dependence. The steady stress increase culminates in
a system size avalanche (global event) that abruptly reduces stress by a finite amount.

nate hi evolves only by discrete jumps z. To exit from a
well, a block needs to be pulled by a force larger than a
threshold f th

i related to the well’s depth.

Within this approximation, the continuous dynamics
of the blocks can be re-written as a set of simple rules
for the variable δi which measures the remaining stability
range of the block i. In the depinning model δi reads:

δi ≡ f th
i − k0(w − hi)− k1∆hi. (6)

If δi > 0 for all i, all blocks are stable and pinned in their
narrow wells. Increasing the load w, all δi’s decrease,
until a block becomes unstable (δi = 0) and moves to the
next pinning well (hi 7→ hi + z), characterized by a new
random threshold f th

i . The unstable block can be the
seed of an avalanche because its motion produces a drop
k1z in the variables δ of the neighbouring blocks. The
avalanche event is exhausted when all blocks are stable.

In the model with relaxation, the stability condition
reads:

δi = f th
i − k0(w − hi)− k1∆hi − k2(∆hi − ui) > 0. (7)

When a site becomes unstable, the dynamics proceeds
with the same rules as before, with ui’s kept constant
during the avalanche. When the avalanche event is ex-
hausted, a slow relaxation of ui takes place (Eq. (D2)).
This evolution can decrease δi’s and thus trigger after-
shocks.

III. MEAN FIELD ANALYSIS

We analyse the mean field approximation through the
fully connected version of the model, which corresponds
to replacing ∆hi with h − hi in Eqs. (6) or (7). In this
case, all sites are equivalent and the δi’s are indepen-
dent and identically distributed variables, characterized
by their probability distribution Pw(δ) which in general
depends on the initial condition P0(δ) and on the value of
w. In the Appendix B, we compute the evolution equa-
tions of Pw(δ) under an infinitesimal increase in w for
both models, for f th

i = const.

For the conventional depinning model, we show that
this evolution has a fixed point reached within a finite
increase in w, at which Pw(δ) is given by the function:

Q(δ, k1) =
1−G( δ

k0+k1
)

z(k0 + k1)
, (8)

where G(z) ≡
∫ z

0
dz′g(z′). This indicates that the large

time dynamics is stationary, and that the applied stress
in the system is constant in time:

σ(k1) ≡ f th − δ(k1). (9)

Further analysis shows that as long as Pw(0) < (zk1)−1

the system displays avalanches bounded by a system-size
independent cutoff: Smax = (1−Pw(0)zk1)−2. For exam-
ple, at the fixed point (B4) we have Pw(0) = Q(0, k1) =
1/z(k0 + k1), so that Smax = (k0+k1

k0
)2. However if

Pw(0) ≥ (zk1)−1 the system becomes unstable and we
observe a global event involving a finite fraction of the
system.
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FIG. 3: Model with relaxation: Mean Field approximation and the avalanche oscillator. Results of a direct
integration of the evolution equations of P (δ) (see Appendix C). The evolution of the distribution P (δ) (solid line) and the
stress σ = f th − δ (right panel) shows a clear avalanche oscillator dynamics. Four stages during the periodic cycle can be
distinguished. Stage 1: driving of the interface, without any avalanche. The stress increases linearly with w. Stage 2: driving
with some small events. The stress increases more slowly. The distribution P (δ) is continuously driven towards the unstable
point Q(δ, k1) (upper dotted curve) and the stress tends to the value σ(k1) (upper dotted line). Stage 3: a global event is
triggered, where P (δ) reaches the depinning fixed point Q(δ, k1 + k2) (lower dashed curve) and the stress drops to σ(k1 + k2)
(lower dashed line). Stage 4: Relaxation closes the cycle by bringing P (δ) back to its initial shape, without changing the
average stress.

For the model with relaxation, the evolution of Pw(δ)
is non stationary and displays an oscillatory behaviour.
Under a small increase in w, two dynamical regimes are
observed. On the short time scales (t ' τ) sites that
become unstable move following the rules of a rigid de-
pinning interface with stiffness k1 + k2. On longer time
scales (t ' τu), during relaxation, the interface becomes
more flexible (with stiffness k1), thus evolving towards
the fixed point Q(δ, k1). However when Pw(0) becomes
larger than 1/z(k1 + k2), the rigid interface is unstable,
so that a single global avalanche drives Pw(δ) to the rigid
fixed point Q(δ, k1 + k2). Finally, this state is deeply al-
tered by relaxation and a new cycle starts. This scenario
is confirmed by the numerical integration of the evolution
equations (see Appendix C), as shown in Fig 3.

It is interesting that the cyclic behaviour is indepen-
dent of details of the mean field model. For example
the results in Fig. 2c correspond to a case in which the
thresholds f th

i are randomly distributed. The avalanche
dynamics looks different and displays aftershocks, how-
ever the stress is cyclic and global events are also present.

IV. TWO DIMENSIONAL RESULTS AND
SEISMIC PHENOMENA

For the two dimensional case we must rely on the re-
sults of the numerical implementation of Eqs. (7) and
(5) via an efficient method originally developed in [7].
Details are provided in the Appendix D.

The results of a typical run in two dimensions are
shown in Fig. 2B. We see a clear distribution of events in
clusters of main shocks and aftershocks, as in actual seis-
micity (where, indeed, any single cluster spans a finite
w interval, due to the non-complete separation of time
scales). We note that the periodic behaviour observed in
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FIG. 4: Model with relaxation in 2D: emergence of
oscillations. The local stress restricted to the cluster area,
just before (up, σB) and just after (bottom, σA) it takes place,
as a function of the cluster size SC . The vertical dotted line
separates the region of “small” and “large” clusters. For suf-
ficiently small values of k0, it is observed that large clusters
move pieces of the interface with stress σmax to a new position
with stress σmin. A finite difference between σmax and σmin

persists even in the limit k0 → 0.

mean field (Fig. 2C) has disappeared.

Nevertheless, a careful analysis of the two dimensional
model shows an interesting reminiscence of the mean
field behaviour. In Fig. 4 we compute for each clus-
ter the local stress restricted to the cluster area, just
before (σB) and just after (σA) it takes place (the same
analysis performed by studying the events instead of the
clusters yields the same results). We see that small clus-
ters show broad distributions of σB and σA, similar to
what would be observed for the depinning case. How-
ever for large clusters the two distributions become very
narrow: σB sets to a value that we denote σmax, and σA
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FIG. 5: Stress map and aftershock sequence. The contour line plot of the local stress shows a terraced structure. Blue
lines correspond to a level ∼ σmin, red lines to a level ∼ σmax and green lines to an intermediate local stress. The epicentre
of each large aftershock (S > 5000) is indicated by a small cross. First panel from the left: the local stress just before a large
event. The dashed line highlights the unstable region (main shock). Second and Third panel: the main shock has stabilized
the unstable region which now spreads in the neighbourhood, via the aftershocks (small crosses). The principal directions of
expansion of the aftershocks are indicated by black arrows. Last panel: final state after all the aftershocks, when the system
is fully relaxed. The total system size is 15000 × 15000: for each elementary surface of one unit square, the local stress was
computed by averaging over a square of 100× 100 elemental sites of the discrete system.

sets to σmin. This is the fingerprint of the mean field be-
haviour, and it suggests a large scale description of the
two dimensional interface as a terraced structure. In-
deed, in Fig. 5, we observe that different parts of the
system have different values of the stress, which range
from σmin to σmax. In analogy with mean field, when
the stress of a region reaches a value ∼ σmax, it gets
destabilized and the whole region collapses to σmin. In
fact the evolution of the local stress associated to a small
patch of the interface is non stationary, and shows an
almost periodic oscillation between σmin and σmax (Fig.
2B, dashed and dotted lines). However this oscillation
is not synchronized among different patches, so that the
system does not display a global oscillation. It is remark-
able that for the model with relaxation, the width of the
distribution of the local stress (∼ σmax − σmin) remains
finite when k0 → 0; while in the depinning model [23], it

vanishes as k
1−ζ/2
0 for very small k0 (ζ is the roughness

exponent of the interface which is found to be smaller
than 2). Moreover, our model supports the idea that the
seismic activity in a given geographical region displays a
quasi-periodic history (the so-called seismic cycle). This
periodicity was recently studied in the context of micro-
crystals deformation [15], where this oscillatory behavior
is named “avalanche oscillator”. Similar kind of oscilla-
tions were also observed in models with relaxation [23]
and in the context of granular materials [24].

A second important feature of the two dimensional
model is the spatial distribution of aftershocks in a given
cluster (see Fig. 5). After a main shock, many after-
shocks follow, extending the slip area. The small ones
(not indicated) are rather uniformly distributed inside
the slip region; while the epicentres of the large ones typ-
ically occur at the border, and extend the slip region.
This behaviour has been directly observed in the field
and is called “aftershock migration” [21].

As a third point, we discuss the size distribution of the

large
events

small

S−1.75
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0.05

k0:

events
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0.014
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S102 104 106 108

10−4
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FIG. 6: Validation of the Gutenberg-Richter law. The
size distribution of avalanches N(S) is consistent with the ex-
ponent τ = 1.75. The dotted line separating the regions of
small and large events is indicated: the size distribution does
not display any strong feature around this value. The system
size is in all cases much larger than the largest avalanche ob-
served, and reaches values of 15000×15000. Other parameters
are: k1 = 0, k2 = 1.

avalanches in 2D, presented in Fig. 6. The distribution
shows a consistent power law decay in all the range that
we have been able to explore (at least in a size range of
107) with an anomalous exponent τ ' 1.7− 1.8. This is
quite remarkable, given that in all conventional avalanche
models like depinning or directed percolation, this expo-
nent is always smaller than 1.5, which corresponds to the
mean field limit [4, 5]. In particular in the 2D depinning
case one measures τ ' 1.27. More importantly our result
is in very good agreement with the empirical Gutenberg-
Richter (GR) law for earthquakes for which τ ' 1.7 (Note
that historically the magnitude of an earthquake is de-
fined as M = (2/3) log10 S. The GR law predicts that
N(M) ∼ 10−bM , with b ' 1, so that from the definition
N(S) ∼ S−τ , we have τ = 1+2b/3 ' 1.7). A justification
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for the value of the GR exponent has been given recently
using a forest fire model analogy [27]. It is worth men-
tioning that this explanation assumes a structure of the
interface that is compatible with the one we find here.

V. CONCLUSIONS

Internal relaxation plays crucial roles in the dynamics
of sliding objects, and becomes particularly relevant in
the large scale realization corresponding to seismic phe-
nomena. It generically induces a tendency for the dy-
namics to become non-stationary. This tendency fully
develops in mean field, where we identify a dynamical in-
stability from which stress oscillations originate. In the
most relevant two dimensional case, we provide numerical
evidence that the periodic oscillations occur locally, with-
out global synchronization between the different parts of
the system. We obtain a size distribution of events com-
patible with the Gutenberg-Richter law and aftershocks
which are spatially distributed similarly to real ones. Fur-
thermore, the viscoelastic elements produce an effective
velocity-weakening friction law in the system[28], a hall-
mark of fault dynamics behavior [17], compatible with

the rate-and-state equations, widely used in the macro-
scopic description of friction [29–31].

Our work reveals that earthquake statistics can be ra-
tionalized in terms of collective, non-stationary avalanche
dynamics. An interesting development of our study
would be to characterize the temporally clustered struc-
ture of the avalanches. In the viscoelastic model depicted
in Fig. 2A, the relaxation is local and controlled by a sin-
gle time constant. This choice allows a fast computation,
but yields an unrealistic exponential decay of the after-
shocks over time. In this respect, it would be suitable to
consider non-local relaxation mechanisms, as the Lapla-
cian relaxation studied in [28, 32], which can reproduce
the observed Omori law.
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Appendix A: Depinning with relaxation: derivation
of the equations and dynamical properties

The depinning model with relaxation corresponds to
the mechanical circuit sketched in Fig. 2a of the main
text. We first describe the one-dimensional case. The
sample is decomposed in blocks of mass m, labelled i
and moving along horizontal rails hi. The action of the
dashpot is to resist the change in φi−hi via viscous fric-
tion, with a resulting force on hi given by ηu∂t(φi − hi).
The blocks move in a medium with an effective viscosity
η, we will study the overdamped regime m∂2

t hi � η∂thi
1.

As each block is described by two degrees of freedom hi
and φi, its time evolution is governed by two equations.
The first equation comes from the force balance on hi:

η∂thi =fdis
i (hi) + k0(w − hi) + k1(hi+1 − hi)
+ k1(hi−1 − hi) + ηu∂t(φi − hi) + k2(φi−1 − hi)

[A1]

The second equation derives from the force balance on
φi:

0 = k2(hi+1 − φi) + ηu∂t(hi − φi) [A2]

where we assumed that the internal degree of freedom
φi has no mass. We inject this second equation in the
first, and subtract the force balance on φi−1 to the sec-
ond equation. It is convenient to let the Laplacian term
k2(hi+1 − 2hi + hi−1) appear by defining the variable
ui = φi − hi + hi−1 − φi−1:

η∂thi =fdis
i (hi) + k0(w − hi) + k1(hi+1 − 2hi + hi−1)

+ k2(hi+1 − 2hi + hi−1)− k2ui

ηu∂tui = k2(hi+1 − 2hi + hi−1)− k2ui [A3]

To generalize this to higher dimensions (on a square
lattice), one simply has to connect each block hi to its
neighbours via symmetrically arranged viscoelastic ele-
ments. The equations obtained are exactly the same,
with the label i now referring to d-dimensional space, the
d = 1 discrete Laplacian replaced with the d-dimensional
Laplacian denoted ∆, and the ui variable redefined as:

ui =

d∑
j=1

(φj − hj) +

2d∑
j′=d+1

(hj′ − φj′) [A4]

In this way, one obtains Eqs. (3), (4) of the main text.

It is worth to notice that the dynamics of the model
without relaxation is fully justified by the Middleton the-
orem [1] which guarantees that the interface moves only
forward. However, in presence of viscoelastic elements

1 The graphical representation of the term η∂thi in Eq.[A1] would
be a dashpot connecting hi to the “ground” position h = 0.



8

the Middleton theorem does not apply, and backward
movements of the interface are possible. Fortunately,
these movements are not frequent, due to the biased driv-
ing term k0(w−h) and we observed numerically that the
real dynamics yields the same statistical results as the
dynamics that allows only forward movements. Thus,
we restrain the dynamics to forward movements.

Appendix B: Mean field analysis

In general, the mean field limit can be studied using
models which are much simpler than their finite dimen-
sion counterpart. For example, the mean field depinning
can be mapped [2] onto the problem of a single parti-
cle driven in a Brownian force landscape, the so-called
ABBM model [3]. Many results on the avalanche statis-
tics of the mean field interface can be obtained from this
latter model [4, 5]. Unfortunately, such a mapping does
not hold in presence of relaxation. A different strategy,
which can be generalized to that case, is to consider the
fully connected model, where each site interacts with all
the others.

In the fully connected model, all sites are equivalent
and the δi’s are independent and identically distributed
variables, characterized by their probability distribution
Pw(δ) which in general depends on the the initial con-
dition P0(δ) and on the value of w. The aim of this
section is to write down the evolution equation for Pw(δ)
when w increases. We will show that in the depinning
case the distribution reaches a stationary form, while the
viscoelastic depinning displays a periodic solution.

1. Reference material for the depinning model

By replacing the local term (∆h)i in Eq.(6) of main
text with its fully connected version h− hi, we obtain:

δi = f th − k0(w − hi)− k1(h− hi) [B1]

Let us set the threshold force f th to be constant, a choice
that, for the mean field analysis, does not alter the re-
sults.

When the external driving is increased by a small pos-
itive quantity w. , the distribution evolves from its initial
shape Pw(δ), to a new shape Pw+w. (δ). In order to com-
pute the latter, it is useful to decompose the dynamical
evolution in different steps. In a first step, the center of
the parabolic potential moves from w to w+w. , and all δi’s
decrease by dδ = k0w. , moreover, a fraction Pw(0)k0w. of
sites becomes unstable and moves to the next wells. The
new δi are given by z(k1 + k0), with z’s drawn from the
distribution g(z). This writes:

Pstep1(δ)− Pw(δ)

k0w.
=
∂Pw
∂δ

(δ) + Pw(0)
g
(

δ
k0+k1

)
k0 + k1

[B2]

The redistribution of δ’s changes h of a quantity
Pw(0)zk1, so that all blocks are subject to a shift in
their δi. This can induce a second step which acts on
Pstep1(δ) exactly as step1 did on Pw(δ), but with a shift
dδ = Pw(0)zk1. These steps go on until there are no
more unstable sites, so that the distribution reaches the
stable form Pw+w. (δ). Let us remark that Eq.[B2] has a
fixed point P∗(δ) found when

∂P∗
∂δ

(δ) + P∗(0)
g
(

δ
k0+k1

)
k0 + k1

= 0. [B3]

This equation can be easily integrated and P∗(0) deter-
mined by the normalization condition. This gives:

P∗(δ) = Q(δ, k1) =
1−G( δ

k0+k1
)

z(k0 + k1)
, [B4]

whereG(z) ≡
∫ z

0
dz′g(z′). A stability analysis shows that

the fixed point is attractive, so that any initial condition
converges to it. Moreover, it is possible to prove that for
a given initial condition, there exists a finite w∗ at which
the distribution reaches the fixed point and remains there
for w > w∗. This indicates that the large time dynamics
is stationary, and that the applied stress in the system is
constant in time:

σ(k1) ≡ f th − δ(k1). [B5]

This result becomes σ(k1) = f th − (k0 + k1)z for an ex-
ponentially distributed z.

For the depinning case, we can also compute the prob-
ability distribution of the avalanche sizes N(S) in the
fully connected approximation, for finite values of the
parameters k0, k1, z̄. Let us first consider the case where
g(z) = δ(z−z). For a finite system with N sites, the typ-
ical configuration {δi} corresponds to a set of N indepen-
dent and identically distributed random variables drawn
from P (δ). Let us sort the set: δ0 < δ1 < · · · < δN−1.
When the system becomes unstable we have by definition
δ0 = 0. This site jumps to the next well at distance z, so
that all δi’s are decreased by zk1/N . This will produce
at least another jump if δ1 < zk1/N . More generally, the
avalanche size S corresponds to the first time that the
relation:

δS−1 ≤ zk1
S

N
< δS [B6]

is fulfilled.

It is thus important to study the statistics of the δi
when i � N . Let us observe that when N is very large
the distribution of these δi’s can be approximated with a
uniform distribution: P (δ) ∼ P (0). Within this approx-
imation, the spacings Xi = δi+1 − δi are independent
exponential variables of mean 1/P (0)N and variance
1/(P (0)N)2. We conclude that the sequence δ0, . . . , δi
is a random walk of diffusion constant 1/(P (0)N)2 and
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drift 1/(P (0)N).
The statistics of S thus corresponds to the problem of

first crossing with 0 of a random walk with diffusion con-
stant D = 1/(P (0)N)2 and drift d = z̄k1

N −
1

P (0)N . For a

positive drift, there is a finite probability that this ran-
dom walk never crosses 0, which corresponds to a global
event. For a negative drift, the time of zero crossing is
always finite, and has been computed for the Brownian
motion in [6]. The distribution of the avalanche sizes
thus reads:

N(S) ∼ S−3/2e−S/2Smax

with Smax =
D

d2
= (1− P (0)zk1)−2 [B7]

where for simplicity we have neglected the short-scale
regularization in the expression of N(S). If now we re-
place the choice g(z) = δ(z − z) with a broader function
g(z), the results of Eq.[B7] still hold but with a different
diffusion constant. Finally let us remark that the results
we obtain here focusing on δi, coincide with the results
obtained using the mapping to the ABBM model.

2. Mean field analysis of the model with relaxation

The fully connected approximation for the model with
viscoelastic elements is obtained by replacing (∆h)i in
Eq.[7] by h− hi, as for the depinning model:

δi = f th − k0(w − hi)− (k1 + k2)(h− hi) + k2ui. [B8]

It is useful to split δ in a fast part, δF , and a relaxed one,
δR:

δFi = f th − k0(w − hi)− (k1 + k2)(h− hi)
δRi = k2ui. [B9]

Under a small increase of w. , two dynamical regimes are
observed. On the short time scales (t ' τ) the dashpots
are blocked, so that all δRi ’s remain constant while all
δFi are shifted by k0w. . Sites that become unstable (i.e.
with δi = δFi + δRi ≤ 0) move to their next pinning well,
following the rules of the rigid depinning interface, with
stiffness k1 +k2. On longer time scales (t ' τu) the dash-
pots relax, so that δRi ’s slowly evolve and can possibly
trigger new fast events called aftershocks. Within the
approximation f th = cte, no aftershocks are observed.
This allows the blocks to fully relax after each event, so
that the system’s state just before any event is always
fully relaxed (ui = h−hi). This corresponds to a relaxed
δRi :

δRi,∞ = k2(h− hi) = k2
δF − δFi

k0 + k1 + k2
[B10]

where the last equality is obtained by inverting Eqs.[B9].
The effect of an event is to modify the distribution of δF

drive + events

stationary state

δ

P (δ)

FIG. 7: The evolution of Pw(δ) for the quenched Edwards-
Wilkinson model when w is increased. The initial distribution
is a Gaussian centred in δ = 0.4, with standard deviation 0.15,
and the weight at the left of δ = 0 cut. P (δ) quickly reaches
its stationary form.

which, just before an event, is related to Pw(δ) (using
Eq.[B10]):

P̃w(δF ) = κPw(κ(δF + δ∗)), [B11]

where δ∗ = k2δ/(k0+k1) and κ = (k0+k1)/(k0+k1+k2).
At the first step of the event, the unstable sites are those

with δF = −δ∗, so that P̃ evolves from P̃w to P̃step1 via:

P̃step1 − P̃w
k0w.

=
∂P̃w
∂δF

+
P̃w(−δ∗)

k0 + k1 + k2
g

(
δF + δ∗

k0 + k1 + k2

)
[B12]

this equation has a depinning-type fixed point P̃∗(δ
F ) =

Q(δF + δ∗, k1 +k2), which translates for the variable δ in
the fixed point P∗(δ) = Q(δ, k1) of the depinning model
for the more flexible interface (with stiffness k1). We con-
clude that when the dynamics consists in avalanches of
very few steps (here we assume just one), the distribution
Pw(δ) converges to this attractive fixed point.

This convergence, observed in Fig. 3a of the main
text, stops when Pw(δ) overcomes the fixed point of the
rigid interface at δ = 0, namely Pw(0) ≥ (z(k1 + k2))−1.
At this stage, a global avalanche is triggered in the sys-
tem2, and Pw(δ) jumps to the fixed point Q(δ, k1 + k2)
of the rigid interface (stage 3). Finally, at the end of this

2 For avalanches that last for more than one step, the evolution of
Pw(δ) can not be computed from Eq.[B12] because the system
is not fully relaxed during the avalanche. Instead it is neces-
sary to follow the evolution of the joint probability distribution
P (δF , δR). The details of this numerical integration are given in
the SI Text Sec. 4+1
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global event, relaxation takes the system far from this
fixed point, and a new cycle starts (stage 4).

Appendix C: Fully connected model: numerical
integration of the evolution equations of P (δ)

1. Numerical integration for the depinning model

Let us discretize P (δ) with a bin of size ε. The distri-
bution probability is then a vector Pi (related to P (δ) by
Pi = P (δ = εi)) which evolves with the following rules:

• Driving process: We shift Pi of one bin: Pi ← Pi+1.

• Instability check: We compute the weight of unsta-
ble sites:

Pinst = ε
∑
i<0

Pi

If Pinst > 0, we perform the Avalanche process.
Else we go back to the Driving process.

• Avalanche process: it is composed by a stress drop
and a stress shift.

– Stress drop:

Pi≥0 ← Pi + Pinst
g (εi/(k0 + k1))

k0 + k1

Pi<0 ← 0

– Stress shift: we shift Pi of nshift = Int[ zk1Pinst

ε ]
bins.

Pi ← Pi+nshift

Then we perform the Instability check.

This algorithm converges very quickly from any initial
configuration to P∗(δ) for any choice of g(z), see Fig. 7
of the SI Text.

2. Numerical integration for the model with
relaxation

Analogously to the previous case, we discretize
P (δF , δR) with a bin ε. The distribution probability is
then a matrix Pi,j where Pi,j = P (δF = εi, δR = εj).
The matrix evolves with the following rules:

• Driving process: We shift Pi,j of one bin:
Pi,j ← Pi+1,j .

• Instability check: We compute the weight of unsta-
ble sites:

Pinst = ε
∑

(i+j)<0

Pi,j

If Pinst > 0, we perform the Avalanche process.
Else we perform the Relaxation process

• Avalanche process: it is composed by a stress drop
and a stress shift.

– Stress drop: ∀(i, j),

if i+ j ≥ 0 :

Pi,j ←Pi,j +
ε

κ

 ∑
i′|(i′+j<0)

Pi′,j

 g

(
ε(i+ j)

κ

)
,

if i+ j < 0 :

Pi,j ←0,

where κ = k0 + k1 + k2.

– Stress shift: we shift Pi,j of

nshift = Int[ z(k1+k2)Pinst

ε ] bins.

Pi,j ← Pi+nshift,j

Then we perform the Instability check.

• Relaxation process: We compute, j∞(i), the single
bin associated to δRi,∞ = j∞(i)ε as3

j∞(i) = Int

(
k2

−i+
∑
i′,j i

′P (i′, j)

κ

)
so that the relaxation corresponds to:

Pi,j∞(i) ←
∑
j

Pi,j

Pi,j 6=j∞(i) ← 0

Then we perform the driving process.

This algorithm integrates the fully connected version
of the viscoelastic model, and produces the results shown
in Fig. 3 of the main text.

Appendix D: Two dimensional case: details on the
numerical integration procedure

We provide here details on the integration of the dy-
namic equations of the viscoelastic model. Our starting
point are the equations (3) and (4) of the main text:

η∂thi = k0(w − hi) + fdis
i (hi) + k1∆hi + k2(∆hi − ui)

[D1]

ηu∂tui = k2(∆hi − ui) [D2]

3 It is numerically more stable to associate δR(i,∞) with two bins,
j∞(i) and j∞(i) + 1. The contribution

∑
j Pi,j is splitted in the

two bins using a linear interpolation.
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with w = V0t. For the numerical work, it is convenient
to introduce variables Fi and Gi, defined as

Fi ≡ k2(∆hi − ui) [D3]

Gi ≡ k1(∆hi) + k0(w − hi) [D4]

Using Fi and Gi, the model equations can be written as

η∂thi = fdis
i (hi) +Gi + Fi [D5]

ηu∂tFi + k2Fi = ηuk2(∆∂th)i. [D6]

It is thus clear that Gi represents the force onto hi ex-
erted through k1 and k0 springs, whereas Fi is the force
coming from the branches that contain the dashpots and
k2 springs.

We work in the case in which temporal scales are well
separated: τ � τu � τD. This corresponds to η �
ηu � zk0/V0. As discussed in the main text, within the
narrow well approximation the actual integration of Eqs.
[D5] and [D6] does not need a continuous time algorithm,
but can be presented in the form of a discrete set of rules.
From a relaxed configuration with Fi = 0 at time t, the
load increase triggers a new instability of Eq.[D5] when
fdis
i (which is negative) reaches −f thi , and this occurs

after a time interval:

δt = min
i

(
f thi −Gi
k0V0

)
[D7]

Thus at time t + δt an avalanche starts at position i,
producing the advance of hi to the next potential well
hi ← hi + z, and a corresponding rearrangement of the
forces according to (in two dimensions):

Fi ← Fi − 4k2z [D8]

Gi ← Gi − (4k1 + k0)z [D9]

Fj ← Fj + k2z [D10]

Gj ← Gj + k1z [D11]

where j are the four neighbour sites to i, and the value of
f thi is renewed from its probability distribution. All suc-
cessive unstable sites are treated in the same way until
there are no more unstable sites. This defines the pri-
mary avalanche. At this point the relaxation dynamics
[D6] begins to act, until some site eventually becomes un-
stable. Note that due to the discrete pinning potential,
in this stage h remains constant, namely the relaxation
dynamics is simply:

ηu∂tFi = −k2Fi, [D12]

This means that a given site i will trigger an avalanche
due to relaxation if for some increase in time δt the pin-

ning force fdis
i on this site reaches −f thi , i.e., if

Fie
−k2δt
ηu +Gi = f thi , [D13]

(note that in order to have a solution, Fi must be neg-
ative, as the l.h.s is lower that the r.h.s. at the starting
time). This leads to the determination of δt as

δt = −ηu
k2

min
i

[
ln

(
f thi −Gi

Fi

)]
[D14]

Once all the secondary avalanches generated by relax-
ation have been produced and Fi has relaxed to zero, the
external driving is increased again, according to [D7].

This is the main scheme of the simulation. We should
mention however, that its efficient implementation relies
on a classification scheme of all sites, in such a way that
the determination of the next unstable site in [D7] and
[D14] does not require a time consuming sweep over the
whole lattice. In fact, following Grassberger[7] we clas-
sify the sites according to their value of the r.h.s. of [D7]
and [D14], and bin them, in such a way that the deter-
mination of the next unstable site can be limited to the
bin corresponding to the lowest values of these quantities.
When sites change their h values along the simulation,
they are reaccomodated in the bins using a linked list
algorithm.

Appendix E: Methods

For Figs. 1, 2, 4, 5 and 6, the numerical method used
is the one described in SI Section 3. In Figs 1 and 2, the
number of blocks is 5122 = 65536 (in 2D, we consider
a square-shaped interface with L = 512). We use k0 =
0.02, k1 = 0.5, g(z) = e−z and the thresholds f th

i are
distributed as a Gaussian of mean 3 and unit variance.
In Fig. 1 we use k2 = 0, i.e. we simulate the conventional
depinning model. In Fig. 2 we use k2 = 0.5, and the grey
lines represent the stress averaged in small patches of size
10 × 10 (100 blocks). The two patches are chosen to be
as far as possible.

In Fig. 3 we perform the simulation described in SI
Section 5 (and in particular in Sec. 5.2). We use k0 =
0.001, k1 = 0.1, k2 = 0.3, g(z) = e−z and the thresholds
are set constant f th

i = 1,∀i. The discretization of δF and
δC is made using a binning ε = 0.003.

In Fig. 4, 5 and 6, we use k1 = 0, k2 = 1. g(z) is
the uniform distribution in the range [0, 0.2]. The f th

i

are distributed as in Figs. 1 & 2. The number of blocks
is 150002 = 225000000 (with L = 15000). In Fig. 5 we
used k0 = 0.012.
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