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Abstract. We consider Gaussian signals on a scale L, i.e. random functions
u(t) (t/L ∈ [0, 1]) with independent Gaussian Fourier modes of variance ∼1/qα,
and compute their statistical properties in small windows t/L ∈ [x, x + δ]. We
determine moments of the probability distribution of the mean square width of
u(t) in powers of the window size δ. These moments become universal in the
small-window limit δ � 1, but depend strongly on the boundary conditions
of u(t) for larger δ. For α > 3, the probability distribution can be computed
explicitly, and it is independent of α.
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Gaussian signals—random functions with independent Gaussian Fourier components of
variance proportional to 1/qα—have been used to describe physical situations ranging from
1/f noise in electric circuits [1] to intermittency in turbulent flows [2], and to interfaces
in random media [3, 4].

For Gaussian signals, the mean square width w2, which fluctuates from sample to
sample, is the simplest non-trivial geometrical characteristic [5]:

w2(L) ≡ 1

L

∫ L

0

dt u(t)2 −
[

1

L

∫ L

0

dt u(t)

]2

∼ L2ζ . (1)

The scaling in equation (1) applies for average quantities: the power exponent α fixes the
average value of w2(L) on a scale L, as characterized by the roughness exponent ζ . In one
dimension, the relation between the roughness and the power spectrum is ζ = (1/2)(α−1),
and the usual random walk, with ζ = 1/2, corresponds to α = 2. The curvature-driven
model [6] also belongs to this class of systems. It realizes the case α = 4. We restrict
ourselves to α > 1 and thus avoid a high-frequency divergence [5].

For elastic interfaces in disordered media and other systems α can be non-integer.
Usually, this exponent is extremely difficult to calculate [7]–[10] and exact results are
rare [11]. In contrast to the random walk and the curvature-driven model, these systems
are not exactly Gaussian and the high-order correlation cannot be expressed through
two-point functions.

More intricate statistical properties of w2 are able to expose non-trivial correlations
present in the probability distribution of the mean squared width, P (w2) [12, 13]. This
distribution has been used to characterize the geometric properties of numerical and
experimental data [14]–[18].

Non-Gaussian corrections for the probability distribution of the mean square width
were explicitly determined in a non-trivial depinning problem and found to be on the
0.1% level [13]. In fact, these corrections appear only in high orders of perturbation
theory [13, 19]. The excellent agreement between complicated physical models on the one
hand and their effective Gaussian description on the other motivates a finer analysis of
the universal statistical properties of Gaussian signals, which is the object of this letter.

Because of their definition in Fourier space, it is most convenient to study periodic
signals with u(t) = u(t + L). However, experimental systems are usually non-periodic.
Free boundary conditions are commonly modelled by Gaussian signals u(t) with zero mean
and vanishing derivatives at the end points (see figure 1). The probability distribution of
w2 depends on the boundary conditions; it was computed analytically both for free and
for periodic signals [5, 16].

Several authors studied the signal u(t) inside a small window (see figure 1), i.e. the
piece with t/L ∈ [x, x+ δ]. Antal et al [5] did numerical simulations for different values of
α. It was found that the probability distribution P (w2) inside a window agrees well with
free boundary conditions for α � 2 [16]. However, the two distributions differ markedly
for α outside this range, as was clearly shown by de Queiroz [20].

In this paper, we calculate analytically the statistical properties of Gaussian signals
in small windows δ → 0 for free and periodic boundary conditions and find that the first
moments of the probability distribution of w2 coincide for 0 < x < 1. This is important
for the analysis of experimental data, as the boundary conditions can usually not be
controlled: the statistics in a small window is independent of them, i.e. contains only
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Figure 1. Periodic (left) and free (right) Gaussian signals u(t · L). This paper
studies the statistics of signals inside a small window (middle).

universal information. We complement this determination of moments with numerical
calculations of the probability distribution itself.

The Gaussian signal is defined by the action

S =
1

2

∫ L

0

dt

[
∂α/2u(t)

∂tα/2

]2

, (2)

where the derivative for non-integer α is understood in Fourier space [5]. For a periodic
signal of zero mean:

u(t) =

∞∑
n=1

an cos

[
2πn

L
t

]
+ bn sin

[
2πn

L
t

]
, (3)

replacing this expansion in the action (2) we get that an and bn are Gaussian random
numbers of variance σ2

n = L2ζ2−2ζ · (πn)−α. Free Gaussian signals are commonly modelled
with cosines with period 2L [21],

u(t) =

∞∑
n=1

cn cos
(πn

L
t
)

, (4)

and the action (2) implies that the Gaussian random numbers cn are of variance
2L2ζ · (πn)−α.

The mean squared width of a signal u(t · L) in a window [x, x + δ] is

w2(x, δ) =
1

δ

∫ x+δ

x

u2(t · L) dt −
(

1

δ

∫ x+δ

x

u(t · L)dt

)2

.

For free boundary conditions, we have

wfr
2 (x, δ) =

∞∑
n,m=1

cncmDnm(x, δ) (5)

with

Dnm(x, δ) =
1

δ

∫ δ+x

x

cos(πnt) cos(πmt) dt − 1

δ2

∫ δ+x

x

cos(πnt) dt

∫ δ+x

x

cos(πmt) dt.

Similarly, the periodic signal’s mean squared width, wper
2 , is given in terms of cos–cos,

cos–sin and sin–sin integrals. Clearly, the statistical properties of wper
2 cannot depend on

the initial point x, but only on the window size δ.
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The above equations allow one to compute w2 for one given sample (choice of {an, bn}
or {cn}) and its probability distribution, characterized by the ensemble average 〈w2〉 and
by the rescaled distribution φ(z) = 〈w2〉P (z) with z = w2/ 〈w2〉. For free boundary
conditions, equation (5) implies

〈
wfr

2 (x, δ)
〉

=
2L2ζ

πα

∞∑
n=1

Dnn(x, δ)

nα
. (6)

This gives for the variance of the rescaled probability distribution φ(z)

κfr
2 (x, δ) =

〈
2
∑∞

n,m=1(D
2
nm(x, δ)/nαmα)

[
∑∞

n=1(Dnn(x, δ)/nα)]
2

〉
, (7)

which is independent of L. All the other cumulants of φ(z) are scale-free (i.e. independent
of L), and are defined analogously through multiple sums. We note that for δ = 1, and
with the normalization (2), we have

〈
wfr

2 (δ = 1)
〉

=
L2ζ

π1+2ζ
ζ(α)

〈wper
2 (δ = 1)〉 =

L2ζ

22ζπ1+2ζ
ζ(α),

where ζ(α) is the Riemann zeta function. All the (scale-free) cumulants are known for
δ = 1 [5, 16]:

κfr
n(δ = 1) = (2n − 2)!!

ζ(nα)

ζn(α)
(8)

κper
n (δ = 1) = (n − 1)!

ζ(nα)

ζn(α)
. (9)

Sums as in equations (6) and (7) may be evaluated with a powerful formula [21]

∞∑
n=1

f(nδ)

nα
= δα−1

∫ ∞

0

dt


 ∞∑

m=�α�

fm(0)tm−α

m!


 +

∞∑
m=0

δmfm(0)
ζ(α − m)

m!
, (10)

where 	α
 is the integer part of α. This formula is valid inside a convergence radius which
is δ = 1 for all the quantities considered in this paper. Equation (10) is in the spirit of
the Euler–Maclaurin formula. It holds only for analytic functions f and non-integer α:
the first term on the right can be interpreted as the naive limit of the sum as δ → 0, with
t = nδ. The second term on the right contains the Taylor expansion of f(nδ) around zero.
For integer α, the singularity of ζ(1) generates logarithms, which can be computed.

Equation (10) and its generalization for integer α permit one to compute, for each
value of α, the entire δ-expansion of the moments of the probability distribution of w2

in a window [x, x + δ] when free or periodic boundary conditions are considered (for a
periodic signal, the result is independent of x, for a free signal, this holds only for α = 2).
For periodic boundary conditions, we find

〈wper
2 (δ)〉
L2ζ

=
2−α−1

ζ(−α − 1)

ζ(α + 2)

πα+2
δα−1 +

21−α

3

ζ(α − 2)

πα−2
δ2 − 22−α

45

ζ(α − 4)

πα−4
δ4 + · · · . (11)
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This formula gets modified by logarithms for α = 3, α = 5 etc. Interestingly, an analogous
expansion appears in the correlation function governing the density of zero-crossings of
a Gaussian signal [22]. We note that the series (11) is finite for even α, as the Riemann
zeta function vanishes for even negative integers. The periodic random walk (α = 2) and
the curvature-driven model (α = 4) yield

〈wper
2 (δ)〉
L2ζ

=




δ

6
− δ2

12
(α = 2)

δ2

144
− δ3

120
+

δ4

360
(α = 4).

(12)

From the series (11), the dominant term of 〈wper
2 (δ)〉 scales for small windows as

(Lδ)α−1 = (Lδ)2ζ , in agreement with the self-affinity relation (1). However, this natural
scaling breaks down for α > 3, i.e. for roughness exponents ζ > 1. There, the small-
window scaling, from equation (11), is as (Lδ)2 · L2ζ−2. In addition to an α-independent
scaling at small distances, a scale factor, depending on α and on the system size, appears
explicitly. This was pointed out by Tang and Leschhorn [23] in the context of depinning,
where models with ζ > 1 (α > 3) appear naturally [24, 25].

For α < 3, and free boundary conditions with 0 < x < 1, the dominant integral in
equation (10) involves an intricate double limit, where δ → 0 and x/δ → ∞. The second
limit generates oscillating terms with vanishing contributions, which can be eliminated.
The dominant term of

〈
wfr

2

〉
, proportional to δα−1, is identical to the dominant term

of 〈wper
2 〉, from equation (11). The mean squared width 〈w2〉 is thus insensitive to the

boundary conditions. We note that the expansion of 〈w2〉 obtained from equation (10)
provides non-intuitive explicit prescriptions for extracting the roughness exponent from
experimental or numerical data in powers of δ, which differ from the standard ansatz [24].

For α > 3, the dominant term for small δ is〈
wfr

2 (δ)
〉

L2ζ
=

∞∑
n=1

sin(nπx)2

6πα−2nα−2
δ2 + O(δα−1, δ4). (13)

The vanishing derivatives at the end points force
〈
wfr

2

〉
to be smaller than 〈wper

2 〉 for all
0 < x < 1. At the end points x = 0 and 1, the δ2 term vanishes.

We now turn to the variance κ2 of the distribution φ(z) (compare equation (7) for
free boundary conditions), which can be evaluated with straightforward generalizations
of equation (10) to multiple sums. The calculation of κ2 is along the lines of the above
determination of 〈w2〉. Discarding again rapidly oscillating terms in the limit δ → 0 and
x/δ → ∞, we that κper

2 (δ) coincides with κfr
2 (x, δ) for 1 < α < 3. Furthermore, in the

special case α = 2, the integral agrees with the variance κfr
2 (δ = 1) from equation (9),

which for the random walk is independent of δ. This is due to the Markov-chain property
of the free random walk. The density matrix generating the path is infinitely divisible,
and essentially reproduces itself for all values of δ. In contrast, for all α �= 2, we have

κper
2 (δ → 0) = κfr

2 (δ → 0) �= κfr
2 (δ = 1). (14)

‘Windows’ of periodic or free signal are thus different from the free signal itself. To
illustrate this crucial result, we numerically evaluate the distributions φ(z): for fixed
values of x and δ, several million integrals Dnm(x, δ) can be stored in a matrix. For any
given set of Gaussian random numbers cn, equation (5) can then be approximated by a
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Figure 2. Probability distribution φ(z) for free and periodic signals at α = 2.5.
Direct simulations for δ = 0.01 (with 106 samples, x = 0.495 for the free case)
are compared to analytic solutions for δ = 1 [5, 16].

finite sum, which yields the width of a single sample. The average over realizations of
the random numbers needs no recalculation of the Dnm. Periodic signals may be treated
accordingly. Figure 2 compares the results for δ = 0.01 for both boundary conditions with
the distributions for δ = 1. The two distributions at δ = 0.01 agree very well, but, for
this value of ζ close to 1/2, they differ somewhat from the free δ = 1 distribution. This
point was missed in previous work [16], because the exponent considered there was very
close to 1/2. Notice that the distribution for the periodic δ = 1 signal is very different
from the other distributions.

The calculation of cumulants κn with n > 2 presents no conceptual difficulties. For
α < 3, the leading term of κn is given by an n-dimensional integral which may be
computed numerically. We conjecture that all moments, and thus the distribution itself,
are independent of boundary conditions in the small-window limit. This is also supported
by the numerical results of figure 2.

In the case α ≥ 3, the integral term in equation (10) is subdominant and all cumulants
can be calculated:

κn(δ → 0) =

{
(2n − 2)!! + O(δα−3) for α > 3

(2n − 2)!! + O(log δ) for α = 3.
(15)

This implies that the distribution φ(z) in the small-window limit is

φ(z) =
exp [−z/2]√

2πz
. (16)

This distribution holds for all α ≥ 3. It was previously thought to be valid in the α → ∞
limit only [5]. In figure 3, the small-window distribution is compared to the numerically
obtained distribution for α = 3.5. Evidently, for α > 3, a small window of the free signal
is very different from the free signal itself.

In conclusion, we considered in this paper statistical properties of Gaussian signals.
We studied the influence of boundary conditions on the signal in a small window. An
exact sum formula, non-trivial generalization of the Euler–Maclaurin equation, allowed us
to systematically compute moments of the mean square distribution function which was
found to be independent of the boundary condition at small δ.

doi:10.1088/1742-5468/2005/08/L08001 6

http://dx.doi.org/10.1088/1742-5468/2005/08/L08001


J.S
tat.M

ech.(2005)
L08001

Geometry of Gaussian signals

1

0 1

=0.1 (num.)
0

=1

Figure 3. Probability distribution φ(z) for free signals at α = 3.5. A direct
simulation of equation (5) (x = 0.45, δ = 0.1) with 106 samples is compared
to the function (16) in the small-window limit and to the analytic solution for
δ = 1 [16].

The expansion in powers of the window size δ changes at α = 3 (corresponding to a
roughness of ζ = 1). Above this value, the calculation of all moments of the distribution
function (in the δ → 0 limit) becomes particularly simple, and the whole probability
distribution was computed. Clearly, the small-window limit studied in this paper plays
an important role: it is independent of the boundary conditions and contains the true
universal information of a Gaussian signal.

We thank C Texier and J Bouttier for helpful discussions. RS thanks LPTMS in Orsay
for hospitality for a part of this work.
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[12] Foltin G, Oerding K, Rácz Z, Workman R L and Zia R K P, 1994 Phys. Rev. E 50 R639
[13] Rosso A, Krauth W, Le Doussal P, Vannimenus J and Wiese K J, 2003 Phys. Rev. E 68 036128
[14] Bramwell S T et al , 2000 Phys. Rev. Lett. 84 3744
[15] Marinari E, Pagnani A, Parisi G and Rácz Z, 2002 Phys. Rev. E 65 026136
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