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Abstract. We study the influence of boundary conditions on self-affine random
functions u(t) in the interval t ∈ [0, L], with independent Gaussian Fourier modes
q of variance ∼1/qα. We consider the probability distribution of the mean square
width of u(t) taken over the whole interval or in a window t/L ∈ [x, x + δ]. Its
characteristic function can be expressed in terms of the spectrum of an infinite
matrix. This distribution strongly depends on the boundary conditions of u(t)
for finite δ, but we show that it is universal (independent of boundary conditions)
in the small-window limit (δ → 0, δ � min[x, 1 − x]). We compute it directly
for arbitrary α > 1, using, for α < 3, an asymptotic expansion formula that
we derive. For α > 3, the limiting width distribution is independent of α. It
corresponds to an infinite matrix with a single non-zero eigenvalue. We give the
exact expression for the width distribution in this case. Our calculation allows us
to extract the roughness exponent from the width distribution of experimental
data even in cases where the standard extrapolation method cannot be used.
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1. Introduction

In nature, random processes model interfaces and surfaces [1, 2], turbulent flows [3], erratic
time series [4] and many other systems. In the most simple setting, these random processes
correspond to a function of a scalar variable u(t), and are characterized by a probability
distribution P[u(t)] that stems from an equilibrium problem or a non-equilibrium process.
The probability distribution P[u(t)] is often unknown, and generally inaccessible to exact
analysis. In many cases, approximate methods must be brought to bear on these problems.

One of the most successful approaches in the field of random processes is the Gaussian
approximation. It consists in writing the function u(t) in the interval t ∈ [0, L] in Fourier
space schematically as

u(t) ∼
∞∑

n=−∞
an exp (iqnt) , (1)

with modes qn ∝ n/L and in assuming that the coefficients an = a∗
−n are independent

Gaussian random variables (see equations (2)–(4) for precise definitions). The probability
distribution P[u(t)] = P[{a1, a2, . . .}] then factorizes into a product P � PGauss =
PGauss(a1)PGauss(a2) . . ., where PGauss(an) is a Gaussian with zero mean and variance
σ2

n. The idea behind the Gaussian approximation is to replace the translation-invariant
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Figure 1. Gaussian functions uper(t) in the interval t ∈ [0, L], corresponding to
a probability distribution PGauss[uper(t)] with ζ = 0.75 (α = 2.5) (full periodic
series).

action of a complicated interacting problem by a quadratic (Gaussian) action which yields
the same two-point correlation functions as in the original problem. In the particularly
important case of self-affine (critical) systems, the only length scale present is the system
size. The scaling of the variances σ2

n with the modes qn can then be described by a
single parameter α with σ2

n ∝ 1/nα (α > 1). In many non-trivial problems, the Gaussian
approximation is in outstanding quantitative agreement with the full theory [5, 6] and
reproduces very well even the higher-order correlation functions.

Because of its decoupled Fourier modes, the Gaussian approximation is considerably
simpler than the full theory and the function u(t) can easily be generated through
equation (1) from Gaussian random numbers {an} (see figure 1). However, the price
to pay for this simplicity in Fourier space is to have non-trivial long-range correlations
in real space. As we will discuss in detail, the real-space action contains generalized
derivatives which, in the sense of the Riemann–Liouville derivative, can be expressed as
an integral convolution with a long-range kernel [7]. For non-integer values of α/2, the
real-space Gaussian action is non-local and the geometrical properties of the function u(t)
are intricate.

For α = 2, the Gaussian approximation corresponds to the notorious random walk.
In this case the real-space action is local. It defines a Markovian evolution (the value of u
at t+dt depends only on the one at t). For this reason it is possible to determine in detail
its geometric properties (for a recent review see [8]). For α 	= 2, instead, the process u(t)
is non-Markovian: in the case α = 4 (the driven curvature model [1, 9]), the evolution of
the derivative du/dt is Markovian, but not the one of u(t) itself. For non-integer α/2, the
non-Markovian properties reflect the non-local character of the action. This implies that,
generally, memory effects influence the shape of u(t) and calculations, even within the
Gaussian approximation, are difficult. In particular, the persistence exponents and the
distribution of the extreme remain unknown [10, 11]. On the other hand, the boundary
conditions influence the statistical properties of u(t) in a non-trivial way for all t ∈ [0, L].
Understanding these effects is important because the periodic boundary conditions for
u(t), which are commonplace in theoretical calculations and in numerical simulations, are
usually not realized in experiments [12, 13].

As an example of a fundamental geometrical quantity sensitive to the boundary, we
consider the mean square width

w2 = w2[u(t)] =
1

L

∫ L

0

dt u2(t) − 1

L2

[∫ L

0

dt u(t)

]2

,
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which is relevant both from the theoretical and the experimental points of view. For
a self-affine random process, the mean square width is itself described by a non-trivial
probability distribution P(w2).

In this work, we study the influence of boundary conditions on the width distribution
of PGauss[u(t)] for self-affine functions characterized by variances scaling with the single
parameter α. In fact, the schematic Fourier representation of equation (1) can be rendered
explicit in a number of ways in order to accommodate the boundary conditions. First it
can be generated from the full periodic Fourier series,

uper(t) =
∞∑

n=1

an cos

(
2πn

L
t

)
+ bn sin

(
2πn

L
t

)
(full periodic series), (2)

where an and bn are independent Gaussian random numbers of variance [σper
n ]2 ∝ 1/nα.

This implies that the function uper(t), which has zero average, and all its derivatives are

periodic, if they exist ([uper](k) (t = 0) = [uper](k) (t = L) for k = 0, 1, . . . ≤ α/2,). It is
also possible to generate a Gaussian function usin(t) from a sine Fourier series,

usin(t) =

∞∑

n=1

sn sin
(πn

L
t
)

(sine series), (3)

again supposing that the sn are independent Gaussians with variance [σsin
n ]2 ∝ 1/nα. The

function usin(t) vanishes at t = 0 and t = L. By a uniform shift of the function, it can be
made to have zero average value, as for the full periodic series. However, all its existing

even derivatives vanish (
[
usin

](k)
(0) =

[
usin

](k)
(L) = 0 for k = 0, 2, . . . ≤ α/2). The

full periodic series and the sine series are statistically equivalent for the random walk
(α = 2) [14, 15], but they differ for all other values of α.

Finally, a function ucos(t) can also be generated from a cosine Fourier series,

ucos(t) =
∞∑

n=1

cn cos
(πn

L
t
)

(cosine series), (4)

again with [σcos
n ]2 ∝ 1/nα. In this case, the random function is not forced to take the

same value at t = 0 and at t = L, and for this reason it has been used to study
free random walks [8]. Analogously to the sine Fourier series, all the odd derivatives

of ucos(t) must vanish at the boundaries, if they exist ([ucos](k) (0) = [ucos](k) (L) = 0 for
k = 1, 3, . . . ≤ α/2). This paper shows that these additional constraints strongly influence
the geometry of the function ucos(t) for α 	= 2.

The above three stochastic series correspond to the same real-space action S[u(t)]
and its associated Gaussian probability distribution PGauss [u(t)]

S[u(t)] =
1

2

∫ L

0

dt

(
∂α/2u(t)

∂tα/2

)2

=⇒ PGauss [u(t)] ∝ exp {−S[u(t)]} . (5)

For non-integer values of α/2, the generalized derivative in equation (5) is defined in
momentum space:

[
∂α/2/∂tα/2

]
eiqt = (iq)α/2eiqt (the derivative can also be defined in real

space [7]).
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To arrive from the action equation (5) at the functions uper(t), ucos(t), and usin(t), we
must specify the boundary conditions on the general function u(t) and this makes that
the three bases correspond to different stochastic processes. The boundary conditions are
actually fixed by requiring the uniform convergence of the (infinite) Fourier series in the
interval [0, L]: this allows us to exchange in the action equation (5) the α/2 derivative
with the Fourier sum under consideration and to compute the variances of the Fourier
coefficients with the correct normalization. Using the action in equation (5), we obtain:

[σper
n ]2 =

Lα−1

2α−1παnα
=⇒ PGauss[{an, bn}]

=

∞∏

n=1

1

2πσ2
n

exp

[
−1

2

(a2
n + b2

n)

σ2
n

]
(full periodic series). (6)

For the sine and the cosine series, the variances are

[σcos
n ]2 =

[
σsin

n

]2
=

2Lα−1

παnα
. (7)

This choice leads to analogous expressions for the probability distributions PGauss [{sn}]
and PGauss [{cn}], respectively.

The variances in equations (6) and (7) scale with the system size as ∝Lα−1 = L2ζ

where ζ is the roughness exponent. This exponent characterizes the main geometric
properties of a self-affine system.

In this paper, we first consider Gaussian functions on the entire interval [0, L]. We
compute the average of the width distribution for the three series and for general values
of α > 1 (section 2.1). The average of the width distribution strongly depends on the
boundary conditions (for α 	= 2). These results are then generalized (section 2.2) to
the case when the function u(t) is restricted to a window of width δ, in the interval
t/L ∈ [x, x + δ]:

w2(x, δ) =
1

Lδ

∫ L(x+δ)

Lx

dt u2(t) −
(

1

Lδ

∫ L(x+δ)

Lx

dt u(t)

)2

. (8)

These window boundary conditions are closer to the experimental situation than those
realized by either the full periodic or the cosine series (see figure 2). We write (section 3)
the characteristic function of the width distribution in terms of the eigenvalues of an
infinite matrix which depends on the basis functions of the Fourier series, and on the
window parameters {δ, x}. In practice, to compute the width distribution for any of the
series, in an arbitrary finite window, it suffices to compute this characteristic function
from the eigenvalues of a finite-rank approximation of the above matrix, and to perform
an inverse Fourier transform. It is easy to see that the width distribution depends on
the size of the window and on the choice of boundary conditions. In the small-window
limit (δ → 0 and far from the boundaries δ � min[x, 1 − x]), finite-rank approximations
to the above matrix cease to be accurate (the limit of rank N → ∞ does not commute
with the limit δ → 0, for α < 3), but we are able to write all the cumulants of the width
distribution directly in this limit (section 3.3) via a subtle asymptotic expansion in powers
of δ. We prove that in the small-window limit the width distribution becomes independent
of the boundary condition. We also show how to practically compute the (α-dependent)

doi:10.1088/1742-5468/2007/02/P02009 5
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Figure 2. Gaussian functions uper(t) and ucos(t). Window boundary conditions
correspond to picking out a piece of the function in the interval t/L ∈ [x, x + δ]
and shifting it such that the window mean value vanishes. The width distribution
in the small-window limit can belong to uper(t) or to ucos(t).

universal width distribution directly in this limit. For α > 3 (section 3.3.2), the problem
simplifies. The characteristic function in the small-window limit then corresponds to
a matrix with only one non-zero eigenvalue and the corresponding width distribution
no longer depends on α. We give its explicit form. Finally, we compute the logarithmic
corrections to these asymptotic results for odd-integer values of α. In appendices A and B,
we provide technical details of our calculation.

In a previous paper on the same subject [16], we already studied the second moment of
the width distribution and presented arguments for the universality in the small-window
limit. The more complete, and more concrete, calculations of the present paper rely on
the representation of the characteristic function in terms of the spectrum of a matrix,
which was not contained in [16].

2. Average width

In a self-affine (critical) system, the length L of the total interval is, as mentioned, the
only characteristic length and the average value of the total width scales as 〈w2〉 ∝ Lζ

(〈· · ·〉 denotes the ensemble average).

2.1. Average width for δ = 1

Fixing δ = 1 and x = 0 in equation (8) and integrating over t yields

w2 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

∞∑

n=1

(
a2

n + b2
n

)
(full periodic series)

∞∑

n=1

[
1

2
s2

n −
∞∑

m=1

(1 − (−1)m)(1 − (−1)n)snsm

π2nm

]
(sine series)

1
2

∞∑

n=1

c2
n (cosine series).

doi:10.1088/1742-5468/2007/02/P02009 6
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From the Gaussian probability distributions given in equations (5)–(7), the ensemble
averages are

〈w2〉
Lα−1

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

2

(2π)α
ζ(α) (full periodic series)

1

πα
ζ(α) − 2

π2

2α+2 − 1

(2π)α
ζ(α + 2) (sine series)

1

πα
ζ(α) (cosine series),

where ζ(x) is the Riemann Zeta function. For all α, the average width of the full periodic
series is smaller than that of the cosine series, as is quite natural. For α = 2, the average
widths of the full periodic series and the sine series coincide, because the two differ only
through boundary conditions for the derivative of u that a Markovian process is insensitive
to.

2.2. Average width for δ < 1

We now compute the average width for δ < 1 for the full periodic series, the cosine and
the sine series. The width wper

2 (δ) is independent of the origin x but the x dependence of
the average width cannot be neglected in the other two cases. For the full periodic series,
one obtains from equations (2) and (8)

wper
2 (δ) =

∞∑

n,m=1

anamCnm(δ) + anbmInm(δ) + bnbmSnm(δ), (9)

where the coefficients Cnm(δ) are given by elementary integrals:

Cmn =
1

δ

∫ x+δ

x

dt cos(2πmt) cos(2πnt) − 1

δ2

∫ x+δ

x

dt cos(2πmt)

∫ x+δ

x

dt cos(2πnt). (10)

Analogously, Snm and Inm can be expressed in terms of sine–sine and cosine–sine integrals.
For the full periodic series, these coefficients are naturally independent of x.

Equation (9) allows us to compute wper
2 for one given sample. Integrating over the

Gaussian Fourier components {an, bn}, we get

〈wper
2 (δ)〉 =

Lα−1

2α−1πα

∞∑

n=1

Cnn + Snn

nα
, where Cnn + Snn = 1 − 1 − cos(2πnδ)

2(πnδ)2
. (11)

The sum in equation (11) is easily evaluated for finite δ (see figure 3). The limit of
this mean value for δ → 0 cannot be obtained by naive Taylor expansions of each
term in this infinite sum in equation (11), because it is not uniformly convergent in
the interval δ ∈ [0, 1] for α < 3 (in the limit δ → 0, the terms of the sum behave
as (Cnn(δ) + Snn(δ))n

−α ∼ δ2n2−α, producing a diverging series for α < 3). As we will
discuss in detail later, the higher cumulants of the width distribution are given by multiple
infinite sums which present the same pathology as the sum in equation (11). To sum the
series in the limit δ → 0, we have derived a very useful expansion formula which has the

doi:10.1088/1742-5468/2007/02/P02009 7
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Figure 3. Mean square width as a function of window width, for different values of
α, for the full periodic series (left) and the cosine series (right, with x = 1

2(1− δ))
(from equations (11) and (16)).

same structure as the Euler–Maclaurin formula:

∞∑

n=1

f(nδ)

nα
= δα−1

∫ ∞

0

dt

⎛

⎝f(t)

tα
−

�α�−1∑

m=0

f (m)(0)tm−α

m!

⎞

⎠+

∞∑

m=0

δmf (m)(0)
ζ(α − m)

m!
, (12)

where �α� is the integer part of α. Equation (12) holds inside the convergence radius δ = 1
for all the quantities considered in this work (the formula is proved in appendix A). For
analytic functions f(z) and non-integer α, the first term on the right can be interpreted
as the naive limit of the sum as δ → 0, with t = nδ, whereas the second term contains
the Taylor expansion of f(nδ) around zero. For integer α, the singularity of ζ(1)
generates additional logarithms (see appendix A, again). Using the expansion formula
of equation (12), one arrives at:

〈wper
2 (δ)〉
Lα−1

=
2−α−1

ζ(−α − 1)

ζ(α + 2)

πα+2
δα−1 +

4

(2π)α

∞∑

n=1

(−1)n+1 ζ(α − 2n)

(2n + 2)!
(2πδ)2n. (13)

To take into account the logarithmic corrections for odd integer α we must use
equation (A.6) instead of equation (12). The final result is

〈wper
2 (δ)〉
Lα−1

= (−1)(α+1)/2 ψ0(α + 2) − log(2πδ)

2π(α + 1)!
δα−1

+
4

(2π)α

∑

n �=(α−1)/2

(−1)n+1 ζ(α − 2n)

(2n + 2)!
(2πδ)2n (α odd integer),

where ψ0(z) is the digamma function. An expansion analogous to equation (13) appears in
the correlation function governing the density of zero-crossings of a Gaussian function [10].
For integer-even α, the series in equation (13) is finite (because ζ(x) = 0 for x =
{−2,−4, . . .}). The mean square widths for the periodic random walk (α = 2) and
the driven curvature model (α = 4) then have compact expressions:

〈wper
2 (δ)〉
Lα−1

=

{
1
6
δ − 1

12
δ2 for α = 2

1
144

δ2 − 1
120

δ3 + 1
360

δ4 for α = 4.
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For the cosine series, we obtain, from equations (4) and (8), the mean squared width

wcos
2 (x, δ) =

∞∑

n,m=1

cncmDnm(x, δ), (14)

where the coefficients are given by a symmetric matrix

Dmn(x, δ) =
1

δ

∫ x+δ

x

dt cos(πmt) cos(πnt) − 1

δ2

∫ x+δ

x

dt cos(πmt)

∫ x+δ

x

dt cos(πnt). (15)

Dnm is the overlap matrix of the basis functions in equation (4) on the interval [x, x + δ].
For δ = 1, the basis functions are, by construction, an orthonormal set and Dnm = 1

2
δnm.

Integrating over the Gaussian variable {cn}, the average width 〈wcos
2 〉 becomes

〈wcos
2 (x, δ)〉 =

2Lα−1

πα

∞∑

n=1

Dnn(x, δ)

nα
. (16)

The sum in equation (16) is again easily evaluated for any value of x and δ. The behaviour
of 〈wcos

2 (x, δ)〉 as a function of δ is shown in figure 3 for x = 1
2
(1 − δ). For small δ we

notice that 〈wcos
2 (x, δ)〉 ∝ δα−1 for α < 3 and 〈wcos

2 (x, δ)〉 ∝ δ2 for α > 3. A special case
is again α = 2 where we have 〈wcos

2 (x, δ)〉 ∝ δ for all δ.

2.3. Small-window limit

In the following, we extract the universal behaviour of 〈wcos
2 (x, δ)〉 for a small window

[x, x + δ] far from the boundaries (for δ � min(x, 1 − x)). For α < 3, equation (16) can
be expanded as

〈wcos
2 (x, δ)〉 =

2Lα−1

π
δα−1

∫ ∞

0

dt
D(t, x/δ)

tα
+ O(δ2), (17)

where the function D(t, x/δ) is obtained from the expression of Dnn(x) by replacing
nπδ → t. We write D(t, x/δ) as a sum of two terms:

D(t, x/δ) = h(t, x/δ) + 1
2
[C(t/2) + S(t/2)] .

The function h(t, x/δ) contains all the x dependence of D(t, x/δ):

h
(
t,

x

δ

)
= cos

(
2t

(
x

δ
+

1

2

))[
sin(t)

4t
− 1

t2
sin

(
t

2

)2
]

.

For x/δ � 1, h(t, x/δ) oscillates rapidly and gives a vanishing contribution to the integral
in equation (17). In particular, we can show that

〈wcos
2 (x, δ)〉
Lα−1

−−−−−→
x/δ→∞

2−α−1

ζ(−α − 1)

ζ(α + 2)

πα+2
δα−1 + O[exp (−x/δ)].

Comparing the above expression with equation (13), we conclude that, for α < 3, the
dominant contributions to 〈wcos

2 (x, δ)〉 and to 〈wper
2 (δ)〉 coincide for small δ (compare also

with figure 3). This conclusion can be extended to the sine series, where the explicit x
dependence is again due to oscillatory terms that vanish in the small-window limit.
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As mentioned before, the series in equation (16) is uniformly convergent for α > 3,
so that one can take the limit δ → 0 for each mode and then do the sum. Using the
expansion

Dnm(x) = 1
12

nmπ2 sin(πmx) sin(πnx)δ2 + O(δ4) (18)

in equation (16), we obtain

〈wcos
2 (x, δ)〉
Lα−1

=
1

6

[ ∞∑

n=1

sin2(nπx)

nα−2

]
π2−αδ2 + O(δα−1, δ4). (19)

For x = 0 and 1, the δ2 term vanishes, while for 0 < x < 1 it is smaller than the
corresponding term for the periodic case. This behaviour is consistent with the fact that,
for α > 2, the cosine series imposes vanishing derivatives at the end points. Hence these
boundary conditions force 〈wcos

2 〉 to be smaller than 〈wper
2 〉 for all 0 < x < 1. The sine

series gives a result analogous to the one for the cosine series. It suffices to replace the
sine in the sum of equation (19) by a cosine.

3. Width distribution

The scaling behaviour of the average width gives access to the value of α and thus to the
roughness exponent ζ = (α − 1)/2. However, the value of this exponent only depends
on the two-point correlation functions and captures no finer geometric properties of the
function u(t). To discriminate between a Gaussian and a non-Gaussian function, one
must have access to higher cumulants, as they are contained in the sample-to-sample
fluctuations of the two-point correlation functions. The distribution P(w2) has been
used to analyse numerical and experimental data [13], [20]–[26]. The width distribution
also allows us to estimate the roughness exponent from experimental data which are not
sufficiently good to plot 〈w2(δ)〉 versus δ over several orders of magnitude in δ.

For general values of α, the width distribution has been computed for the entire
interval (δ = 1, x = 0), for the full periodic series, [17]–[19], and for the cosine series [13].
The underlying simplification with respect to the calculations in the present paper is
that the matrix of coefficients for δ = 1 satisfies Inm = 0 while Cnm, Snm, and Dnm

are diagonal, as evident in equations (10) and (15). In order to study window boundary
conditions (but also for the sine series), the previous framework must be generalized to
non-diagonal matrices.

The width distribution can be obtained from the symmetric matrices

Acos
nm = 2σcos

n Dnmσcos
m (20)

and

Aper =

(
2σper

n Cnmσper
m σper

n Inmσper
m

σper
n Imnσper

m 2σper
n Snmσper

m

)
, (21)

respectively. Concretely (see equations (9) and (14)), individual realizations of the mean
square width distribution are generated by multiplying the matrices A in equations (20)
and (21) by vectors of normal distributed Gaussian variables. This allows us to obtain
P(w2) approximately through direct simulation (see [15]).
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On the other hand, one can compute all the moments of the distribution from
contractions of a given matrix A (which can stand for Acos, Asin or Aper). For example,
the second moment is given by

μ2 =
〈
w2

2

〉
= 1

2

∑

n,m

Acos
nmAcos

mn + 1
4

(
∑

n

Acos
nn

)2

= 1
2
Tr [Acos]2 +

[
1
2
Tr Acos

]2
. (22)

Similar expressions exist for higher moments of the width distribution. As shown in
appendix B, the cumulant κl of the rescaled width distribution, φ(z = w2/ 〈w2〉) =
〈w2〉 P(w2), can be expressed in a simpler way than the moments, as a trace of the matrix
A taken to the lth power:

κl =
(l − 1)!

2 〈w2〉l
Tr

[
Al
]
.

This is already apparent in equation (22), where μ2 = 〈w2〉2 (κ2 + κ2
1). The cumulants

are thus given in terms of the normalized eigenvalues {λ1, λ2, . . .} of the matrix A (the
normalization condition corresponds to

∑
k λk = 2):

κl =
(l − 1)!

2

∑

k

λl
k. (23)

The cumulants in equation (23) yield an explicit formula for the cumulant-generating
function Ψ(s), where

Ψ(s) =
∞∑

k=1

∞∑

l=1

λl
k

2l
sl =

∑

k

1

2
log (1 − λks) .

The characteristic function f(s) = exp(Ψ(is)), the exponential of the cumulant-generating
function Ψ(is), is given by

f(s) =
∏

k

1√
1 − iλks

. (24)

The spectrum of the matrices under consideration is such that the infinite product in
equation (24) is uniformly convergent. The associated distribution is recovered through
an inverse Fourier transform::

φ(z) =
1

2π

∫ ∞

−∞
ds exp(−izs)f(s), (25)

which can be obtained by straightforward Riemann integration because the branch points
sk = i/λk are away from the real axis.

3.1. Width distribution for the entire interval (δ = 1)

As mentioned above, in the case δ = 1, the matrices

Aper =

(
[σper

n ]2 δnm 0

0 [σper
n ]2 δnm

)
, and Acos = [σcos

n ]2 δnm, (26)
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are diagonal and the computation of the cumulants from equation (23) is direct:

κl =

{
(l − 1)!ζ(lα)/ζ(α)l (full periodic series)

(2l − 2)!!ζ(lα)/ζ(α)l (cosine series).

The cumulants for the sine series are more complicated because the corresponding
matrix Asin presents non-diagonal terms coming from the non-vanishing mean

(1/L)
∫ L

0
dt sin (πnt/L) for odd values of n. The second cumulant, for example, is given

by

κsin
2 =

2ζ(2α) + 2−2α+1 (16π−4(2α+2 − 1)2ζ(α + 2)2 − 8π−2(22α+2 − 1)ζ(2α + 2))

[ζ(α) − 2−α+1π−2(2α+2 − 1)ζ(α + 2)]2
.

κsin
2 agrees with kper

2 only for α = 2, as expected. In the case of the full periodic and the
cosine series, the characteristic functions assume a simple form

f(s) =

⎧
⎪⎪⎨

⎪⎪⎩

∏

k

(1 − 2is/(ζ(α)kα))−1 (full periodic series)

∏

k

(1 − 2is/(ζ(α)kα))−1/2 (cosine series).

As already discussed in [19], the twofold degeneracy of the spectrum of Aper for δ = 1,
evident in equation (26), yields a characteristic function f(s) with simple poles on the
imaginary axis. This simplifies the inverse Fourier transformation.

3.2. Width distribution for windows (finite δ)

The expressions allowing us to recover the width distribution from the eigenvalues of the
matrices Acos, Aper and Asin remain valid for intervals δ < 1, even though the computer
must now be used for finite approximations of these infinite matrices, which are no longer
diagonal. These calculations can be easily checked by direct simulation, as mentioned
above. The outcome of this analysis is shown in figure 4 for the case α = 2.5. It
is evident that the width distribution changes with the sample size for the value of α
chosen. Furthermore, the direct evaluation of the rescaled width distribution for finite but
small δ suggests that this distribution becomes universal (independent of the boundary
conditions) in the limit δ → 0. This scenario is confirmed by comparing the evolution of
the (normalized) spectra of Aper and Acos, as shown in figure 5.

We then compute φ(z) directly in the limit δ → 0. However, for small δ, increasingly
larger matrices Aper and Acos must be considered because of the non-uniform convergence
of the traces of these matrices for δ ∈ [0, 1].

In section 3.3 we determine directly the width distribution in the limit δ → 0.
In particular, analogously to the computation of asymptotics of the average width
(section 2.3), the expansion formula equation (12) is proven useful to compute the
cumulants of the distribution in the small-window limit for α < 3 (section 3.3.1). This
analysis serves two purposes: it proves the universality of the width distribution and
provides a high-precision method to compute it directly in the limit δ → 0.
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Figure 4. Rescaled probability distributions for the mean square width for
ζ = 0.75 (α = 2.5) for the cosine series (left) and the full periodic series (right),
obtained from equations (24) and (25). The result of direct simulations for
δ = 1/16 (from equation (14)) and the solution in the limit δ → 0 (from the
matrix in equation (32)) are also shown. Sizes of the matrices are N = 512 and
1024.

Figure 5. Eigenvalues {λ1, λ2, . . .} for the cosine and the full periodic series as a
function of window size δ (α = 2.5 (ζ = 0.75), for the cosine series, x = 1

2 (1− δ)).
The spectrum in the small-window limit δ → 0 (crosses) is obtained in section 3.3.
Eigenvalues are normalized as

∑
k λk = 2.

3.3. Width distribution in the small-window limit

In section 2.3 we computed the mean square widths 〈wper
2 (δ)〉 and 〈wcos

2 (x, δ)〉 in the
small-window limit. We now determine the rescaled width distribution φ(z) in this
limit.

3.3.1. Small-window limit (α < 3). The computation of the cumulants κl of the rescaled
width distribution as a δ-expansion is along the lines of the previous determination of
〈w2〉 (see equations (23)–(25) for the relation between the cumulants and the width
distribution). For α < 3, we handle the non-uniform convergence of the traces in
equation (23) for δ → 0 using the expansion formula equation (12). The leading
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contribution to κl, l = 1, 2, . . ., is given by multiple integrals:

κper
l =

πl(α−1)(l − 1)!

2ŵl
2

∫ ∞

0

· · ·
∫ ∞

0

l∏

n=1

dtn
tαn

Tr [Aper(t1, t2)A
per(t2, t3) · · ·Aper(tl, t1)] + O(δ3−α)

(27)

κcos
l (x/δ) =

πl(α−1)(l − 1)!

2ŵl
2

∫ ∞

0

· · ·
∫ ∞

0

l∏

n=1

dtn
tαn

× Tr
[
Acos

(
t1, t2,

x

δ

)
Acos

(
t2, t3,

x

δ

)
· · ·Acos

(
tl, t1,

x

δ

)]
+ O(δ3−α). (28)

In the above equations, ŵ2 is the prefactor of the leading term in the expansion of
〈w2(δ, x)〉, given in equation (13):

ŵ2 =
(2)−α−1Lα−1

ζ(−α − 1)

ζ(α + 2)

πα+2
,

which is independent of the boundary conditions. Acos(tn, tn+1, x/δ) and Aper(tn, tn+1) are
obtained by replacing πnδ with tn in Acos and in Aper. We now verify for each cumulant

κcos
l −−−−−→

x/δ→∞
κper

l + O(e−x/δ). (29)

Extracting the x/δ-independent part of κcos
l one obtains

κcos
l =

πl(α−1)(l − 1)!

2ŵl
2

∫ ∞

0

· · ·
∫ ∞

0

l∏

n=1

dtn
tαn

Tr
[
Ãcos(t1, t2)Ã

cos(t2, t3) · · · Ãcos(tl, t1)
]

+ oscill. terms, (30)

where Ãcos is now independent of x and given by

Ãcos(t, t′) =
4Lα−1

πα

(
1

2(t−t′) sin t−t′

2
− 1

tt′ sin t
2
sin t′

2
1

2(t+t′) sin t+t′

2
− 1

tt′ sin t
2
sin t′

2

1
2(t+t′) sin t+t′

2
− 1

tt′ sin t
2
sin t′

2
1

2(t−t′) sin t−t′

2
− 1

tt′ sin t
2
sin t′

2

)
. (31)

Now it is straightforward to verify that the matrices Aper and Acos satisfy

Tr
[
Ãcos(t1, t2)Ã

cos(t2, t3) · · · Ãcos(tl, t1)
]

= 2l(α−1) Tr [Aper(t1/2, t2/2)Aper(t2/2, t3/2) · · ·Aper(tl/2, t1/2)] .

This establishes the validity of equation (29).
Closed analytic expressions have not been obtained for the above integrals. Actually

the problem of computing the integrals in equation (30) reduces to the solution of a
homogeneous Fredholm equation of the second kind:

∫ ∞

0

dt
2∑

j=1

Ãcos(t, t′)ijgj(t
′) = λgi(t),

where the 2× 2 matrix Ãcos(t, t′) is a compact kernel with a discrete set of eigenvalues λk

converging to 0, which encode all the information on the cumulants κl, in the same way
as for the discrete case (equation (23)).
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Figure 6. Cumulant κ2 of the rescaled width distribution for α = 2.5 from a naive
discretization of the integral in equation (30), and after the change of variables in
equation (32) (Riemann integration in the interval t ∈ [0, 15], using Δ = ti+1−ti).

The spectrum of the kernel Ãcos(t, t′) is most easily obtained by discretizing the
variables t and t′ on an equally spaced grid with tk = Δ(k − 1

2
), k = 1, . . . , N , with

an upper cut-off for the integrations. However, the singularities of the integrands makes
the convergence rather slow (∼t2−α

n for tn → 0 (with all other variables kept finite)). The
divergence in the integrals at small t is eliminated by a standard change of variables: an
integral of a function diverging as 1/tγ for t → 0 can be written as

∫ ∞

0

dt f(t) =
1

1 − γ

∫ ∞

0

dt tγ/(1−γ)f
[
t1/(1−γ)

]
.

The integrand on the right is constant for small t. Concretely, the change of variables
in Ãcos leads to a matrix

˜̃A
cos

(t, t′) =
1

3 − α
t(α−2)/(6−2α)Ãcos(t1/(3−α), t′1/(3−α))t′(α−2)/(6−2α), (32)

which can again be discretized. The characteristic function of the width distribution is

computed from the spectrum of the 2N × 2N matrix ˜̃A
cos

as discussed before. To show
what is gained by rescaling the matrix Ã in equation (31), we have computed the second
cumulant κ2 on an equally spaced grid with both versions (see figure 6). The rescaled
matrices converge exceptionally well with the discretization parameter Δ. In figure 5, the
spectrum of the rescaled kernel (for δ → 0) is compared to the spectra of Aper and Acos for
finite δ. Only in the special case α = 2 is the spectrum of the cosine series independent of
δ, because of the Markov-chain property of the random walk. For all α 	= 2, the spectrum
depends on δ, but the cumulants of the width distribution satisfy

κper
l (δ → 0) = κcos

l (δ → 0) 	= κcos
l (δ = 1),

in a way illustrated in figure 5. As was already shown in figure 4 for α = 2.5, the
convergence of the width distribution for finite δ towards the asymptotic width distribution
is quite fast, even though the rate of convergence depends on the value of α.

3.3.2. Small-window limit (α ≥ 3). For α ≥ 3, the integral term in equation (12) is sub-
dominant, and the naive expansion of the matrices Aper and Acos in powers of δ becomes
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Figure 7. Eigenvalue spectrum of Acos and Aper for α = 3.5 (ζ = 1.25). A
single eigenvalue remains non-zero in the limit δ → 0 (cross). The normalization
condition λ1 =

∑
k λk = 2 corresponds to the rescaling of the width distribution,

with 〈w2〉 = 1.

correct in the limit δ → 0. Using the expansions in equation (18) and, furthermore,

Cmn = O(δ4), Smn = 1
3
mnπ2δ2 + O(δ4), Inm = O(δ3), (33)

we can construct the matrices Aper and Acos, and check that they have only a single non-
zero eigenvalue. For illustration, we show in figure 7 the spectrum of these two matrices
for α = 7/2 at finite δ (eigenvalues are normalized so that

∑
k λk = 2).

From equation (23) we then obtain

κcos
l (δ → 0) = κper

l (δ → 0) =

{
(2l − 2)!! + O(δα−3) for α > 3

(2l − 2)!! + O(1/ log δ) for α = 3.

The associated characteristic function is

f(s) = (1 − 2is)−1/2,

and its inverse Fourier transform gives the universal distribution P(z) for α > 3:

φ(z) =
exp [−z/2]√

2πz
.

By comparing the universal distribution for α > 3 with the ones with α < 3 (see
figure 4), one notices that the additional eigenvalues (and branch points contributing to
the characteristic function) allow the distribution φ(z) to vanish at z = 0, thus producing
a local maximum in this function.

4. Conclusions

In conclusion, we have studied the geometric properties of functions with a particularly
simple expression in Fourier space: independent Gaussian random variables. We have
restricted ourselves to one-dimensional self-affine functions (characterized by a single
length scale), but our analysis evidently carries over to functions with more than one
length scale, and to higher dimensions. In real space, the geometrical properties are non-
trivial, and the boundary conditions play an important role. This comes about because
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the real-space action, for all non-even α, contains non-local operators and, for all α 	= 2,
is non-Markovian.

We have provided a simple and compact framework for studying the boundary effects
for general non-Markovian Gaussian processes by relating the characteristic function of
the width distribution to the spectrum of boundary-dependent infinite matrices, which
essentially encode the overlap of the basis functions of the Fourier series. The choice of
Fourier basis (resulting in the full periodic, cosine and sine series) determines the different
boundary conditions. We have carried out a complete analysis of the spectrum of these
matrices for different values of α for the case of the function on the entire interval and also
for the function restricted to a window. The associated width distributions could all be
determined by solving for the eigenvalues of a matrix, and by performing a straightforward
inverse Fourier transform.

We have shown that the non-Markovian action propagates the effects of boundary
conditions over the entire interval. However, in the small-window limit, the width
distribution becomes universal (independent of boundary conditions). For α < 3, we
showed how to compute the cumulants of the width distribution in this limit, avoiding
problems related to the non-uniform convergence of the Fourier series. For α > 3, the
problem of finding the universal width distribution drastically simplifies and we were able
to write it down explicitly. Finally, we have obtained the logarithmic corrections in the
case of odd-integer α, in particular for α = 3.

We hope that our work will be useful for the analysis of experimental data (which
usually correspond to our window boundary conditions, often in the regime δ → 0,
which we found to be universal). In many experiments, the roughness exponent cannot
be extracted reliably by extrapolation, and the width distribution may provide crucial
additional information.

Computer programs that compute the width distributions for any value of α, both at
finite δ and in the limit δ → 0, are available [27]. These programs allow us to construct
the width distributions for all values of ζ and δ. Experimental data should be fitted with
these functions (preferentially in the δ → 0 limit). Note that this procedure has already
been applied [13], even though, at the time, the role of boundary conditions was not
clearly understood.
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Appendix A. Expansion formula

In this appendix we derive the expansion formula of equation (12), first for non-integer,
then for integer values of α.

A.1. Expansion formula for non-integer α

We consider the sum
∞∑

n=1

f(nδ)

nα
,
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Figure A.1. Contours for the integral in equation (A.2). The indicated
deformation of the contour (C → C ′ → Cε) transforms equation (A.2) into
equation (A.3).

where f(z) is assumed to be a general analytic function. In order to obtain the expansion
in powers of δ of the above sum, we expand f(z):

∞∑

n=1

f(nδ)

nα
=

∞∑

n=1

∞∑

m=0

f (m)(0)

m! nα−m
δm.

For α−m < 1, the sum over n converges and can be directly evaluated using the Riemann
Zeta function ζ(α − m) =

∑
n 1/nα−m:

∞∑

n=1

f(nδ)

nα
=

[α]−1∑

m=0

f (m)(0)ζ(m− α)

m!
δm +

∞∑

n=1

f̃(nδ)

nα
, (A.1)

where [α] is the integer part of α and f̃(z) =
∑∞

[α] f
(m)(0)zm/m!. The second term on the

right-hand side of equation (A.1) can be expressed as a contour integral in the complex
plane:

∞∑

n=1

f̃(nδ)

nα
=

δα−1

2i

∫

C

dz
f̃(z)

zα
cot

(π

δ
z
)

, (A.2)

where the contour C encircles the poles zn = nδ, n = 1, 2 . . . of the function G(z) =

[f̃(z)/zα] cot(πz/δ). The contour C is transformed into the contour Cε, as shown in
figure A.1, avoiding the branch point at the origin. By considering the integration over
the contour Cε, and by performing the change of variables z → −i(z/δ − ε), we have:

∞∑

n=1

f̃(nδ)

nα
= − i

2

∫ ∞

−∞
dz

f̃ [δ(iz + ε)]

(iz + ε)α
coth[π(z − iε)]. (A.3)

To extract the δ-series of the above integral, it is tempting to integrate term by term
the Taylor series of the function f̃(z). We first split the above integral into the following
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terms:

∞∑

n=1

f̃(nδ)

nα
= − i

2

∫ ∞

0

dz f̃ [δ(iz + ε)](iz + ε)−α [coth[π(z − iε)] − 1]

− i

2

∫ ∞

0

dz f̃ [δ(iz + ε)](iz + ε)−α

− i

2

∫ 0

−∞
dz f̃ [δ(iz + ε)](iz + ε)−α [coth [π(z − iε)] + 1]

+
i

2

∫ 0

−∞
dz f̃ [δ(iz + ε)](iz + ε)−α.

This separation is valid if all the above integrals are well defined, a condition respected by
the functions f(z) considered in this paper (for δ ≤ 1). Using the following representation
of the Riemann Zeta function, valid for Re(β) < 1:

ζ(β) = lim
ε→0

(
− i

2

[∫ ∞

0

dz (iz + ε)−β(coth[π(z − iε)] − 1)

+

∫ 0

−∞
dz (iz + ε)−β(coth[π(z − iε)] + 1)

])
,

we obtain

∞∑

n=1

f̃(nδ)

nα
=

∞∑

m=[α]

f (m)(0)

m!
δmζ(α − m) +

−i

2

∫ ∞

0

dz f̃(z)(iz + ε)−α

+
i

2

∫ 0

−∞
dz f̃(z)(iz + ε)−α. (A.4)

Finally, by considering the contours shown in figure A.2, we verify that

lim
ε→0

− i

2

∫ ∞

0

dz f̃(δ(iz + ε))(iz + ε)−α +
i

2

∫ 0

−∞
dz f̃(δ(iz + ε))(iz + ε)−α = δα−1

∫ ∞

0

dt
f̃(t)

tα
.

Collecting these results proves equation (12).

A.2. Expansion formula for integer α

The series in equation (12) is not defined for integer α = m+1, because of the simple pole
of the Riemann Zeta function ζ(z) at z = 1. However, this divergence is compensated
by an ultraviolet divergence in the integral. We analyse this situation by considering
α = �α� + ρ, and by taking the limit ρ → 0. We write:

δ�α�−1+ρ

∫ ∞

0

dt

⎛

⎝f(t)

tα
−

�α�−1∑

m=0

fm(0)tm−�α�+ρ

m!

⎞

⎠+ δ�α�−1 f (α−1)(0)

(α − 1)!
ζ(1 + ρ). (A.5)
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Figure A.2. Contours of the integrals in equation (A.4).

In order to isolate the ultraviolet divergence, we split the integral into two infrared-
divergent terms, and equation (A.5) becomes

δ�α�+ρ−1

∫ ∞

ε

dt

⎛

⎝f(t)

tα
−

�α�−2∑

m=0

f (m)(0)tm−α

m!

⎞

⎠

− δ�α�+ρ−1

∫ ∞

ε

dt
f (α−1)(0)

(α − 1)!t1+ρ
+ δ�α�−1 f (α−1)(0)

(α − 1)!
ζ(1 + ρ),

where ε is an infrared cut-off. Using the expansion ζ(1 + ρ) = 1/ρ + γ + O(ρ), where γ is
the Euler constant, we can take the limit ρ → 0:

lim
ρ→0

[
ζ(1 + ρ) − δρ

∫ ∞

ε

dt
1

t1+ρ

]
= [γ − log(δ) − log(ε)] .

From the above we get the following expansion formula for integer values of α:
∞∑

n=1

f(nδ)

nα
= δα−1

(
const − f (α−1)(0)

(α − 1)!
log(δ)

)
+

∑

m�=α−1

δmf (m)(0)
ζ(α − m)

m!
, (A.6)

where the constant is expressed in terms of the following limit:

const = lim
ε→0

(∫ ∞

ε

dt

(
f(t)

tα
−

α−2∑

m=0

f (m)(0)tm−α

m!

)
+

f (α−1)(0)

(α − 1)!
(log(ε) + γ)

)
.

Appendix B. General cumulants

For completeness, we derive in this appendix the trace formula for the cumulants κl of
the rescaled width distribution Ψ(s) for all l from their generating function

Ψ(s) = log〈exp(sz)〉 =

∞∑

l=1

κl

l!
sl.
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We first consider the full periodic series. To compute the average 〈exp(sz)〉 we have to
integrate over the Gaussians {an, bn}. To make all the Gaussian integrals well defined,
we introduce a cut-off N in the momentum space, such that n = 1, . . . , N . The average
〈exp (sz)〉 takes the form:

〈exp (sz)〉 =

(∏
n′

∫∞
−∞ dxn′

)
exp[−1

2

∑
n′m′ Mn′m′(s)xn′xm′ ]

(∏
n′

∫∞
−∞ dxn′

)
exp[−1

2

∑
n′m′ Mn′m′(0)xn′xm′ ]

=

[
DetM(s)

Det M(0)

]−1/2

,

where the indices n′ and m′ run from 0 to 2N . In the above expression, we set xn′ = a′
n,

for n′ = 0, . . . , N and xn′ = bn′−N for n′ = N + 1, . . . , 2N . The matrix M(s) is a block of
four N × N matrices defined as

M(s) =

(
σ−2

n δnm 0
0 σ−2

n δnm

)
− s

〈wper
2 〉

(
2Cnm Inm

Imn 2Snm

)

(for the coefficients Cnm, Inm and Snm, see equation (9)). We arrive at the following
expression for the Ψ(s):

Ψ(s) = −1
2
log Det M(s) + 1

2
log DetM(0) = −1

2
Tr[log M(s)] + 1

2
Tr[log M(0)].

Expanding the logarithm log M(s) one obtains

Ψ(s) =

∞∑

l=1

Tr[(Aper)l]

2l 〈wper
2 〉l

sl,

where Aper is given in equation (21). Hence the lth cumulant of the roughness is given by

κper
l =

(l − 1)!

2 〈wper
2 〉l

Tr[(Aper)l]. (B.1)

For the cosine series, one has to integrate over the Gaussian variables {cn} and {sn}. One
arrives at an analogous expression for the cumulants.
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