
Maximum of N independent Brownian walkers till the first exit from the half-space

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2010 J. Phys. A: Math. Theor. 43 315001

(http://iopscience.iop.org/1751-8121/43/31/315001)

Download details:

IP Address: 129.175.97.14

The article was downloaded on 20/09/2010 at 15:24

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/43/31
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 43 (2010) 315001 (22pp) doi:10.1088/1751-8113/43/31/315001

Maximum of N independent Brownian walkers till the
first exit from the half-space

P L Krapivsky1, Satya N Majumdar2 and Alberto Rosso2

1 Department of Physics, Boston University, Boston, MA 02215, USA
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Abstract
We consider the one-dimensional target search process that involves an
immobile target located at the origin and N searchers performing independent
Brownian motions starting at the initial positions �x = (x1, x2, . . . , xN), all on
the positive half-space. The process stops when the target is first found by
one of the searchers. We compute the probability distribution of the maximum
distance m visited by the searchers till the stopping time and show that it has
a power-law tail: PN(m|�x) � BN(x1x2 · · · xN)/mN+1 for large m. Thus, all
moments of m up to the order (N − 1) are finite, while the higher moments
diverge. The prefactor BN increases with N faster than exponentially. Our
solution gives the exit probability of a set of N particles from a box [0, L]
through the left boundary. Incidentally, it also provides an exact solution
of Laplace’s equation in an N-dimensional hypercube with some prescribed
boundary conditions. The analytical results are in excellent agreement with
Monte Carlo simulations.

PACS numbers: 02.50.Cw, 05.40.Jc, 87.10.Mn

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The probability distribution of the maximum of a single one-dimensional Brownian motion
(and its variants such as a Brownian bridge or an excursion) over a fixed interval of time
[0, t] has a long history in the probability literature [1–7]. The statistics of the maximum has
diverse applications. One example is the Kolmogorov–Smirnov test in statistics that is used to
compare, in a nonparametric way, two different probability distributions [8, 9]. Similarly, the
distribution of the global maximum of a discrete-time random flights (including Lévy flights)
has also been studied in the probability literature [10, 11], with more recent applications in
computer science [12], physics [13] and chemistry [14].
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Figure 1. The trajectory (red line) of a single Brownian walker starting initially at x1 till the
stopping time ts at which it hits the origin for the first time. The maximum distance traveled by the
particle till ts is denoted by m.

In statistical physics, there has been a recent revival of interest in related problems in the
context of the distribution of the maximal height, measured with respect to a reference point,
of (1 + 1)-dimensional fluctuating interfaces [15–17]. In the stationary state of a finite sample
of size L, such fluctuating interfaces are often described by a Brownian bridge in space over an
interval [0, L], albeit with certain global constraints [16]. The statistics of the maximum has
also been computed for continuous-time subdiffusive processes [18, 19] and has been used to
analyze single particle trajectories [20].

The distribution of the maximum for a single Brownian motion (or its variants such
as bridge, excursion, etc) has been extended to many Brownian motions, including certain
strongly interacting random walkers, e.g. non-intersecting, so-called vicious random walkers
[21–24]. (The latter problem has an intriguing connection to the Gaussian ensembles of the
random matrix theory [21, 24, 25].) For independent walkers, the results on the distribution
of the maximum have recently been used to compute the mean perimeter and the mean area
of the convex hull of N independent planar Brownian motions [26, 27].

These results on Brownian motion and its variants represent rare exact analytical results
for the extreme value statistics of correlated random variables, a subject of increasing current
interest [for a brief review on ‘extreme value statistics of correlated random variables’ see 28].
However, all these results about the distribution of the maximum, for a single or multiple
walkers, have been derived in the case when one considers the walkers over a fixed interval
of time [0, t]. An interesting variation of this problem, with several applications, arises when
the interval [0, t] is not fixed, but itself varies from realization to realization, i.e. one observes
the walker (or walkers) over a time interval [0, ts] where the stopping time ts of the process
itself is a random variable. For example, ts may represent the first-passage time (through the
origin) of a walker.

To be more precise, consider first a single Brownian walker that starts at time t = 0 at a
position x1 > 0. The position x1(t) of the walker evolves via the continuous-time stochastic
equation, dx1/dt = η1(t), where η1(t) is a Gaussian white noise with mean 〈η1(t)〉 = 0 and a
correlator 〈η1(t)η1(t

′)〉 = δ(t − t ′). The process stops at the stopping time ts when the walker
hits the origin for the first time (see figure 1).

Let m be the maximum displacement of the particle till the stopping time ts. The statistics
of the random variable m is interesting and it represents an example of the so-called first-
passage Brownian functional [29]. The problem is a toy model of ‘random search’, where the
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origin represents a fixed ‘target’ and the Brownian walker represents a random searcher. The
search is called off when the searcher finds its target and m represents the maximum distance
traveled by the searcher before it finds its target. For concreteness, we shall mostly used
terminology related to random search, although there are several applications of this problem.
For example, in the context of trapping [30–32] or predator–prey [33] models, the origin
may represent an immobile target (prey) and the Brownian walker may represent a diffusing
chemical trap (predator). The stopping time ts is then the reaction time or the survival time of
the prey and m denotes the maximum distance the predator travels before finding its prey. In
the context of the directed Abelian sandpile model in (1 + 1) dimensions [34], m represents the
maximum lateral size of an avalanche [35]. The random variable m also plays an important
role in characterizing the so-called staircase polygons [36]. In the context of queueing theory,
where the position of the walker represents the length of a queue, m represents the maximum
length of a queue during the so-called busy period [35, 36].

The probability density function (pdf) P1(m|x1) of m (for fixed x1) can easily be computed
[35] and it turns out to be a pure power law

P1(m|x1) = x1

m2
; m � x1. (1)

While this pdf is evidently normalized to unity, the average 〈m〉 and higher integer moments
are infinite! The cumulative distribution of the maximum is given by

Q1(L|x1) = Prob[m � L|x1] =
∫ L

x1

P1(m|x1) dm = 1 − x1

L
. (2)

This distribution has a very simple interpretation: it just represents the exit probability of a
Brownian particle [37], starting at 0 � x1 � L, from a box [0, L] through its left boundary
at 0.

In this paper, we study a generalization of this search problem, where there is still one
fixed target at the origin, but there are N searchers who perform independent Brownian motions
on the x > 0 axis, starting at the initial positions �x ≡ (x1, x2, . . . , xN). The position xi(t) of
the ith walker evolves with time t via the Brownian evolution

dxi

dt
= ηi(t), (3)

where ηi(t) is a Gaussian white noise satisfying 〈ηi(t)〉 = 0 and 〈ηi(t)ηj (t
′)〉 = δ(t − t ′)δi,j .

Since the walkers are independent, they can cross each other. The process stops at a stopping
time ts when the origin is hit for the first time by anyone of the walkers (e.g. the second walker
(red) in figure 2). Note that ts varies from one history of the process to another.

In the context of chemical kinetics [31], where the problem is generally referred to as the
‘target annihilation’ problem, various generalizations of this problem have been investigated
including e.g. the situation where the target itself diffuses [38–42]. In the following, we shall
limit ourselves to the case of an immobile target and focus on the statistics of the maximum
distance m (from the target) traveled by any of the walkers till the stopping time ts when the
target is found. Thus, m denotes the distance of the farthest point on the x axis visited by any
one of the walkers till ts. Clearly m is a random variable fluctuating from one realization of the
process to another. Our object of interest is the probability density PN(m|�x) of this maximum
distance m, given the number N of walkers and their initial positions �x. Thus, m provides an
estimate (worst case) of the distance that needs to be covered by a team of N walkers to find a
fixed target.

As in the single searcher case, let QN(L|�x) = Prob[m � L|�x] = ∫ L

0 PN(m|�x) dm be the
cumulative probability that the maximum m till ts is less than or equal to L. This cumulative
distribution of the maximum can be interpreted as the solution of a different problem as in the
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Figure 2. The trajectories of N = 5 independent Brownian walkers starting at the initial positions
x1, x2, x3, x4 and x5 till the stopping time ts when one of the walkers (the second one (red) in this
figure) hits the origin. The maximum displacement along the x direction till ts (undergone, e.g., by
the third particle (green)) is denoted by m. The cumulative probability QN(L|�x) = Prob[m � L|�x]
also represents the exit probability of the first particle from a box [0, L] through its left boundary.

N = 1 case. Consider, for instance, a slightly different problem where again we have a set
of N independent walkers, but now inside a box [0, L], starting at the initial positions �x. Let
us define the exit probability as the probability that the first particle that exits the box [0, L]
does so through 0 (and not through the upper boundary at L), see figure 2. As in the N = 1
case, this exit probability is precisely the cumulative distribution QN(L|�x) of the maximum
m till the stopping time in the semi-infinite system, as it counts all those events where one of
the trajectories hits the lower boundary 0 before hitting the upper boundary at L while all the
others stay inside the box [0, L] till this event of first-hitting the origin.

We will see that for this seemingly simple one-dimensional model of independent walkers,
the statistics of m has a rich and nontrivial dependence on the number N of walkers. This is
partly due to the fact that the same stopping time ts for all the walkers effectively introduces a
correlation between the trajectories of the walkers, even though each executes an independent
Brownian motion. While for N = 1 the solution is simple, it becomes rather nontrivial even
for N = 2!

Let us first summarize our main results. We compute the pdf PN(m|�x) exactly for all
N � 1 by a path counting (or path integral) method. We show that, for arbitrary N � 1, the
pdf of the maximum has an asymptotic power-law tail

PN(m|�x) � BN

x1 x2 · · · xN

mN+1
as m → ∞, (4)

where the prefactor BN has a nontrivial N dependence which we compute explicitly. For
N = 1, we have B1 = 1 and the asymptotic result in (4) is actually valid exactly for all
m � x1. For N = 2, we will see that

B2 = 1

4π2

[
�

(
1

4

)]4

= 4.376 88 . . . . (5)

In particular, for large N, the prefactor BN grows faster than exponentially

BN � N

[
4

π
ln(N)

]N/2

. (6)
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Our asymptotic result (4) indicates that for N walkers, integer moments of m up to order
(N − 1) are finite, while higher integer moments are infinite. Evidently, as N increases, the
distribution becomes narrower and narrower as expected but it does so in a nontrivial fashion.

Recently, the cumulative distribution of the maximum m till the first-passage time ts, or
equivalently the exit probability Q(L|x) from the box [0, L] through the origin, was studied
[43] for a generic self-affine stochastic process x(t) starting at the initial position x. The process
x(t) typically grows with time as x(t) ∼ tH , where H is the Hurst exponent. This power-
law growth of distance with time makes the process self-affine. An example is the ordinary
Brownian motion, where H = 1/2. For such a generic self-affine process, it was argued [43]
that the cumulative distribution of the maximum Q(L|x) = Prob(m � L|x) ∼ 1 − A (x/L)φ

in the limit x/L → 0, where A is a constant. The exponent φ was found to be related to the
persistence exponent θ via the scaling relation φ = θ/H [43]. The persistence exponent θ

characterizes the late time power-law decay of the survival probability, i.e. the probability that
the process stays on the positive half-axis up to the time t [44]. Thus, the pdf of the maximum
decays for large m as P(m|x) ∼ m−φ−1 with φ = θ/H . The exact result (4) shows that if we
think of the assembly of N independent Brownian motions as a single self-affine stochastic
process in the N-dimensional space, then φ = N . We will see later that the persistence
exponent for this collective process is θ = N/2 and the Hurst exponent H = 1/2. Thus, our
exact result for this model supports the general scaling relation φ = θ/H found in [43].

The paper is organized as follows. In section 2, we provide a simple heuristic argument
in favor of our main result (4). This argument is not sufficient to compute the prefactor BN

exactly for all N. However, we show that this heuristic argument becomes asymptotically
exact for large N and one can extract the limiting behavior of BN for large N using an extreme
value argument. In section 3, we set up the general method for computing the cumulative
distribution QN(L|�x) of the maximum m. This requires solving Laplace’s equation in an
N-dimensional space with appropriate boundary conditions. We present explicit solutions for
the cases N = 1 and N = 2. In section 4, we present an alternative path counting method that
is more general, physically transparent and provides explicit results for all N � 1. In
section 5, we present numerical results to verify our analytical predictions. Finally in
section 6, we conclude with a summary and a list of interesting open problems. Some of
the details of the computations are relegated to the appendices.

2. Heuristic argument

We begin with a simple heuristic argument in favor of (4). Consider the semi-infinite geometry
with the independent Brownian motions, evolving via (3), starting at the initial positions
{x1, x2, . . . , xN }. Let ts be the stopping time when one of the walkers hits the origin. The
probability distribution of ts can exactly be computed as follows. As an input to solving the
N-particle problem, let us first consider a single Brownian motion starting initially at x0 > 0
and let p(x0, t) be the survival probability, i.e. the probability that the walker does not hit the
origin up to the time t. This can easily be computed by various standard methods and is given
by the well-known formula [29, 45]

p(x0, t) = erf

(
x0√
2t

)
; erf(y) = 2√

π

∫ y

0
e−u2

du. (7)

Turning to N walkers we note that since the walkers are independent, the probability that
none of them hits 0 up to the time t is simply the product

∏N
i=1 p(xi, t). This is precisely the
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probability that the stopping time ts > t . Thus, the cumulative distribution of the stopping
time ts, given the initial positions �x, reads [31, 39]

Prob[ts > t |�x] =
N∏

i=1

erf

(
xi√
2t

)
. (8)

For large t, this cumulative distribution has a power-law tail

Prob[ts > t |�x] �
(

2

π

)N/2
x1 x2 · · · xN

tN/2
. (9)

This asymptotic for the survival probability states that the persistence exponent is θ = N/2.
Result (8) and its asymptotic counterpart (9) are exact. Next comes the heuristic part. We

note that for large ts, the typical maximal displacement m in time ts must scale as m ∼ √
ts .

Taking this relationship between the two random variables m and ts seriously, we see that
Prob[m > L|�x] ∼ Prob[ts > L2|�x] for large L. Since QN(L|�x) = Prob[m � L|�x], we
conclude that for large L

1 − QN(L|�x) = Prob[m > L|�x] ∼ Prob[ts > L2|�x] ∼ x1 x2 · · · xN

LN
, (10)

where we used the result in equation (9). Taking derivatives with respect to L and putting
L = m then gives an approximate behavior of the probability density P(m|�x) of the maximum
for large m

PN(m|�x) ∼ x1 x2 · · · xN

mN+1
(11)

as mentioned in (4). This heuristic scaling argument thus provides, up to an overall
N-dependent prefactor BN, the leading asymptotic power-law tail of the distribution of m
in (4).

To compute the prefactor BN exactly for any N, one needs to go beyond this scaling
argument. This requires a more sophisticated mathematical analysis that is carried out in the
rest of the paper. However, it is possible to refine this heuristic argument, as shown below,
that even provides the prefactor BN exactly for large N.

In the above argument, the main approximation was to replace m ∼ √
ts for large m

and then use the exact asymptotic distribution of ts in equation (9) to compute the tail of the
distribution of m. This approximation clearly ignores the fluctuations of m for a fixed ts. We
now use an extreme value argument to show that this approximation actually becomes exact
for large N. We consider again a group of Brownian motions starting at the initial positions �x
and examine their trajectories over a fixed time interval [0, ts], with m denoting their global
maximum in [0, ts]. To compute the cumulative probability QN(L, ts |�x) = Prob[m � L|�x],
we consider the trajectories that stay below the level L till ts and also above the level 0. Now,
for large L, the trajectories that contribute to QN(L, ts |�x) typically have large excursions. So,
to a first approximation, one can ignore the lower boundary at 0. For the ith walker, starting
at xi, the probability that its maximum stays below L can easily be computed: it is just the
survival probability p(x0, ts) in equation (7) with the initial position x0 = L − xi . Thus, the
joint probability that all walkers stay below L till ts (ignoring the lower boundary at 0) is just
the product

QN(L, ts |�x) �
N∏

i=1

erf

(
L − xi√

2ts

)
. (12)

For large argument, the error function behaves as 1− erf(x) = e−x2
/(x

√
π) � e−x2

to leading
order. Hence, for large L and large N, one can write

QN(L, ts |�x) � exp[−N e−L2/2ts ] → f [(L − aN)/bN ], (13)
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where the scale factors aN = √
2ts ln(N) and bN = √

ts/(2 ln N) and the scaling function
f (x) = exp[−e−x] is the standard Gumbel function. The pdf of m is just the derivative of the
cumulative distribution. The derivative of the scaling function f ′(x) = exp[−x − e−x] has a
peak at x = 0. This indicates that the random variable m has a peak at m = aN = √

2ts ln(N)

and the width of m around its peak is bN = √
ts/(2 ln N) that actually decreases with increasing

N. Thus, for large N, the random variable m approaches to its mean value aN with probability 1,
i.e. m = √

2ts ln(N) with fluctuations around this value essentially negligible for large N. Using
this relation in equation (9) provides the following tail for the cumulative distribution of m for
large N :

1 − QN(L|�x) = Prob[m > L| �x] � Prob

[
ts >

L2

2
(ln N)−2| �x

]
� AN

x1 x2 · · · xN

LN
(14)

with the prefactor AN � [4 ln(N)/π ]N/2. Taking derivative with respect to L then gives the
tail of the pdf of m in equation (4) with the prefactor, for large N,

BN = NAN � N

[
4

π
ln(N)

]N/2

. (15)

We will see later that the same asymptotic result also follows from a more rigorous approach.

3. A backward Fokker–Planck method: Laplace’s equation

In this section we show that the cumulative distribution QN(L| �x) = Prob[m � L| �x] of
the maximum m satisfies Laplace’s equation in an N-dimensional hypercube with appropriate
boundary conditions. To see this, it is first useful to consider QN(L|�x) ≡ QN(�x|L) as a
function of the coordinates �x for a given fixed L. Note that QN(�x|L) is the probability that
starting at �x, the maximum of the process till ts stays below the level L. The idea is to derive
a differential equation for QN(�x|L) using a backward approach where one focuses on the
evolution of the system via (3) over a small time interval [0, dt] starting from the initial
positions �x. According to (3), in this small time interval dt , the ith particle moves from xi to
xi

′ = xi + ηi(0)dt where ηi(0) is the noise at t = 0 that kicks the ith particle. Now, starting
from this ‘new’ initial coordinates xi

′ the maximum of the system has to subsequently stay
below L till the stopping time. Finally, one must sum over all possible values of the new
coordinates xi

′. Thus, one must have

QN(x1, x2, . . . , xN |L) = 〈QN(x1 + η1(0) dt, x2 + η2(0)dt, . . . , xN + ηN(0) dt |L)〉, (16)

where 〈·〉 denotes the averages over the initial noises ηi(0). Expanding the right-hand side in
a Taylor series and using (i) 〈ηi(0)〉 = 0 and (ii) 〈ηi(0)ηi(0)〉 = 1/dt (which follows from
the delta correlator), one finds that QN(�x|L) satisfies Laplace’s equation in the N-dimensional
hypercube, 0 � xi � L,

∇2QN(x1, x2, . . . , xN |L) = 0. (17)

The information about the maximum is captured in the boundary conditions. For example,
if xi = 0, for any i, QN = 1 since if the ith particle starts at the origin, the process stops
immediately (ts = 0) and hence the maximum is necessarily (with probability 1) less than L.
On the other hand, if xi = L, for any i, one has Q = 0. This follows from the fact that if
the ith particle starts at L, it will immediately cross the level L and the probability that the
maximum will stay below L till ts is necessarily zero.

To summarize, QN(�x|L) satisfies Laplace’s equation (17) in an N-dimensional hypercube
0 � xi � L with Q = 1 for any xi = 0 and Q = 0 for any xi = L. Thus, it reduces to

7
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an electrostatic problem where one needs to find the potential QN(�x|L) inside the hypercube
[0, L]N , whose N faces touching the origin are held at a constant potential QN = 1 while the
rest of the N faces are earthed (QN = 0). We present the solutions explicitly for N = 1 and
N = 2 in the next two subsections.

Scaling. Let us remark that since the only length scales are the initial positions {xi} of the
particles and the size of the box L, it is evident that the exit probability QN(�x|L) satisfies the
scaling property

QN(�x|L) = QN

(x1

L
,
x2

L
, . . . ,

xN

L

)
= QN(z1, z2, . . . , zN), (18)

where the dimensionless scaled variables 0 � zi = xi/L � 1.

Special initial condition and a duality relation. It is useful to consider a special initial condition
where all the particles start from the same initial positions: xi = x for all 1 � i � N . In
this case, the exit probability is a function of a single scaled variable 0 � z = x/L � 1:
QN(x1 = x, x2 = x, . . . , xN = x|L) = qN(x/L) where the scaling function qN(z) satisfies

qN(z) + qN(1 − z) = 1. (19)

This duality relation states that the exit probability through the right boundary at L starting
from the initial position L−x (of all the particles) is exactly identical to the exit probability
through the left boundary 0 starting from the initial positions x (of all the particles). The
duality relation (19) in particular states that

qN(z = 1/2) = 1/2 (20)

for all N. The general solution of Laplace’s equation must satisfy equation (19) which actually
provides a useful check for the validity of the solution.

3.1. N = 1

For N = 1, we have a second-order ordinary differential equation

d2Q1

dx2
1

= 0 with Q1(0|L) = 1 and Q1(L|L) = 0, (21)

whose solution is

Q1(x1|L) = 1 − x1

L
; 0 � x1 � L. (22)

Since Q1(x1|L) = Q1(L|x1) = Prob[m � L|x1], it follows, by differentiation, that the
probability density of the maximum m has a strict power-law form for all m

P1(m|x1) = x1

m2
for m � x1 (23)

which is normalized to unity over m ∈ [x1,∞] and all its integer moments diverge [35]. Thus,
the prefactor B1 = 1 in (4).

Clearly for N = 1, the exit probability Q1(x1|L) is only a function of the scaled variable
z = x1/L: Q1(x1|L) = q1(x1/L), where the scaling function q1(z) is simple:

q1(z) = 1 − z (24)

and evidently it satisfies the duality relation (19).

8
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Figure 3. Laplace’s equation to be solved in a square (L × L) with the boundary conditions as
shown.

3.2. N = 2

The solution of Laplace’s equation becomes more involved in higher dimensions N > 1.
For N = 2, one needs to solve Laplace’s equation in an (L × L) square with the boundary
conditions shown in figure 3. The solution can explicitly be written down for this case,
although the expression is rather cumbersome. Using separation of variables, one finds the
appropriate solution [46]

Q2(x1, x2|L) = 1 − x1

L
+

2

π

∞∑
n=1

(−1)n−1

n

[
sinh

(
nπ

(
1 − x2

L

))
+ (−1)n sinh

(
nπx2

L

)]
sinh(nπ)

× sin
(nπx1

L

)
. (25)

It is straightforward to verify that (25) is a solution of Laplace’s equation. Next we need
to check that it satisfies the four boundary conditions (see figure 3). It is easy to check the two
conditions: (i) Q2(x1 = 0, x2|L) = 1 for all x2 and (ii) Q2(x1 = L, x2|L) = 0 for all x2. The
other two conditions can also be verified. For instance, putting x2 = L in (25), we get

Q2(x1, L|L) = 1 − x1

L
− 2

π

∞∑
n=1

1

n
sin

(nπx1

L

)
. (26)

Using the identity
∞∑

n=1

1

n
sin

(nπx1

L

)
= π

2

(
1 − x1

L

)
, (27)

we verify that Q2(x1, L|L) = 0. Similarly, putting x2 = 0 in (25) and using the identity
∞∑

n=1

(−1)n−1

n
sin

(nπx1

L

)
= π x1

2L
, (28)

one verifies the last boundary condition Q2(x1, x2 = 0|L) = 1. Note that even though the
solution Q2(x1, x2|L) in (25) is not manifestly symmetric under the exchange of x1 and x2, it is
actually symmetric in x1 and x2 as it should be. Later in section 4, we will derive an alternative
expression via the path integral method which is manifestly symmetric in x1 and x2.

Let us analyze the large L behavior of (25) in the situation when x1 and x2 are kept finite.
Since Q2(x1, x2|L) = Q2(x1/L, x2/L) is a function of only the scaled variables z1 = x1/L

and z2 = x2/L, the L → ∞ limit is equivalent to taking the limits z1 → 0 and z2 → 0.

9
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Clearly Q2(z1 = 0, z2 = 0) = 1. It is easy to check that the first derivatives ∂z1Q and ∂z2Q

vanish at the origin (z1 = 0, z2 = 0). Similarly, the second derivatives ∂2
z1
Q2 and ∂2

z2
Q2 also

vanish at the origin. So, in a Taylor expansion of Q2(z1, z2) the first nonzero term is the cross
derivative, indicating the following leading-order behavior as z1 → 0 and z2 → 0:

Q2(z1, z2) = 1 − A2z1z2 + · · · . (29)

The amplitude A2 is given by

A2 = ∂2Q2

∂z1∂z2

∣∣∣∣∣z1=0,z2=0 = 2π

[ ∞∑
n=1

(−1)n n coth(nπ) −
∞∑

n=1

n

sinh(nπ)

]
, (30)

where the last line follows from (25). Fortunately, the sums can explicitly be carried out using
some known identities [47] to yield

A2 = 1

8π2
[�(1/4)]4 = 2.188 44 . . . . (31)

Hence for large L

Prob[m � L|x1, x2] = Q2(x1, x2|L) � 1 − A2
x1 x2

L2
, (32)

which leads to the announced power-law tail for the probability density of the maximum m:

P2(m|x1, x2) � B2
x1 x2

m3
, with B2 = 2A2 = 4.376 88 . . . . (33)

To compare with the N = 1 case, let us consider the special initial condition where both
particles start from the same initial position: x1 = x2 = x. In this case, the exit probability
Q2(x1 = x, x2 = x|L) = q2(x/L) with the scaling function q2(z) given by

q2(z) = 1 − z +
2

π

∞∑
n=1

(−1)n−1

n

[sinh(nπ(1 − z)) + (−1)n sinh(nπz)]

sinh(nπ)
sin(nπz). (34)

One can verify that q2(z) satisfies the duality relation (19). Near z = 0 and z = 1, the scaling
function has the asymptotics

q2(z) �
{

1 − A2 z2 as z → 0,

A2 (1 − z)2 as z → 1.
(35)

Comparing with the expression for the N = 1 case, equation (24), one finds that q2(z) has
a much richer functional form. An analytic prediction for the function q2(z) is in excellent
agreement with the results obtained from Monte Carlo simulations (figure 5).

4. Exact solution for all N by the path counting method

The approach based on the Laplace equation (section 3) is difficult to extend for N > 2. The
technical problem is to find the exact solution of the Laplace equation ∇2QN(z1, z2, . . . , zN) =
0 in the N-dimensional hypercube of the scaled variables 0 � zi = xi/L � 1, with the
prescribed boundary conditions that QN = 1 for any zi = 0 and QN = 0 for any zi = 1.
For N > 2, it is not easy to find an explicit solution to this problem. In this section, we use
an alternative path counting method that is physically more explicit and, in addition, allows
us to write down the exact solution QN(z1, z2, . . . , zN) for all N. This method thus provides
an alternative way to solving Laplace’s equation in a hypercube with the prescribed boundary
conditions.

To set up the path counting method for general N, we need two basic ingredients from
the single particle problem in a box [0, L] with absorbing boundary conditions at the two
boundaries 0 and L.

10
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(i) The survival probability S(x0, t, L) which counts the probability that a single particle,
starting at x0 at time 0, remains inside the box [0, L] during the time interval (0, t).

(ii) The first passage probability density F(x0, t, L) that denotes the probability density that
the particle, starting initially at x0 (0 � x0 � L), exits for the first time the box through
the boundary at 0 (and not through the other boundary at L) at time t.

One can write the survival probability S(x0, t, L) = ∫ L

0 G(x, x0, t, L) dx, where
G(x, x0, t, L) denotes the Green’s function counting the probability density that the particle
reaches x at time t, starting from x0 at time 0, while staying inside the box [0, L] during
time t. This Green’s function can be computed (a) either by solving the diffusion equation
∂tG = D∂2

xG (the diffusion constant is D = 1/2 for our choice of the noise term) with the
absorbing boundary condition G(x = 0, x0, t, L) = G(x = L, x0, t, L) = 0 and the initial
condition G(x, x0, 0, L) = δ(x−x0), or (b) by the path integral method. The resulting Green’s
function admits the following representation:

G(x, x0, t, L) = 2

L

∞∑
n=1

sin
(nπx

L

)
sin

(nπx0

L

)
e− n2π2

2L2 t
. (36)

The survival probability, after integrating over the final position x, is

S(x0, t, L) = 2

π

∞∑
n=1

[1 − (−1)n]

n
sin

(nπx0

L

)
e− n2π2

2L2 t
. (37)

To calculate the first passage probability density F(x0, t) through 0 at time t, we note that
this just counts the flux of particles going out of the box through 0 at time t. The flux through
a point x in the positive direction is the probability current −D∂xG (with D = 1/2). Hence,
the first-passage probability through the origin that counts the flux through the origin in the
negative direction is simply F(x0, t) = D∂xG|x=0. Using G from (36), we get

F(x0, t) = π

L2

∞∑
n=1

n sin
(nπx0

L

)
e− n2π2

2L2 t
. (38)

Armed with these two ingredients from the single particle problem, we are now ready
to compute the exit probability QN(�x|L) for the N-particle problem. Consider first the event
shown in figure 2, where one of the particles (say the ith one) exits the box for the first time
between times ts and ts + dts while the N − 1 other particles stay inside [0, L] till this time ts.
Clearly, the probability for this event, using independence of walkers, is given by the product
F(xi, ts)

∏
j �=i S(xj , ts) dts . Now, the particle that hits 0 (whose label is i) can, in fact, be any

one of the N particles. Hence we have to sum over the hitting index i from 1 to N. In addition,
this event can occur at any time ts, so we need to integrate over ts. This path counting method
then gives the following net contribution to the exit probability:

QN(�x|L) =
N∑

i=1

∫ ∞

0
F(xi, ts)

∏
j �=i

S(xj , ts) dts . (39)

Substituting the results for S(x,t) and F(x,t) respectively from equations (37) and (38),
integrating over ts and setting zi = xi/L gives our main exact result, valid for all N:

QN(�x|L) = QN(z1, z2, . . . , zN) =
(

2

π

)N ∑
{ni }

a(n1, n2, . . . , nN)

n2
1 + n2

2 + · · · + n2
N

N∏
k=1

sin(nkπzk)

nk

, (40)

where each index ni = 1, 2, . . . , for all 1 � i � N and

a(n1, n2, . . . , aN) =
N∑

i=1

n2
i

∏
j �=i

[1 − (−1)nj ]. (41)

11
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Equation (40) is an exact solution of Laplace’s equation in the N-dimensional hybercube
0 � zi � 1 with the prescribed boundary conditions which has a virtue of being manifestly
symmetric with respect to the interchange of the coordinates zi’s.

To extract the behavior in the limit of large L, with xi’s fixed, we need to take the limit
zi → 0 in equation (40). This limiting behavior reads

QN(z1, z2, . . . , zN) = 1 − ANz1 z2 · · · zN + O
(
z2
i

)
. (42)

The coefficient AN can be computed by taking the derivatives of equation (40) with respect to
each zi and then putting zi = 0 for all i. This gives

AN = −N 2N lim
zi→0

∑
{ni }

n2
1 cos(n1πz1)

n2
1 + n2

2 + · · · + n2
N

N∏
j=2

[1 − (−1)nj ] cos(njπzj ). (43)

Noting that QN(�x|L) = QN(z1, z2, . . . , zN) is precisely the cumulative distribution of
the maximum m, one thus gets

Prob[m � L|�x] � 1 − AN

x1x2 · · · xN

LN
as L → ∞. (44)

Differentiating with respect to L and putting L = m gives the exact power-law tail of the pdf
of the maximum m in equation (4) with the prefactor BN which is given by the formal sum

BN = NAN = −N2 2N lim
zi→0

∑
{ni }

n2
1 cos(n1πz1)

n2
1 + n2

2 + · · · + n2
N

N∏
j=2

[1 − (−1)nj ] cos(njπzj ), (45)

where each index ni runs over all positive integers.
The formal sum in equation (45) can explicitly be evaluated for N = 1 and N = 2. For

N = 1,

B1 = −2 lim
z1→0

∑
n1=1,2,...

cos(n1πz1) = 1, (46)

which is in agreement with already known results. For N = 2, equation (45) gives

B2 = −16 lim
zi→0

∑
n1,n2

n2
1 cos(n1πz1)

n2
1 + n2

2

[1 − (−1)n2 ] cos(n2πz2)

= 1

4π2

[
�

(
1

4

)]4

= 4.376 88 . . . . (47)

In appendix A, we show how to compute the above sum explicitly.
For N > 2, we have not deduced explicit expressions for the sum in (45). However, one

can reduce it to a simpler form where the sum is rapidly convergent and can then be evaluated
by Mathematica. As an example, for N = 3,

B3 = −6 +
9

8π2
�4(1/4) + 72π

∑
n1,n2

n2
1 + n2

2 (−1)n2√
n2

1 + n2
2 sinh

(
π

√
n2

1 + n2
2

) = 15.3369 . . . . (48)

In the limit of large N, one can evaluate the formal sum (see appendix B) to obtain the limiting
behavior

BN � N

[
4

π
ln(N)

]N/2

(49)

in perfect agreement with the heuristic result in equation (15).

Special initial condition. Finally, let us consider the special initial condition when all the
particles start from the same point: x1 = x2 = · · · = x, where 0 � x � L. In this case,

12
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the exit probability in equation (40) reduces to a function of one scaled variable z = x/L:
QN(x, x, . . . , x|L) = qN(z) given by

qN(z) = N

(
2

π

)N ∑
{ni }

n1 sin(n1πz)(
n2

1 + n2
2 + · · · + n2

N

) ∏
j �=1

[1 − (−1)nj ]
sin(njπz)

nj

. (50)

One can check that qN(z) satisfies the duality relation qN(z) + qN(1 − z) = 1 and thus
qN(1/2) = 1/2 for all N.

Performing this multiple sum directly by Mathematica is difficult as it converges slowly.
To circumvent this problem, we first perform the sum over n1 in equation (50) using the
following identity [47]:

∞∑
k=1

k sin(kπx)

k2 + a2
= π

2

sinh(π(x − a))

sinh(πa)
. (51)

This gives

qN(z) = N

(
4

π

)N−1 ∑
n2,n3,...,nN →odd

sinh
[
π(1 − z)

√
n2

2 + n2
3 + · · · + n2

N

]
sinh

[
π

√
n2

2 + n2
3 + · · · + n2

N

]
N∏

j=2

sin(njπz)

nj

.

(52)

The multiple sum in equation (52) is now rapidly convergent and can easily be evaluated by
Mathematica. In figure 2 we plot this function qN(z) for N = 2 and N = 3. For N = 2,
it of course coincides with the earlier expression (34) obtained via Laplace’s method in the
previous section.

Average maximum. For a fixed identical initial position of all particles xi = x, another
interesting question is: how does the average maximum (till the stopping time ts) depend on
N? For N = 1, the average is infinite but for all N > 1 it is finite. However, does the average
maximum for N > 1 increase or decrease as the number of walkers N increases? The answer
to this question is not intuitively obvious. However, knowing the function qN(z), one can
compute the average maximum in the following way. We have Prob[m � L|x] = qN(x/L),

where qN(z) is given in equation (52). Therefore, the pdf of m reads

PN(m|x) = − x

m2
q ′

N

( x

m

)
; m � x, (53)

where q ′
N(z) = dqN(z)/dz. The first moment is then given by, for all x � 0 and N > 1,

〈m〉 = −
∫ ∞

x

x

m
q ′

N

( x

m

)
dm = CN x (54)

with the prefactor

CN = −
∫ 1

0

q ′
N(z)

z
dz. (55)

Thus, the average maximum, for N > 1, is proportional to x for all x and the proportionality
constant CN is given by equation (55). We were unable to carry out the integral in equation (55)
in closed form. However, it is clear that as N → ∞, using qN(z) = θ(1/2 − z), one gets
CN → 2. On the other hand CN diverges as N → 1. Thus, CN decreases when N increases.
These results are supported by Monte Carlo simulations (figure 8).
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Figure 4. The illustration of the algorithm to compute the exit probability qN (z) for a single
(N = 1) Brownian motion.

5. Numerical simulations

Our analytical result for the exit probability through the origin qN(z), when all particles start
at the same scaled position 0 � z = x/L � 1, is tested by Monte Carlo simulations. For a
fixed box of size L, the exit probability for the N-particle problem can efficiently be computed
using a method proposed in [43]. Naively, to compute qN(z), one would first fix the starting
point 0 � z � 1 of all the Brownian motions and then generate different realizations of the
process and compute the fraction of realizations where the first exit occurs through the origin.
One would then repeat the procedure for each value of 0 � z � 1 (with an appropriate bin
size) in order to compute the full function qN(z) over the range z ∈ [0, 1]. Instead of repeating
the simulation for each starting point z, it turns out to be more efficient to follow a different
algorithm described briefly below.

For illustration, we take the example of just one Brownian motion (N = 1). The
method is easily generalized for all N. We start the Brownian motion at the origin; let it
evolve in time and record the maximal (xmax) and the minimal (xmin) position reached by the
walker up to the time t. The process is halted when xmax − xmin � L for the first time (see
figure 4). Keeping xmin and xmax fixed, we now horizontally slide the whole configuration
thereby changing the starting point (see the second and the third panel of figure 4). Measuring
all distances with respect to xmin, it is then clear that this configuration contributes 1 to q1(z)

for z ∈ [0, 1 − xmax/L] and 0 for z ∈ [1 − xmax/L, 1]. So, for this configuration, we just
record the number y = 1 − xmax/L and the fact that it contributes θ [y − z] to q1(z). We
then repeat this procedure for another configuration starting at 0, do the sliding and record the
value of y and the associated θ(y − z). We repeat this, say, for Ns number of samples. To
sum all the contributions, we first sort the values of y associated with the configurations in
increasing order. Let {ỹ1, ỹ2, . . . , ỹNs

} denote the sorted values. Then, we assign q1(ỹ1) = 1,
q1(ỹ2) = 1 − 1/Ns and in general q1(ỹi) = 1 − (i − 1)/Ns . This generates the full
curve q1(z).

Thus, this algorithm has two advantages: (i) it does not require to repeat the simulations
for each value of z and (ii) it does not require any specific choice of bin sizes. This clearly
makes the simulation much faster. The results of our simulations for N = 2, N = 3 and
N = 6 are plotted in figure 5. The agreement with the analytical prediction is excellent. For
all N, qN(z) satisfies the duality relation: qN(z) + qN(1 − z) = 1.
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Figure 5. The exit probability qN (z) through the origin obtained from Monte Carlo simulations
for N = 2 (red squares), N = 3 (deep blue circles) and N = 8 (blue triangles). The numerical
data are compared to the analytical results (solid lines) for N = 2 and N = 3 (obtained from
equation (52) respectively for N = 2 and N = 3).

In [43] we had studied the exit probability from a box [0, L] through the upper boundary
L (rather than the lower boundary 0 considered here) for a single particle whose motion is
described by a generic self-affine stochastic process. This probability was called the ‘hitting
probability’ in [43]. In the present paper, we are considering the complimentary event of
exiting the box [0, L] through the lower boundary 0. In the notation of the present paper,
the hitting probability (of the boundary L) would correspond to 1 − qN(z).3 For a generic
self-affine process, it was shown in [43] that the exit probability should have a power-law
behavior close to the origin 1 − q(z) ∼ zφ with φ = θ/H as mentioned in the introduction.
In addition, it was observed in [43] that for many processes (but not all), once we know
the exponent φ, the full function q(z) over the range z ∈ [0, 1] is described by a universal
one-parameter (parametrized by φ) form [43]

qφ(z) = 1 − Iz(φ, φ) = 1 − �(2φ)

�(φ)2

∫ z

0
[u(1 − u)]φ−1 du. (56)

The function Iz(φ, φ) is the incomplete regularized beta function. In our present problem,
we have seen in equation (42) that for small z, qN(z) ∼ 1 − ANzN indicating φ = N . It is
then natural to investigate if our result for the full function qN(z) can be re-expressed as the
universal functional form in equation (56) with φ = N . Interestingly, the answer is no, as it
is clearly shown in figure 6, thus providing us with a counterexample.

We have also computed the prefactor BN numerically from the Monte Carlo simulations
up to N = 7. The results are shown in figure 7 by squares. For N = 1, N = 2 and N = 3, they
agree with our exact analytical predictions B1 = 1, B2 = 4.376 88 . . . and B3 = 15.3369 . . . as
discussed in section 4. Had the qN(z) be described by the universal function in equation (56)
with φ = N , one would get from the small z expansion in equation (56), qN(z) → 1 − ANzN

with AN = �(2N)/N�2(N). This would predict the prefactor BN = NAN = �(2N)/�2(N).
In figure 7, this prediction from the universal curve is shown by the dashed line. Clearly, it
does not match the simulation results, confirming once more that qN(z) is not described by

3 Please note that in [43] the notation q(z) was used for the hitting probability (for exiting through L), but here we
use qN (z) to denote the complimentary event of exiting the box through 0. We apologize if this causes any confusion.
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Figure 6. Difference between the exit probability for N = 2 and N = 3 and the universal function
in equation (56) with φ = N . The solid lines show the analytical results from equation (52)
with N = 2 and N = 3. The symbols show the numerical results for 105 realizations of N = 2
(squares) and N = 3 (circles) Brownian motions starting from the same initial position in a box of
size L = 1000.
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Figure 7. Dashed line: BN = �(2N)/�2(N) from the universal function in equation (56). Solid
line: asymptotic behavior for large N given in equation (49) and squares: direct simulations of
N Brownian motions starting from the same position in a box of size L = 1000. Averages are
performed over 106 samples.

the universal function in equation (56). We have also plotted the exact asymptotic prediction
of BN in equation (49) as a solid line for comparison. While it is difficult to extract the small
z behavior of qN(z) and hence BN for larger values of N, we note that the asymptotic large N
behavior is already approached for N = 7.

Finally we have also computed the average maximum (till the stopping time ts) of N
Brownian motions starting from the same initial positions x > 0. We verified that for all
N > 1, the average maximum exists, and it is proportional to x, as predicted analytically in
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Figure 8. Monte Carlo results for the average maximum of N Brownian motions till the first
passage time through the origin, all starting at the same initial position x > 0. The coefficient
CN = 〈m〉/x, see equation (55), is plotted versus N. Averages are performed over 103 realizations.

equation (54). In figure 8 we plot the amplitude CN, given analytically in equation (55), as a
function of N. As predicted, CN approaches 2 for large N.

6. Conclusion

To summarize, we have presented an exact solution for the probability distribution of the
maximum m of a set of N independent Brownian motions starting at the initial positions
�x ≡ {x1, x2, . . . , xN } on the positive half-axis and the process terminating when any one of
the walkers crosses the origin. We have shown that for large m, the pdf of m decays as a
power law, PN(m|�x) � BN(x1x2 · · · xN)/mN+1, where the prefactor BN has an interesting N
dependence. For a fixed N > 1, integer moments of m up to order (N − 1) are finite, while
all higher integer moments are infinite. The cumulative distribution of this maximum also
provides an exact solution to the first-exit probability through the origin (rather than through
L) of N walkers from a box [0, L]. Incidentally, our path counting method also provides an
exact solution to the N-dimensional Laplace’s equation ∇2QN = 0 in a hypercube [0, L]N

with the boundary conditions QN = 1 on any face of the hypercube passing through the origin
and QN = 0 on the rest of the faces. Monte Carlo simulations confirm our analytical results.

This work raises some interesting open questions. We have focused only on the maximum
m till the stopping time ts of N independent walkers. Another interesting observable is not just
the actual value of the maximum, but the time tm at which this maximum occurs before the
stopping time ts. This random variable has recently been studied in a number of contexts. For
a stochastic process over a fixed time interval [0, t], the distribution of the time tm has been
computed for a variety of Brownian paths, such as a free Brownian motion, Brownian bridges,
Brownian excursions and Brownian meanders, using the path integral method [7] and also by
an alternative functional renormalization group method [18]. The distribution of tm was also
computed exactly for the random acceleration process which is a non-Markov process [50]. It
has also been computed both for independent Brownian walkers [26, 27] and very recently for
vicious walkers [51]. On the other hand, when the process stops at a random stopping time
ts, where for instance ts is the first time a walker hits the origin, the distribution of tm has been
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computed for a single Brownian motion (N = 1), where it is already nontrivial [52]. It would
be interesting to extend the results of [52] to the case of N > 1 independent Brownian motions.

Another interesting challenging problem would be to compute the distribution of m as
well as that of tm for a set of vicious walkers till the stopping time ts when the walker closest
to the origin crosses the origin for the first time.
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NSF grant CCF-0829541 for support. AR acknowledges support by ANR grant 09-BLAN-
0097-02. The authors thank A Schweiger for useful discussions.

Appendix A. Evaluation of B2

To evaluate the sum in equation (47), we first split the sum into two parts: B2 = I1 + I2 with

I1 = −16 lim
z1,z2→0

∑
n1,n2

n2
1

n2
1 + n2

2

cos(n1πz1) cos(n2πz2) (A.1)

I2 = 16 lim
z1,z2→0

∑
n1,n2

(−1)n2 n2
1

n2
1 + n2

2

cos(n1πz1) cos(n2πz2), (A.2)

where all the sums run over positive integers.
Let us first evaluate I1. Due to the symmetry we can rewrite I1 as

I1 = −8 lim
z1,z2→0

∑
n1,n2

n2
1 + n2

2

n2
1 + n2

2

cos(n1πz1) cos(n2πz2)

= −8 lim
z1,z2→0

∑
n1,n2

cos(n1πz1) cos(n2πz2) = −2. (A.3)

In the last step we have used the identity,
∑

n�1 cos(nπz) = −1/2.
To evaluate I2 we use another standard identity [47]

∞∑
k=1

(−1)k cos(kπz)

k2 + a2
= π

2a

cosh(aπz)

sinh(aπ)
− 1

2a2
. (A.4)

We now sum over n2 in equation (A.2) using the above identity. This gives

I2 = −8 lim
z1→0

∞∑
n1=1

cos(n1πz1) + 8π lim
z1,z2→0

∞∑
n1=1

n1

sinh(n1π)
cos(n1πz1) cos(n1πz2)

= 4 + 8π

∞∑
n1=1

n1

sinh(n1π)
. (A.5)

The remaining sum in (A.5) can explicitly be evaluated using the identity [47]

∞∑
n=1

n

sinh(nπ)
= 1

32π3
�4

(
1

4

)
− 1

4π
. (A.6)

Adding I1 and I2 we arrive at the announced expression (5) for B2.
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Appendix B. Evaluation of BN for large N

Here, we show that BN in equation (45) behaves, to leading order for large N, as

BN � N

[
4

π
ln(N)

]N/2

. (B.1)

First we rewrite the denominator in equation (45) using the integral representation

1

n2
1 + n2

2 + · · · + n2
N

=
∫ ∞

0
dt e−t (n2

1+n2
2+···+n2

N ). (B.2)

Using this representation, one can then decouple the sums over different indices ni in
equation (45) giving

BN = −N2 2N lim
zi→0

∫ ∞

0
dt

∞∑
n1=1

n2
1 cos(n1πz1) e−n2

1t
∏
j �=1

∞∑
nj =1

[1 − (−1)nj ] cos(njπzj ) e−tn2
j .

(B.3)

If we now take the limits zj → 0 inside the sums, each of the sums is convergent. However,
it is easy to check that the integrand, as a function of t, diverges as ∼t1+N/2 as t → 0.
Thus, the integral is longer convergent. To circumvent this difficulty, one can use a standard
regularization scheme used often in evaluating the Madelung constant in the context of lattice
sums in crystals [48] whereby we introduce a parameter s and rewrite equation (B.3) as, upon
taking the limits zj → 0 inside the sums,

BN(s) = −N2 2N

�(s)

∫ ∞

0
dt t s−1

∞∑
n1=1

n2
1 e−n2

1 t

⎡
⎣ ∞∑

nj =1

[1 − (−1)nj ] e−n2
j t

⎤
⎦

N−1

. (B.4)

Note that this integral is convergent for all s > (1 + N/2). The idea is to first evaluate
BN(s) for large N with s > (1 + N/2) and then analytically continue this result to s → 1 to
evaluate BN = BN(s → 1).

Let us next define the function

g(t) = 4

√
t

π

∞∑
k=0

e−(2k+1)2t . (B.5)

Up to the factor
√

t/π , this function g(t) can be expressed in terms of standard Jacobi theta
functions [49]. Then one can rewrite equation (B.4) as

BN(s) = −2N2(
√

π)N−1

�(s)

∫ ∞

0
dt t s−(N+1)/2 [g(t)]N−1

[ ∞∑
n=1

n2e−n2 t

]
. (B.6)

To evaluate this integral for large N, we need to know how the function [g(t)]N−1 behaves for
large N.

Let us first focus on the function g(t) in equation (B.5). Clearly, for large t, the dominant
contribution comes from the k = 0 term in the sum and hence g(t) ∼ √

te−t as t → ∞. In
contrast, the opposite limit t → 0 is more tricky. To derive its behavior as t → 0, we first use
the following Jacobi identity [49]:

1 + 2
∞∑

k=1

(−1)ke−k2 z = 2

√
π

z

∞∑
k=0

e−(2k+1)2π2/4z (B.7)
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Figure B1. The function [g(t)]N plotted as a function of t for N = 1 (black solid), N = 5 (red
dotted) and N = 50 (blue dashed). As N becomes large, [g(t)]N almost approaches to a step
function.

to rewrite the function g(t) (upon identifying t = π2/4z) as

g(t) = 1 + 2
∞∑

k=1

(−1)k e−π2k2/4t . (B.8)

This representation of g(t) is more amenable to the asymptotic analysis in the t → 0 limit.
We obtain from equation (B.8) the leading behavior of g(t) as t → 0

g(t) � 1 − 2 e−π2/4t + · · · . (B.9)

Thus, g(t) has an essential singularity at t = 0 and it approaches to 1 as t → 0 in an extremely
flat way. Thus, the function g(t) starts at g(0) = 1 stays flat for a while and then decreases
exponentially fast to 0 as t increases (see figure B1).

Next consider the function [g(t)]N that appears in the integral in equation (B.6). As N
increases, the function [g(t)]N almost approaches a step function (see figure B1)

[g(t)]N → θ(t∗(N) − t), (B.10)

where the characteristic scale t∗(N) decreases very slowly with increasing N. One can easily
estimate t∗(N) for large N from the asymptotic behavior in equation (B.9). For small t, one
finds, to leading order for large N,

[g(t)]N ∼ [
1 − 2 e−π2/4t

]N � exp
[ − 2N e−π2/4t

]
. (B.11)

Thus, as N increases, it approaches to 0 rapidly for all t > t∗, where 2Ne−π2/4t∗ ≈ 1. This
provides an estimate of t∗(N) which, to leading order for large N, reads

t∗(N) � π2

4 ln(N)
. (B.12)

Therefore, for large N, using equation (B.10), we can cut off the upper limit of the integral
in equation (B.6) at t = t∗(N) and replace [g(t)]N−1 by 1 over the interval t ∈ [0, t∗(N)].
Furthermore, over this small interval t ∈ [0, t∗(N)], one can replace the function

∑∞
n=1 n2 e−n2 t
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by its small t behavior � √
π/4t3/2. Substituting these results into equation (B.6) then yields,

for large N,

BN(s) � −N2 πN/2

2�(s)

∫ t∗(N)

0
dt t s−(N+4)/2 � −N2πN/2

2�(s)

[t∗(N)]s−N/2−1

(s − N/2 − 1)
. (B.13)

In deriving this result, we have assumed s > (1 + N/2). After obtaining this large N formula
for BN(s), we can now analytically continue it to s → 1 which finally yields

BN = BN(s → 1) = N πN/2 [t∗(N)]−N/2. (B.14)

Upon using the expression for t∗(N) from equation (B.12) gives the final large N expression
for BN in equation (B.1).
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