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Characterizing the spatial extent of epidemics at the outbreak stage
is key to controlling the evolution of the disease. At the outbreak,
the number of infected individuals is typically small, and therefore,
fluctuations around their average are important: then, it is com-
monly assumed that the susceptible–infected–recoveredmechanism
can be described by a stochastic birth–death process of Galton–
Watson type. The displacements of the infected individuals can be
modeledby resorting to Brownianmotion,which is applicablewhen
long-range movements and complex network interactions can be
safely neglected, like in the case of animal epidemics. In this context,
the spatial extent of an epidemic can be assessed by computing the
convex hull enclosing the infected individuals at a given time. We
derive the exact evolution equations for the mean perimeter and
the mean area of the convex hull, and we compare them with
Monte Carlo simulations.

branching Brownian motion | extreme value statistics

Models of epidemics traditionally consider three classes of
populations—namely, the susceptible (S), the infected (I),

and the recovered (R). This framework provides the basis of the
so-called SIR model (1, 2), a fully connected mean-field model
where the population sizes of the three species evolve with time t
by the coupled nonlinear equations: dS/dt= −βIS, dI/dt = βIS− γI,
and dR/dt = γI. Here, γ is the rate at which an infected individual
recovers, and β denotes the rate at which it transmits the disease to
a susceptible (3–5). In the simplest version of these models, the
recovered cannot be infected again. These rate equations conserve
the total population size I(t) + S(t) + R(t) = N; one assumes that,
initially, there is only one infected individual, and the rest of the
population is susceptible: I(0) = 1, S(0) = N − 1, and R(0) = 0. Of
particular interest is the outbreak stage (i.e., the early times of the
epidemic process), when the susceptible population is much
larger than the number of infected or recovered. During this re-
gime, for large N, the susceptible population hardly evolves and
stays S(t) ∼ N; therefore, nonlinear effects can be safely neglec-
ted, and one can just monitor the evolution of the infected pop-
ulation alone: dI/dt ∼ (βN − γ)I(t). Thus, the ultimate fate of the
epidemics depends on the key dimensionless parameter R0 = βN/
γ, which is called the reproduction rate. If R0 > 1, the epidemic
explodes and invades a finite fraction of the population; if R0 < 1,
the epidemic goes to extinction, and in the critical case R0 = 1 the
infected population remains constant (6–8).
This basic deterministic SIR has been generalized to a variety

of both deterministic as well as stochastic models, and distinct
advantages and shortcomings are discussed at length in refs. 9–11.
Generally speaking, stochastic models are more suitable in the
presence of a small number of infected individuals, when fluctu-
ations around the average may be relevant (9, 10). During the
outbreak of epidemics, the infected population is typically small: in
this regime, the evolution can be modeled by resorting to a sto-
chastic birth–death branching process of the Galton–Watson type
for the number of infected (9–11), where each infected individual
transmits the disease to another individual at rate βN and recovers
at rate γ. The epidemic may become endemic for R0 > 1 and
becomes extinct for R0 < 1, whereas for R0 = 1 fluctuations are
typically long-lived and completely control the time evolution of
the infected population (3–5).

How far in space can an epidemic spread? Branching processes
alone are not sufficient to describe an outbreak, and spatial effects
must necessarily be considered (1, 4, 12–14). Quantifying the
geographical spread of an epidemic is closely related to the mod-
eling of the population displacements. Brownian motion is often
considered as a paradigm for describing the migration of individ-
uals, despite some well-known shortcomings: for instance, finite
speed effects and preferential displacements are neglected. Most
importantly, a number of recent studies have clearly shown that
individuals geographically far apart can actually be closely related
to each other through the so-called small-world connections, such
as air traffic, public transportation, and so on; then, the spread of
epidemics among humans cannot be realistically modeled without
considering these complex networks of interconnections (15–18).
Nonetheless, Brownian motion provides a reasonable basis for
studying disease propagation in animals and possibly plants (here,
pathogen vectors are insects) (5).
Although theoretical models based on branching Brownian

motion have provided important insights on how the population
size grows and fluctuates with time in a given domain (1, 4, 13, 14),
another fundamental question is how the spatial extension of the
infected population evolves with time. Assessing the geographical
area traveled by a disease is key to the control of epidemics, which is
especially true at the outbreak, when confinement and vaccination
could be most effective. One major challenge in this very practical
field of disease control is how to quantify the area that needs to be
quarantined during the outbreak. For animal epidemics, this issue
has been investigated experimentally (for instance, in the case of
equine influenza) (19). The most popular and widely used method
consists of recording the set of positions of infected animals and, at
each time instant, constructing a convex hull (i.e., a minimum
convex polygon surrounding the positions; a precise definition of
the convex hull is given below) (Fig. 1). The convex hull at time t
then provides a roughmeasure of the area over which the infections
have spread up to time t. The convex hull method is also used to
estimate the home range of animals (i.e., the territory explored by
a herd of animals during their daily search for food) (20, 21).
In this paper, wemodel the outbreak of an epidemic as aGalton–

Watson branching process in presence of Brownian spatial diffu-
sion. Despite infection dynamics being relatively simple, the cor-
responding convex hull is a rather complex function of the
trajectories of the infected individuals up to time t, whose statis-
tical properties seem to be a formidable problem. Ourmain goal is
to characterize the time evolution of the convex hull associated
with this process, particularly its mean perimeter and area.
The rest of the paper is organized as follows. We first describe

precisely the model and summarize our main results. Then, we
provide a derivation of our analytical findings supported by extensive
numerical simulations. We conclude with perspectives and dis-
cussions. Some details of the computations are relegated to SI Text.
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Model and Main Results
Consider a population of N individuals uniformly distributed in
a 2D plane, with a single infected at the origin at the initial time.
At the outbreak, it is sufficient to keep track of the positions of
the infected, which will be marked as particles. The dynamics of
the infected individuals are governed by the following stochastic
rules. In a small time interval dt, each infected alternatively has
three actions.

i) The infected individual recovers with probability γdt. This
event corresponds to the death of a particle with rate γ.

ii) The infected individual infects, by local contact, a new sus-
ceptible individual from the background with probability bdt.
This event corresponds to the birth of a new particle that can
subsequently diffuse. The originally infected particle still
remains infected, which means that the trajectory of the orig-
inally infected particle branches into two new trajectories.
The rate b replaces the rate βN in the SIR or the Galton–
Watson process mentioned before.

iii) The infected individual diffuses with diffusion constant D
with probability 1 − (γ + b)dt. The coordinates {x(t), y(t)}
of the particle get updated to the new values {x(t) + ηx(t)dt, y
(t) + ηy(t)dt}, where ηx(t) and ηy(t) are independent Gaussian
white noises with zero mean and correlators 〈ηx(t)ηx(t′)〉 =
2Dδ(t − t′), 〈ηy(t)ηy(t′)〉 = 2Dδ(t − t′), and 〈ηx(t)ηy(t′)〉 = 0.

The only dimensionless parameter in the model is the ratio
R0 = b/γ (i.e., the basic reproduction number).

Consider now a particular history of the assembly of the trajec-
tories of all of the infected individuals up to time t, starting from
a single infected initially at the origin (Fig. 1). For every realization
of the process, we construct the associated convex hull C. To visu-
alize the convex hull, imagine stretching a rubber band so that it
includes all of the points of the set at time t inside it and then re-
leasing the rubber band. It shrinks and finally gets stuck when it
touches some points of the set; therefore, it cannot shrink any more.
This final shape is precisely the convex hull associated with this set.
In this paper, we show that the mean perimeter 〈L(t)〉 and the

mean area 〈A(t)〉 of the convex hull are ruled by two coupled
nonlinear partial differential equations that can be solved nu-
merically for all t (Fig. 2). The asymptotic behavior for large t can
be determined analytically for the critical (R0 = 1), subcritical
(R0 < 1), and supercritical (R0 > 1) regimes. In particular, in the
critical regime, the mean perimeter saturates to a finite value as
t→∞, whereas the mean area diverges logarithmically for large t:

hLðt→∞Þi= 2π

ffiffiffiffiffiffi
6D
γ

s
+O

�
t−1=2

�
[1]

and

hAðt→∞Þi = 24πD
5γ

ln t+Oð1Þ: [2]
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Fig. 1. The snapshots of the trajectories of an as-
sembly of infected individuals at the epidemics
outbreak at three different times (schematic) start-
ing from a single infected at the originO at time t = 0.
Individuals that are still infected at a given time t
are displayed as red dots, whereas individuals al-
ready recovered are shown as black dots. The con-
vex hull enclosing the trajectories (shown as
a dashed line) is a measure of the geographical area
covered by the spreading epidemic. As the epidemic
grows in space, the associated convex hull also
grows in time.
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Fig. 2. (Left) The average area 〈A(t)〉 of the convex hull as a function of the observation time. For the parameter values, we have chosen D = 1/2 and b = R0γ =
0.01. We considered five different values of R0. We have obtained these results by two different methods. (i) One method is by the numerical integration of
Eqs. 9 and 14 and using Eq. 15. These results are displayed as solid lines. (ii) The other method is by Monte Carlo simulations of the 2D branching Brownian
motion with death with the same parameters averaged over 105 samples. Monte Carlo simulations are displayed as symbols. The dashed lines represent the
asymptotic limits as given in Eq. 2 for the critical case R0 = 1. Additional details of the numerical simulations are provided in SI Text. (Right) Distribution of the
area of the convex hull for the critical case R0 = 1, with γ = 0.01 and D = 1/2, as obtained by Monte Carlo simulations with 2 × 106 realizations. The dashed line
corresponds to the power-law (24πD/5γ)A−2 as predicted by expression 20.
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This prediction seems rather paradoxical at a first glance. How can
the perimeter of a polygon be finite while its area is divergent? The
resolution to this paradox owes its origin precisely to statistical
fluctuations. The results in Eqs. 1 and 2 are true only on average.
Of course, for each sample, the convex hull has a finite perimeter
and a finite area. However, as we later show, the probability dis-
tributions of these random variables have power-law tails at long
time limits. For instance, although Prob(L, t→∞) ∼ L−3 for large
L (thus leading to a finite first moment), the area distribution
behaves as Prob(A, t → ∞) ∼ A−2 for large A. Hence, the mean
area is divergent as t → ∞ (Fig. 2).
When R0 ≠ 1, the evolution of the epidemic is controlled by

a characteristic time t*, which scales like t* ∼ jR0 − 1j−1. For
times t < t* the epidemic behaves as in the critical regime. In
the subcritical regime, for t > t*, the quantities 〈L(t)〉 and
〈A(t)〉 rapidly saturate, and the epidemic goes eventually to
extinction. In contrast, in the supercritical regime (which is the
most relevant for virulent epidemics that spread fast), a new time-
dependent behavior emerges when t > t*, because there exists
a finite probability (namely 1 − 1/R0) that the epidemic never goes
to extinction (Fig. 3). More precisely, we later show that

D
L
�
t � t*

�E
= 4π

�
1−

1
R0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DγðR0 − 1Þ

p
t [3]

and

D
A
�
t � t*

�E
= 4π

�
1−

1
R0

�
Dγ ðR0 − 1Þt2: [4]

The ballistic growth of the convex hull stems from an underlying
traveling front solution of the nonlinear equation governing the
convex hull behavior. Indeed, the prefactor of the perimeter growth
is proportional to the front velocity v* = 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DγðR0 − 1Þp

. As time
increases, the susceptible population decreases because of the
growth of the infected individuals: this depletion effect leads to
a breakdown of the outbreak regime and a slowing down of the
epidemic propagation.

Statistics of the Convex Hull
Characterizing the fluctuating geometry of C is a formidable
task even in absence of branching (b = 0) and death (γ = 0), i.e.,

purely for diffusion process in 2Ds. Major recent breakthroughs
have, nonetheless, been obtained for diffusion processes (22,
23) by a clever adaptation of the Cauchy integral geometric
formulae (24, 25) for the perimeter and area of any closed
convex curve in 2Ds. In fact, the problem of computing the
mean perimeter and area of the convex hull of any generic 2D
stochastic process can be mapped, using Cauchy formulae, to
the problem of computing the moments of the maximum and
the time at which the maximum occurs for the associated 1D
component stochastic process (22, 23). This technique was used
for computing the mean perimeter and area of the convex hull
of a 2D regular Brownian motion (22, 23) and a 2D random
acceleration process (26).
Our main idea here is to extend this method to compute the

convex hull statistics for the 2D branching Brownian motion.
Using this general mapping and isotropy in space (SI Text), the
average perimeter and area of the convex hull are given by

hLðtÞi= 2πhxmðtÞi [5]

and

hAðtÞi= π
��
x2mðtÞ

	
−
�
y2ðtmÞ

	

; [6]

where xm is the maximum displacement of our 2D stochastic pro-
cess in the x direction up to time t, tm is the time at which the
maximum displacement along x direction occurs, and y(tm) is the
ordinate of the process at tm (i.e., when the displacement along the
x direction is maximal). A schematic representation is provided in
Fig. 4, where the global maximum xm is achieved by one single
infected individual, whose path is marked in red. A crucial obser-
vation is that the y component of the trajectory connecting O to
this red path is a regular 1D Brownian motion. Hence, given tm
and t, clearly 〈y2(tm)〉 = 2D〈tm〉. Therefore,

hAðtÞi= π
��
x2mðtÞ

	
− 2DhtmðtÞi



: [7]

Eqs. 5 and 7 thus show that the mean perimeter and area of the
epidemics outbreak are related to the extreme statistics of a 1D
branching Brownian motion with death. Indeed, if we can com-
pute the joint distribution Pt(xm, tm), we can, in turn, compute the
three moments 〈xm〉, hx2mi, and 〈tm〉 that are needed in Eqs. 5 and
7. We show below that this calculation can be performed exactly.
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Convex Hull Perimeter and Maximum xm. For the average perimeter,
we just need the first moment hxmðtÞi=

R∞
0 xmqtðxmÞdxm, where

qt(xm) denotes the probability density of the maximum of the 1D
component process. It is convenient to consider the cumulative
distribution Qt(xm) (i.e., the probability that the maximum
x displacement stays below a given value xm up to time t). Then,
qt(xm) = dQt(xm)/dxm, and hxmðtÞi=

R∞
0 ½1−QtðxmÞ�dxm. Because

the process starts at the origin, its maximum x displacement, for
any time t, is necessarily nonnegative (i.e., xm ≥ 0). We next write
down a backward Fokker–Planck equation describing the evolu-
tion of Qt(xm) by considering the three mutually exclusive sto-
chastic moves in a small time interval dt: starting at the origin at
t = 0, the walker during the subsequent interval [0, dt] dies with
probability γdt, infects another individual (i.e., branches) with
probability bdt = R0γdt, or diffuses by a random displacement
Δx = ηx(0)dt with probability 1 − γ(1 + R0)dt. In the last case, its
new starting position is Δx for the subsequent evolution. Hence,
for all xm ≥ 0, one can write

Qt+dtðxmÞ= γdt+R0γdtQ2
t ðxmÞ+ ½1− γðR0 + 1Þ�dthQtðxm −ΔxÞi ;

[8]

where the expectation 〈〉 is takenwith respect to the randomdisplace-
ments Δx. The first term means that if the process dies right at the
start, its maximum up to t is clearly zero and hence, necessarily less
than xm. The second term denotes the fact that, in case of branching,
the maximum of each branch stays below xm: because the branches
are independent, one gets a square. The third term corresponds to
diffusion. By using 〈Δx〉 = 0 and 〈Δx2〉 = 2Ddt and expanding Eq. 8
to the first order in dt and second order in Δx, we obtain

∂
∂t
Q=D

∂2

∂x2m
Q− γðR0 + 1ÞQ+ γR0Q2 + γ [9]

for xm ≥ 0, satisfying the boundary conditions Qt(0) = 0 and
Qt(∞) = 1 and the initial condition Q0(xm) = Θ(xm), where Θ
is the Heaviside step function. Hence, from Eq. 5,

hLðtÞi= 2π
Z∞
0

½1−QtðxmÞ�dxm: [10]

Eq. 9 can be solved numerically for all t and all R0 values, which
allows for subsequent computation of 〈L(t)〉 in Eq. 10 (details
are provided in SI Text and Figs. S1, S2, and S3).

Convex Hull Area. To compute the average area in Eq. 7, we need
to evaluate hx2mðtÞi as well as 〈tm〉. After the cumulative distri-
bution Qt(xm) is known, the second moment hx2mðtÞi can be directly
computed by integration, namely hx2mðtÞi=

R∞
0 dxm2xmð1−QtðxmÞÞ.

To determine 〈tm〉, we need to also compute the probability
density pt(tm) of the random variable tm. Unfortunately, writing
down a closed equation for pt(tm) is hardly feasible. Instead, we
first define Pt(xm, tm) as the joint probability density that the
maximum of the x component achieves the value xm at time tm,
when the full process is observed up to time t. Then, we derive
a backward evolution equation for Pt(xm, tm) and integrate out xm
to derive the marginal density ptðtmÞ=

R∞
0 Ptðxm; tmÞdxm. Fol-

lowing the same arguments as for Qt(xm) yields a backward
equation for Pt(xm, tm),

Pt+dtðxm; tmÞ= ½1− γðR0 + 1Þdt�hPtðxm −Δx; tm − dtÞi
+ 2γR0dtQtðxmÞPtðxm; tm − dtÞ : [11]

The first term at the right-hand side represents the contribution
from diffusion. The second term represents the contribution
from branching: we require that one of them attains the maximum
xm at the time tm − dt, whereas the other stays below xm [Qt(xm)
being the probability that this condition is satisfied]. The factor
2 comes from the interchangeability of the particles. Developing
Eq. 11 to leading order gives

�
∂
∂t
+

∂
∂tm

�
Pt =

�
D

∂2

∂x2m
− γðR0 + 1Þ+ 2γR0Qt

�
Pt: [12]

This equation describes the time evolution of Pt(xm, tm) in the region
xm ≥ 0 and 0 ≤ tm ≤ t. It starts from the initial condition P0(xm, tm) =
δ(xm)δ(tm) (because the process begins with a single infected with
x component located at x = 0, it implies that, at t = 0, the maximum
xm = 0 and also tm = 0). For any t > 0 and xm > 0, we have the
condition Pt(xm, 0) = 0. We need to also specify the boundary
conditions at xm = 0 and xm → ∞, which read (i) Pt(∞, tm) = 0
(because for finite t, the maximum is necessarily finite) and (ii)
Ptð0; tmÞ= δðtmÞ qtðxmÞjxm=0. The latter condition comes from the
fact that, if xm= 0, the x component of the entire process, starting at
0 initially, stays below zero in the time interval [0, t], which happens
with probability qtðxmÞjxm=0: consequently, tm must necessarily be
zero. Furthermore, by integrating Pt(xm, tm) with respect to tm, we
recover the marginal density qt(xm).

Fig. 4. (Left) A branching random walk composed of five individuals. At time t = 0, a single infected individual is at the origin O and starts diffusing (blue
line). At later times, this individual branches and gives rise to other infected individuals. Among these individuals, the red path reaches the maximum xm along
the x component up to the final time t. infected individuals at a given time t are displayed as red dots, whereas recovered individuals are displayed as black
dots. (Center) The displacement along the x direction as a function of time. The red path reaches the global maximum xm at time tm. (Right) The displacement
along the y direction as a function of time. When the red path reaches the global maximum xm at time tm, its y coordinate attains the value y(tm). A crucial
observation is that the y component of the trajectory connecting O to the red path is a regular Brownian motion. This observation does not apply to the x
component, which is constrained to reach the global maximum of the branching process.
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The numerical integration of the full Eq. 12 would be rather
cumbersome. Fortunately, we do not need this calculation. Be-
cause we are only interested in 〈tm〉, it is convenient to introduce

TtðxmÞ=
Z t

0

tmPtðxm; tmÞdtm; [13]

from which the average follows as htmi=
R
dxmTtðxmÞ. Multiply-

ing Eq. 12 by tm and integrating by parts, we get

∂
∂t
Tt − qtðxmÞ=

�
D

∂2

∂x2m
+ 2γR0Qt − γðR0 + 1Þ

�
Tt [14]

with the initial condition T0(xm) = 0 and the boundary conditions
Tt(0) = 0 and Tt(∞) = 0. Eq. 14 can be integrated numerically
together with Eq. 9 (details are provided in SI Text), and the
behavior of

hAðtÞi= π

Z∞
0

dxm½2xmð1−QtðxmÞÞ−TtðxmÞ� [15]

as a function of time is illustrated in Fig. 2.

Critical Regime.Wenow focus on the critical regimeR0= 1.Webegin
with the average perimeter: for R0 = 1, Eq. 9 admits a stationary
solution as t → ∞, which can be obtained by setting ∂Q/∂t = 0
and solving the resulting differential equation. In fact, this stationary
solution was already known in the context of the genetic propagation
of a mutant allele (27). Taking the derivative of this solution with
respect to xm, we get the stationary probability density of the
maximum xm:

q∞ðxmÞ= ∂xmQ∞ðxmÞ=
2

ffiffiffiffiffiffi
γ

6D

r
�
1+

ffiffiffiffiffiffi
γ

6D

r
xm

�3: [16]

The average is hxmi=
R∞
0 xmq∞ðxmÞdxm =

ffiffiffiffiffiffiffiffiffiffiffi
6D=γ

p
, which yields

Eq. 1 for the average perimeter of the convex hull at late times.
To compute the average area in Eq. 7, we need to also eval-

uate the second moment hx2mðtÞi, which diverges as t → ∞ be-
cause of the power-law tail of the stationary probability density
q∞ðxmÞ∝ x−3m for large xm. Hence, we need to consider large but
finite t. In this case, the time-dependent probability density qt(xm)
displays a scaling form, which can be conveniently written as

qtðxmÞ ’ q∞ðxmÞf
�

xmffiffiffiffiffi
Dt

p
�
; [17]

where f(z) is a rapidly decaying function with f(z� 1)’ 1 and f(z�
1) ’ 0. Using the scaling form of expression 17 and Eq. 9, one can
derive a differential equation for f(z). However, it turns out that we
do not really need the solution of f(z).
From expression 17, we see that the asymptotic power-law decay

of qt(xm) for large xm has a cutoff around x*m ∼
ffiffiffiffiffi
Dt

p
and that f(z) is

the cutoff function. The second moment at finite but large times t
is given by hx2mðtÞi=

R∞
0 x2m   qtðxmÞdxm. Substituting the scaling

form and cutting off the integral over xm at x*m = c
ffiffi
t

p
[where the

constant c depends on the precise form of f(z)], we get to leading
order for large t:

�
x2mðtÞ

	 ’ Zx*m
0

x2mq∞ðxmÞdxm ’ 6D
γ

ln t: [18]

Thus, interestingly, the leading order result is universal [i.e.,
independent of the details of the cutoff function f(z); the c depen-
dence is only in the subleading term]. To complete the character-
ization of 〈A(t)〉 in Eq. 7, we still need to determine 〈tm〉: in SI Text,
we explicitly determine the stationary solution P∞(xm, tm) forR0= 1.
By following the same arguments as for hx2mðtÞi, we show that

htmi ’ 3
5γ

ln t [19]

for large t, which leads again to a logarithmic divergence in time.
Finally, substituting expressions 18 and 19 in Eq. 7 gives the
result announced in Eq. 2.
A deeper understanding of the statistical properties of the

process would demand knowing the full distribution Prob(L, t) and
Prob(A, t) of the perimeter and area. These quantities seem rather
hard to compute, but one can obtain the asymptotic tails of the
distributions by resorting to scaling arguments. Following the lines
of the Cauchy formula (SI Text), it is reasonable to assume that, for
each sample, the perimeter scales as L(t) ∼ xm(t). We have seen
that the distribution of xm(t) has a power-law tail for large t:
q∞ðxmÞ∼ x−3m for large xm. Then, assuming the scaling L(t) ∼ xm(t)
and using Prob(L, t → ∞)dL ∼ q∞(xm)dxm, it follows that, at late
times, the perimeter distribution also has a power-law tail: Prob(L,
t → ∞) ∼ L−3 for large L. Similarly, using the Cauchy formula for
the area, we can reasonably assume that, for each sample,
AðtÞ∼ x2mðtÞ in the scaling regime. Once again, using Prob(A, t →
∞)dA = q∞(xm)dxm, we find that the area distribution also con-
verges, for large t, to a stationary distribution with a power-law tail:
Prob(A, t → ∞) ∼ A−2 for large A. Moreover, the logarithmic di-
vergence of the mean area calls for a precise ansatz on the tail of
the area distribution, namely

ProbðA; tÞ !
A�1

24πD
5γ

A−2h
�
A
Dt

�
; [20]

where the scaling function h(z) satisfies the conditions h(z� 1)= 1
and h(z � 1) ’ 0. It is not difficult to verify that expression is the
only scaling compatible with Eq. 2. These two results are consis-
tent with the fact that, for each sample, typicallyA(t)∼L2(t) at late
times in the scaling regime. Our scaling predictions are in agree-
ment with our Monte Carlo simulations (Fig. 2). The power-law
behavior of Prob(A, t) implies that the average area is not repre-
sentative of the typical behavior of the epidemic area, which is
actually dominated by fluctuations and rare events, with likelihood
given by expression 20.

Supercritical Regime. When R0 > 1, it is convenient to rewrite Eq.
9 in terms of W(xm, t) = 1 − Q(xm, t):

∂
∂t
W =D

∂2

∂x2m
W + γðR0 − 1ÞW − γR0W 2 [21]

starting from the initial conditionW(xm, 0)= 0 for all xm> 0 (Fig. 3).
From Eq. 10, hLðtÞi= 2π

R∞
0 W ðxm; tÞdxm is just the area under the

curve W(xm, t) vs. xm up to a factor 2π. As t → ∞, the system
approaches a stationary state for all R0 ≥ 1, which can be obtained
by setting ∂tW = 0 in Eq. 21. For R0 > 1, the stationary solution
W(xm, ∞) approaches the constant 1 − 1/R0 exponentially fast as
xm → ∞, namely W ðxm;∞Þ− 1+R−1

0 → exp½−xm=ξ�, with a charac-
teristic length scale ξ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D=γðR0 − 1Þp

. However, for finite but large
t, W(xm, t) as a function of xm has a two-step form: it first decreases
from 1 to its asymptotic stationary value 1 − 1/R0 over the length
scale ξ, and then decreases rather sharply from 1 − 1/R0 to 0. The
frontier between the stationary asymptotic value 1 − 1/R0 (stable)
and 0 (unstable) moves forward with time at constant velocity, thus
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creating a traveling front at the right end, which separates the
stationary value 1 − 1/R0 to the left of the front and 0 to the right.
This front advances with a constant velocity v* that can be esti-
mated using the standard velocity selection principle (28–30). Near
the front, where the nonlinear term is negligible, the equation
admits a traveling front solution:W(xm, t)∼ exp[−λ(xm− vt)], with a
one parameter family of possible velocities v(λ) =Dλ + γ(R0 −1)/λ,
parametrized by λ. This dispersion relation v(λ) has a minimum at
λ= λ* =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γðR0 − 1Þ=Dp

, where v* = vðλ*Þ= 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DγðR0 − 1Þp

. Accord-
ing to the standard velocity selection principle (28–30), for a suf-
ficiently sharp initial condition, the system will choose this
minimum velocity v*. The width of the front remains ∼O(1) at
large t. Thus, because of this sharpness of the front, to leading
order for large t, one can approximate W(xm, t) ’ (1 − 1/R0)Θ
(v*t − xm) near the front. Hence, to leading order for large t, one
gets 〈xm(t)〉 ’ (1 − 1/R0)v*t and hx2mi ’ ð1− 1=R0Þðv*tÞ2. The for-
mer gives, from Eq. 5, the result announced in Eq. 3. For the mean
area in Eq. 7, the term hx2mi∼ t2 for large t dominates over 〈tm〉 ∼ t
(which can be neglected), and we get the result announced in Eq. 3.

Conclusions
In this paper, we have developed a general procedure for
assessing the time evolution of the convex hull associated with
the outbreak of an epidemic. We find it extremely appealing that
one can successfully use mathematical formulae (Cauchy) from
2D integral geometry to describe the spatial extent of an epi-
demic outbreak in relatively realistic situations. Admittedly,
there are many assumptions in this epidemic model that are not
quite realistic. For instance, we have ignored the fluctuations of
the susceptible populations during the early stages of the epi-
demic: this hypothesis clearly breaks down at later times, when
depletion effects begin to appear because of the epidemic

invading a thermodynamical fraction of the total population. In
addition, we have assumed that the susceptible individuals are
homogeneously distributed in space, which is not the case in reality.
Nonetheless, it must be noticed that, in practical applications,
whenever strong heterogeneities appear, such as mountains,
deserts, or oceans, one can split the analysis of the evolving phe-
nomena by conveniently resorting to several distinct convex hulls—
one for each separate region. For analogous reasons, the convex
hull approach would not be suitable to characterize birth–death
processes with long-range displacements, such as for instance
branching Lévy flights.
The model discussed in this paper based on branching Brownian

motion is amenable to exact results. More generally, realistic
models could be taken into account by resorting to cumbersome
Monte Carlo simulations. The approach proposed in this paper
paves the way for assessing the spatial dynamics of the epidemic
by more conveniently solving two coupled nonlinear equations
under the assumption that the underlying process be rotationally
invariant.
We conclude with an additional remark. In our computations

of the mean perimeter and area, we have averaged over all
realizations of the epidemics up to time t, including realizations
that are already extinct at time t. It would also be interesting to
consider averages only over the ensemble of epidemics that are
still active at time t. In this case, we expect different scaling laws
for the mean perimeter and the mean area of the convex hull. In
particular, in the critical case, we believe that the behavior would
be much closer to that of a regular Brownian motion.
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SI Text
1. Cauchy Formula. The problem of determining the perimeter and
the area of the convex hull of any 2D stochastic process [x(τ), y(τ)]
with 0 ≤ τ ≤ t can be mapped to the problem of computing the
statistics of the maximum and the time of occurrence of the
maximum of the 1D component process x(τ) (1, 2, 3). This goal is
achieved by resorting to a formula by Cauchy, which applies to any
closed convex curve C.
A sketch of the method is illustrated in Fig. S1. Choose the

coordinates system such that the origin is inside the curve C, and
take a given direction θ. For fixed θ, consider a stick perpen-
dicular to this direction, and imagine bringing the stick from
infinity; stop on first touching the curve C. At this point, the
distance M(θ) of the stick from the origin is called the support
function in the direction θ. Intuitively, the support function
measures how close one can get to the curve C in the direction θ,
coming from infinity. After the support function M(θ) is known,
then Cauchy equations (4, 5) give the perimeter L and the area
A enclosed by C, namely

L=
Z2π
0

MðθÞdθ

and

A=
1
2

Z2π
0

h
M2ðθÞ− �M′ðθÞ�2idθ; [S1]

where M′(θ) = dM/dθ. For example, for a circle of radius R = r,
M(θ) = r, and one recovers the standard equations: L = 2πr
and A = πr2. When C is the convex hull associated with the
process at time t, we first need to compute its associated sup-
port function M(θ). A crucial point is to realize that actually
M(θ) = max0 ≤ τ ≤ t[x(τ)cos(θ) + y(τ)sin(θ)] (1, 2). Further-
more, if the process is rotationally invariant, any average is in-
dependent of the angle θ. Hence, for the average perimeter, we
can simply set θ = 0 and write 〈L(t)〉 = 2π〈M(0)〉, where brack-
ets denote the ensemble average over realizations. Similarly,
for the average area, 〈A(t)〉 = π[〈M2(0)〉 − 〈M′(0)2〉]. Clearly,
M(0) =max0 ≤ τ ≤ t[x(τ)] is then the maximum of the 1D component
process x(τ) for τ ∈ [0, t]. Assuming that x(τ) takes its maximum
value x(tm) at time τ = tm (Fig. 4), then, M(0) = x(tm) = xm(t), and
M′(0) = y(tm). [Actually, tm implicitly depends on θ; hence, for-
mally,M′ðθÞ= − xðtmÞsinðθÞ+ yðtmÞcosðθÞ+ dtm

dθ
dzθðtÞ
dt jt=tm . Nonethe-

less, because zθ(t) is maximum at t = tm, by definition,
dzθðtÞ=dtjt=tm = 0.] Now, by taking the average over Cauchy formu-
las and using isotropy, we simply have Eqs. 5 and 6 from the text
for the mean perimeter and the mean area of the convex hull C at
time t. Note that this argument is very general and applicable to
any rotationally invariant 2D stochastic process. Because the
branching Brownian motion with death is rotationally invariant,
we can use these formulae.

2. Numerical Methods. Numerical integration. Eqs. 9 and 14 in the text
have been integrated numerically by finite differences in the fol-
lowing way. Time has been discretized by setting t= ndt, and space
has been discretized by setting x = idx, where dt and dx are small
constants. For the sake of simplicity, here, we consider the case
R0 = 1. We, thus, have

Qn+1ðiÞ=QnðiÞ+ γdt½1−QnðiÞ�2 +D
dt

ðdxÞ2 ½Qnði+ 1Þ− 2QnðiÞ

+Qnði− 1Þ� [S2]

and

Tn+1ðiÞ=TnðiÞ+ 2γdt  TnðiÞ½QnðiÞ− 1�+D
dt

ðdxÞ2 ½Tnði+ 1Þ− 2TnðiÞ

+Tnði− 1Þ�+ dt
dx

½TnðiÞ−Tnði− 1Þ�: [S2]

As for the initial conditions, Q0(0) = 0, Q0(i > 0) = 1, and T0(i) =
0 ∀i. The boundary conditions at the origin are Qn(0) = 0 and
Tn(0) = 0. To implement the boundary condition at infinity, we
imposeQn(imax)= 1 and Tn(imax)= 0 ∀n, where the large value imax
is chosen so that Tn(imax) − Tn(imax − 1) < 10−7. We have verified
that numerical results do not change when passing to the tighter
condition Tn(imax) − Tn(imax − 1) < 10−9.
AfterQn(i) and Tn(i) are known, we use Eqs. 10 and 15 from the

text to determine the average perimeter and area, respectively.
Monte Carlo simulations. The results of numerical integrations have
been confirmed by running extensive Monte Carlo simulations.
Branching Brownian motion with death has been simulated by
discretizing time with a small dt: in each interval dt, with probability
bdt, the walker branches and the current walker coordinates are
copied to create a new initial point, which is then stored for being
simulated in the next dt; with probability γdt, the walker dies and is
removed, and with probability 1 − (b + γ)dt, the walker diffuses:
the x and y displacements are sampled from Gaussian densities of
zero mean and SD

ffiffiffiffiffiffiffiffiffiffi
2Ddt

p
, and the particle position is updated.

The positions of all of the random walkers are recorded as
a function of time, and the corresponding convex hull is then
computed by resorting to the algorithm proposed in ref. 6.
Perimeter statistics. To complete the analysis of the convex hull
statistics, in Figs. S2 and S3, we show the results for the perimeter.

3. Analysis of tm. In the critical case R0 = 1, the stationary joint
probability density P∞(xm, tm) satisfies (on setting ∂Pt/∂t = 0 in
Eq. 12 in the text)

∂
∂tm

P∞ðxm; tmÞ=

2
664D ∂2

∂x2m
−

2γ�
1+

ffiffiffiffiffiffi
γ

6D

r
xm

�2
3
775P∞ðxm; tmÞ: [S4]

For any xm > 0, we have the condition P∞(xm, 0)= 0. The boundary
conditions for Eq. S4 are P∞(xm → ∞, tm) = 0 and P∞ð0; tmÞ=
q∞ð0ÞδðtmÞ= 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ=ð6DÞp

δðtmÞ. We first take the Laplace transform
of Eq. S4, namely

~P∞ðxm; sÞ=
Z∞
0

e−stmP∞ðxm; tmÞdtm: [S5]

Hence, for all xm > 0,

D
s

∂2

∂x2m
~P∞ðxm; sÞ=

2
666641+

12

s
D

 ffiffiffiffiffiffi
6D
γ

s
+ xm

!2

3
77775~P∞ðxm; sÞ; [S6]
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where we have used the condition P∞(xm, 0) = 0 for any xm > 0.
This second-order differential equation satisfies two boundary
conditions: ~P∞ð∞; sÞ= 0 and ~P∞ð0; sÞ= 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ=ð6DÞp

. The latter
condition is obtained by Laplace transforming P∞ð0; tmÞ=
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ=ð6DÞp

δðtmÞ. By setting

z=

 ffiffiffiffiffiffi
6D
γ

s
+ xm

! ffiffiffiffi
s
D

r
; [S7]

we rewrite the equation as

∂2

∂z2
~P∞ − ~P∞ −

12
z2

~P∞ = 0: [S8]

On making the transformation ~P∞ðzÞ=
ffiffi
z

p
FðzÞ, the function F(z)

then satisfies the Bessel differential equation:

d2

dz2
FðzÞ+ 1

z
d
dz
FðzÞ−

�
1+

49
4z2

�
FðzÞ= 0: [S9]

The general solution of this differential equation can be expressed
as a linear combination of two independent solutions: F(z) =
AI7/2(z) + BK7/2(z), where Iν(z) and Kν(z) are modified Bessel
functions. Because Iν(z) ∼ ez for large z, it is clear that, to satisfy
the boundary condition ~P∞ð∞; sÞ= 0 [which means F(z → ∞) =
0], we need to choose A = 0. Hence, we are left with F(z) =
BK7/2(z), where the constant B is determined from the second
boundary condition ~P∞ð0; sÞ= 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ=ð6DÞp

. By reverting to the
variable xm, we finally get

~P∞ðxm; sÞ= 2
ffiffiffiffiffiffi
γ

6D

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+

γ

6D
xm

r K7=2

�� ffiffiffiffiffiffi
6D
γ

r
+ xm

� ffiffiffiffi
s
D

r �

K7=2

� ffiffiffiffiffi
6s
γ

r � : [S10]

Now, we are interested in determining the Laplace transform of
the marginal density ~p∞ðsÞ=

R∞
0 e−stmp∞ðtmÞdtm, where p∞ðtmÞ=R∞

0 P∞ðxm; tmÞdxm. Taking Laplace transform of this last relation
with respect to tm gives ~p∞ðsÞ=

R∞
0

~P∞ðxm; sÞdxm. After we know
~p∞ðsÞ, we can invert it to obtain p∞(tm). Because we are interested

only in the asymptotic tail of p∞(tm), it suffices to investigate the
small s behavior of ~p∞ðsÞ. Integrating Eq. S10 over xm and taking
the s → 0 limit, we obtain, after some straightforward algebra,

~p∞ðsÞ= 1+
3
5γ
s ln ðsÞ+⋯: [S11]

We further note that

Z∞
0

e−stm t2mp∞ðtmÞdtm =
d2

ds2
~p∞ðsÞ ’

3
5γs

; [S12]

which can then be inverted to give the following asymptotic be-
havior for large tm:

p∞ðtmÞ ’ 3
5γt2m

: [S13]

Analogously as for hx2mi, the moment 〈tm〉 → ∞ because of the
power-law tail p∞ðtmÞ∝t−2m . Hence, we need to compute 〈tm〉 for
large but finite t: in this case, the time-dependent solution dis-
plays a scaling behavior:

ptðtmÞ ’ p∞ðtmÞg
	tm
t



; [S14]

where the scaling function g(z) satisfies the conditions g(z� 1) ’
1 and g(z � 1) = 0. Much like in expression 17 in the text for the
marginal density qt(xm), we have a power-law tail of pt(tm) for
large tm that has a cutoff at a scale t*m ∼ t, and g(z) is the cutoff
function. As in the case of xm, we do not need the precise form of
g(z) to compute the leading term of the first moment htmi=R∞
0 ptðtmÞtmdtm for large t. Cutting off the integral at t*m = c1t
[where c1 depends on the precise form of g(z)] and performing
the integration gives

htmi ’
Z t

0

tmp∞ðtmÞdtm ’ 3
5γ

ln t; [S15]

which is precisely the result announced in expression 19 in the text.
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Fig. S1. Cauchy construction of the 2D convex hull, with support function M(θ) representing the distance along the direction θ.
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Fig. S2. (Left) The average perimeter〈L(t)〉of the convex hull as a function of the observation time. For the parameter values, we have chosen D = 1/2 and b =
R0γ = 0.01. We considered five different values of R0. We have obtained these results by two different methods. (i) One method is by the numerical integration
of Eq. S9 and using Eq. 10 in the text (with the choices dt = 0.003125 and dx = 0.1768). These results are displayed as solid lines. (ii) Another method is by Monte
Carlo simulations of the 2D branching Brownian motion with death with the same parameters and the choice of the Monte Carlo time step dt = 0.25 with the
results averaged over 105 samples. Monte Carlo simulations are displayed as symbols. The dashed lines represent the asymptotic limits as given in Eq. 1 in the
text for the critical case R0 = 1. (Right) Distribution of the perimeter of the convex hull for the critical case R0 = 1, with γ = 0.01 and D = 1/2, as obtained by
Monte Carlo simulations with time step dt = 1 and t = 4 × 105. The number of realizations is 2 × 106. The dashed line in Right corresponds to the power-law L−3

(up to an arbitrary prefactor).
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Fig. S3. The time behavior of the average perimeter in the supercritical regime for different values of R0 > 1. Dashed lines represent the asymptotic scaling as
in Eq. 3 in the text. The red curve corresponds to the critical regime.

Dumonteil et al. www.pnas.org/cgi/content/short/1213237110 3 of 3

www.pnas.org/cgi/content/short/1213237110

