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Monte Carlo dynamics of driven elastic strings in disordered media
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We show that the common local Monte Carlo rules used to simulate the motion of driven elastic strings in
disordered media cannot capture the interplay between elasticity and disorder which lies at the heart of these
systems. We therefore discuss a class of generalized Monte Carlo algorithms where an arbitrary number of line
elements may move at the same time. We prove that all these dynamical rules have the same value of the
critical force and possess phase spaces made up of a single ergodic component. A variant Monte Carlo
algorithm allows us to compute the critical force of a sample in a single pass through the system. We establish
dynamical scaling properties and obtain precise values for the critical force, which is finite even for an
unbounded distribution of the disorder. Extensions to higher dimensions are outlined.
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In the last few years, the study of elastic manifolds inThis condition defines an effective sample of sizgN).
random media has received much attention. While Eq. (2) is important for the following, the periodic
These systems appear in a wide range of physical syssoundary condition for the string and the specific choice of
tems, ranging from vortices in type-ll superconductds  lattice are inessential details.
charge density wavésto interfaces in disordered magnéts, The energy of an elastic string in the presence of an
and to the problem of directed polymer groWtithe re-  external driving force is given by
sponse of elastic manifolds to an external driving fofée
highly nontrivial: at temperatur&=0, the manifold is com- L . .
pletely “pinned” at small forces, while it moves with non- E(Xt):Z1 V(i,%) = fxi+ Eei(|Xi+ 1= X)) 3
zero velocity at forces larger than a certain critical fofge -
At finite, but small, T, a so-called “creep motion” takes The last term in Eq(3) is the elastic energi,,. The algo-
place forf<f., while the motion atf>f. is described by rithm presented in this paper remains valid as long as
viscous flow. Many details of this dynamical problem, bothE,(|x;,,—x;|) is convex and with a general random poten-
at T=0 and at finite temperatures, have yet to be understoofial.
fully.>® In Fig. 1, a local Monte Carlo move is indicated. In the
This paper is concerned with an analysis of the dynamicaloc4) Monte Carlo algorithm, the proposed configuration
Monte Carlo methoﬂas applied to lattice models of driven jtters from the present configuratiod only on a random
elastic manifolds in random media. We argue that the com- itioni. O h % —x =1 with | probability. At
mon local Monte Carlo rulds™ are often incompatible with POS!HON!.- ©N€ CNOOSER; =X; = 1 with equal probability.
the Langevin dynamic®-*4which defines time evolution in Z€ro temperature, the move is accepted {=x) if the en-
continuum models. We instead propose generalized Mont8'9Y: EQ.(3), decreases and if the metric constraint, B0,
Carlo algorithms where an arbitrary number of elements majs Satisfied. Otherwise, it is rejected'(*=x").
move at the same time. For this class of algorithms, we can

establish the uniqueness of the critical force and single con- f —
nectedness of phase space. Furthermore, we devise a method 0

which simplifies enormously the calculation of the critical L-1 \

force.

Our model is sketched in Fig. 1. We consider a one-
dimensional manifold, an elastic string!={x}i—o . .,
moving at time4=0,1,2 ... on aspatial square lattice with
a random potentiaV/(i,x) with x=0,1, . ... Wealso intro-
duce a metric constraint

0
It —x{|<1 (1) 0 X M-1

L ot ot FIG. 1. Elastic string'={x{};—o,... | on a spatial square lattice
as well as periodic boundary conditiong,€x;) on the i disorder potentiaN(i,x). Periodic boundary conditions in
string. The random potential satisfies andx are assumed for the lattice and the disorder, respectively. The

direction of the driving forcd is indicated, as well as a proposed
local Monte Carlo move. The local dynamics leads to a trivial criti-
V(i,x;+M)=V(i+L,x)=V(ix). (2 cal force in the limit of large systems.
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This rule has been used in past simulations, in spite
of its very serious shortcomings. Consider, for example, the
site in Fig. 1 marked with a circle,i{,xo). The stringx'
shown in Fig. 1 can only move away fromiy(xg) if
f>V(ig,Xg+1)—V(ig,Xg)+C. Even an infinitely long
string (L—) is thus stopped by a single deep Pifig,Xg)
and the motion does not differ qualitatively from the one of a
point in a disordered potenti&t:'® For an unbounded distri-
bution of V, the critical force is infinite. Notice thatis a
force density The local Monte Carlo algorithm generates the
inconSiSt.ent feature t.hat in order to liberate a.l an_g ﬂu}.( [ine FIG. 2. Nonlocal Monte Carlo moves which are considered in
from a single Qeep pin we have _to apply an '”f'!"te d.r'v'ngthis paper. Modek: all positionsx! (i=1, ... L) may change at
force on any single point on the line. The scenario which WEhe same time by a valug 1. Modelb: as ina, but the motion is
just discussed for the metric constraint remains unChangecgther in forward or in backward direction. Modelas inb, but the
for any elastic potential stronger than the harmonic(@€.,  otion is restricted to single “fronts.”
Eoi=C1(Xi+1—X) 2+ Ca(Xi11—X)*]. Only for an at most
harmonic elastic potential may the local Monte Carlo algo-ize the rule to finite temperatures via the Metropolis algo-
rithm overcome a single deep pin. In that case, we find oRithm. The same can usually not be done for cellular
the lattice a critical force for the local Monte Carlo algorithm gytomata methods:1417
which differs from the one obtained with our more general A possible second rulémodel b” ) chooses at each time

algorithm. _ _ twith equal probability either to move forwargu{=1) or
Some authors have countered the mentioned difficultiepackwards f!'= —1). The following move is then proposed:

by using a bounded distributiofl| <V .. In this case, the

t

critical force of the local Monte Carlo algorithm will be trivi- ) p

ally f,=2V,,.x and, as already pointed out for the random with prob. )

Ising model the dynamics of the string will be similar to the 6= P Vi (modelb). (5
motion of the nondisordered system. 0 1-p

We conclude that the description of a driven elastic string
by means of a local Monte Carlo algorithm or its varidhts The simulation of dynamical models with such global
eliminates the very feature which makes the problem intermoves may appear hopeless because of the difficulty to de-
esting in the first place: namely, the competition betweenect the few energetically favorable choices among the expo-
elasticity and disorder. This competition is preserved in thenential number of possibilities in E@4) or in Eq. (5).
continuum Langevin dynamics:® To show that the situation is much less desperate, let us

Within the Monte Carlo method, we are thus naturallyfirst define a “forward front” of lengthk as a contiguous
lead to consider generalizations of the model. The onlyset of pointsi,i+1,...ji+k—1, which may advance
option is to abandon the local moves in favor of rules whichtogether without violating the metric constraints, H4)
allow extended moves. The study of extended moves ifs=6_,...=68_,,_1=1 with §_;#1, &, #1). A
dynamical Monte Carlo is the subject of this paper. Let us‘backward front” is defined analogously. We call “unstable”
note from the beginning that in the continuum Langevin dy-a front which lowers the energy, E¢3). The moves pro-
namics the energy is local, but that thedientof the energy posed in Figs. @) and 2b) each consist ofwo fronts. At
VE=—dx/dt is an L-component vector which will corre- |east one of these must be unstable if the move is to be
spond to an extended move in our Monte Carlo approachacceptedthis is immediately apparent for modeland fol-
The above argument shows that, on a lattice for the cas@gws for modela from an elementary consideratjoffo de-
considered, we cannot consistently decompose gradient mgarmine whether a configuratiod is unstable, we only need

tion into a succession of single-component moves. to consider the at most.{L — 1)+ 2 fronts ofx! rather than
Let us define “model” dynamics by a proposed move the exponential number of moves in Hd) or Eq. (5).
x'—x'+ &' with 8'={8]}i_o, ., such that Besides modeh and modeb dynamics, it is also possible
to set up single-front dynamical rules which respect detailed
+1 p balance. These rulgas sketched in Fig. &)] can be simu-

lated with less effort than model or modelb. Even in the

t__ i — H
6=y 0 withprob. 1-2p Vi (modela). (4 |ater cases, though, we have developed methods which real-

-1 p ize Eqgs.(4) and(5) while never attempting a move forbidden
by Eq.(1).
At zero temperature, the proposed move is accepted, Our main point in the present paper is that a great deal of

=x'+ &', if the resulting configuration both satisfies the met-information is available without actually simulating the dy-
ric constraint, Eq(1), and decreases the string energy, Eq.namic rules. We will show that; is the same for all models
(3). Note that under moded dynamics a move is proposed and that the critical string can be obtained easily.

with the same probability as its inverse. This serves to en- We define, for an arbitrary string®, the “depinning
force detailed balance, which allows us to naturally generalforce” f4(x*) as the smallest non-negatif/an Eq. (3) which
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destabilizes one forward front. Furthermore, we define the
critical force of a given sampléof sizeL X M) as

f.=maxf4(x%), (6)
x4}

where{x“} is the set of all possible strings. Notice that the
definiton of f; or f4(x%) is model independent. We show in
the following thatf. in Eq. (6) is an appropriate definition

for all cases as, for a driving forde<f, the system will be 08

pinned in the long-time limit— . p
To prove the above, we introduce a variant Monte Carlo

(VMC) algorithm which, as a by-product, will allow us to

actually computd . with great ease. FIG. 3. Main figure: probability?_  (f) to have a critical force
At each time step=0,1, . . ., the VMCalgorithm simply  f.<f vs f for samples of sizel(,L) vs L for L=16,32...,512.

moves a single front ahinimallengthk among the unstable The elastic constant /2= 1, and a Gaussian normal distribution is
forward and backward fronts. The VMC method violates de-used for the disorder potential. For all larlye the curvesP y(f)
tailed balance and is not a valid Monte Carlo algorithm as itand Py oy (f) intersect at the same forch, 5 which, in the inset,
stands. However, each move possible within the VMC algois plotted vs 1. The extrapolated value df_y in the limit 1L
rithm is also allowed with all the other models considered. —0 is the critical forcef_ of a macroscopic sample.

We have proved the following theorem: if, under VMC
dynamics at driving force, a stringx® is pinned in the @ configurationx'. In one pass through the system, we will
forward direction, it can at most recede towards a configurahave obtained the critical force. The computationf pfand
tion x# (xf<xVi), which is itself pinned in the forward Of the critical string is thus extremely simple. .
direction. Eventually, we will reach a string” which is Furthermore, the VMC algorithm gives an explicit

pinned in the both forward and backward directions. Thisconstruction—for any of the methods—which dynamically
string x” is pinned for all models; if it is pinned &t., we connects an arbitrary initial state with a critical string. This

call it a “critical elastic string”x¢. The theorem can be easily Proves that all the models in Fig. 2 possess a single ergodic
proved for a general elastic energy, which is local and conSoMpPonent. _ _ _

vex, by taking into account that the VMC algorithm only We now present our numerical calculations which show
moves fronts of minimal size. that f. is finite for a sample of sizel(M) in the limit

The theorem allows us to understand that @yis indeed ~ L-M— with L/M=const. In all our calculations, we have
an appropriate definition for all models: As we defined used a quss_lan normal dlstrlbu_tlon for _the random _pot_entlal.
f4(x) only with respect tdorward motion, one might have For fln!te sizes [,M), we deﬂng _the integrated dlstrlb_u-
imagined that a string which cannot advancef atcould tion functionP_ () a_s_the probability that a sample of size
move backwards and then be avoided during the subsequetl:M) Possesses a critical forég<f. Because of the metric
forward evolution. Our theorem tells us that such loopholeonstraint, Eq(1), we know that the lateral extension of the
do not exist: Under VMC dynamics, an elastic string whichString, max;|x —xj|, will be at mostL/2. This can be used to
can no longer move forward, will move backwards and thershow that forM>L/2
stop.
Conversely, we can show that a string which can no PL,ZM(f):PE,M(f)' @)
longer move backwards under the VMC dynamics will ex- , ) ) , , )
clusively move forward and then stop. This observation sim- & Will be interested in the intersection poifit; be-
plifies the numerical computations of the VMC algorithm. tween the integrated probablll'Fy distribution for the system

Now, we show how to actually determifigandx®. There ~ ©f sizeé (L,M) and the one of size (22M):
is no guarantee that a generic dynamic riglech as moded P (fLo)=P fLa) ®)
or modelb) will actually stop atx®, when driven at forces LML aam(fra).
f<fc. We performed simulations in small systems, whiere |n fact, the single intersectiofy , will not depend orM for
and X, could be obtained by exact enumeration, and ob4argeM, by virtue of EqQ.(7). In our opinion, this observation
served that the string could pass the periodic sample mamynplies that the natural scaling for our system in the thermo-
times without getting pinned. We initially even suspecteddynamic limitisM~L” with y=1, i.e., that we should com-
thatx® could be dynamically inaccessible from part of phasepare the system of size_(M) with another one, double in
space. size both inL and inM.

In this context, we were able to prove a second theorem: e have checked numerically that corrections to the scal-
Starting at an initial configuratiox'© with xitosxic, the VMC  ing relation, Eq.(7), are already negligible foL ~M (for
algorithm at driving forcef <f. can never pasz® (cf. Ref. =~ L>4) and that intersection poinfg , indeed do not depend
18 for a related “no-passing” theorem for continuum Lange-on M>L. In Fig. 3 we show data forP_, (f) for L
vin motion). =16,32...,512. The inset of the figure gives tifig, as a

In practice, we simply update the driving force by the function of 1L for all sizes. It is evident thaft, 5 extrapo-
present depinning force= f 4(x') each time we get stuck at lates to a finite value, the critical force of the model in the
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thermodynamic limit,f;. We find f_ 5 —f;=0.91+0.01 dia on a solid footing. We have shown that only extended-
for c/2=1. The numerical value of; is due in part to the move schemes can capture the subtle interplay between elas-
value ofc and to the imposed constraint. We stress again thdicity and disorder, which is totally absent from the
f7 is independent of the aspect ratiéM. customary local algorlthms. Our theorems aIIoweq us to

The study of the statistical properties of the critical stringcompute features universal to all members of this class:
x. goes beyond the scope of this papewe simply point hamely, the critical force, as well as properties of the critical
out here that the sizk of the minimal unstable front is dis- String. The variant Monte Carlo algorithm is crucial in that it
tributed approximately ap(k)~exp(—Kiky,) (for large k). allows us to compute the critical force with full rigor even
Here,ki,, depends on the elasticity parametebut remains for samples which are several orders of magnitude larger
finite as L—c, although the VMC algorithm authorizes than those accessible to exact enumeration methods. In the
fronts of all sizes. continuum, the Langevin dynamics also satisfies a “no-

Finally, we discuss possible extensions of the work preassing” cond_itionl,s which has so far not allowed the rigor-
sented here. We already indicated that our metric constrair@US computation of critical elastic strings, as the numerical
was introduced mainly for convenience as our theorems angliScretizations have to be controlled. Our dynamical Monte
the VMC algorithm remain valid iE,, is a general convex Carlo approach can be thought of as a rigorous cellular au-
function. In the absence of the constraint, the lateral extentoMaton model which is consistent with the continuum mod-
sion of the string may however scalelaswith y>1. If so, els. Furthermpre, it implements the l_JaS|c concept.of deta_ﬂgd
our scaling assumption, E¢7), would have to be modified. balance and is therefor(_e much easier to generqhze to finite
We have also extended most of our results to higherggmperatures than previous continuum and lattice formula-
dimensional manifolds and embedding spaces. There, tHEPNS.
only critical issue seems to be the complexity of the VMC
algorithm, as the number of possible fronts can be much
larger than in the linear string.

In conclusion, we have put the dynamical Monte Carlo It is a pleasure to thank P. Chauve, P. Le Doussal, and L.
algorithm for the motion of elastic manifolds in random me- Santen for very helpful discussions.
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