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Monte Carlo dynamics of driven elastic strings in disordered media
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We show that the common local Monte Carlo rules used to simulate the motion of driven elastic strings in
disordered media cannot capture the interplay between elasticity and disorder which lies at the heart of these
systems. We therefore discuss a class of generalized Monte Carlo algorithms where an arbitrary number of line
elements may move at the same time. We prove that all these dynamical rules have the same value of the
critical force and possess phase spaces made up of a single ergodic component. A variant Monte Carlo
algorithm allows us to compute the critical force of a sample in a single pass through the system. We establish
dynamical scaling properties and obtain precise values for the critical force, which is finite even for an
unbounded distribution of the disorder. Extensions to higher dimensions are outlined.
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In the last few years, the study of elastic manifolds
random media has received much attention.

These systems appear in a wide range of physical
tems, ranging from vortices in type-II superconductors1 to
charge density waves,2 to interfaces in disordered magnets3

and to the problem of directed polymer growth.4 The re-
sponse of elastic manifolds to an external driving forcef is
highly nontrivial: at temperatureT50, the manifold is com-
pletely ‘‘pinned’’ at small forces, while it moves with non
zero velocity at forces larger than a certain critical forcef c .
At finite, but small, T, a so-called ‘‘creep motion’’ takes
place for f ! f c , while the motion atf @ f c is described by
viscous flow. Many details of this dynamical problem, bo
at T50 and at finite temperatures, have yet to be underst
fully.5,6

This paper is concerned with an analysis of the dynam
Monte Carlo method7 as applied to lattice models of drive
elastic manifolds in random media. We argue that the co
mon local Monte Carlo rules8–11 are often incompatible with
the Langevin dynamics,12–14which defines time evolution in
continuum models. We instead propose generalized Mo
Carlo algorithms where an arbitrary number of elements m
move at the same time. For this class of algorithms, we
establish the uniqueness of the critical force and single c
nectedness of phase space. Furthermore, we devise a m
which simplifies enormously the calculation of the critic
force.

Our model is sketched in Fig. 1. We consider a on
dimensional manifold, an elastic string,xt5$xi

t% i 50, . . . ,L ,
moving at timest50,1,2, . . . on aspatial square lattice with
a random potentialV( i ,x) with x50,1, . . . . Wealso intro-
duce a metric constraint

uxi 11
t 2xi

tu<1 ~1!

as well as periodic boundary conditions (x0
t 5xL

t ) on the
string. The random potential satisfies

V~ i ,xi1M !5V~ i 1L,xi !5V~ i ,xi !. ~2!
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This condition defines an effective sample of size (L,M ).
While Eq. ~2! is important for the following, the periodic
boundary condition for the string and the specific choice
lattice are inessential details.

The energy of an elastic stringxt in the presence of an
external driving forcef is given by

E~xt!5(
i 51

L

V~ i ,xi
t!2 f xi

t1Eel~ uxi 112xi u!. ~3!

The last term in Eq.~3! is the elastic energyEel . The algo-
rithm presented in this paper remains valid as long
Eel(uxi 112xi u) is convex and with a general random pote
tial.

In Fig. 1, a local Monte Carlo move is indicated. In th
local Monte Carlo algorithm, the proposed configurationx̃
differs from the present configurationxt only on a random
position i. One choosesx̃i5xi61 with equal probability. At
zero temperature, the move is accepted (xt115 x̃) if the en-
ergy, Eq.~3!, decreases and if the metric constraint, Eq.~1!,
is satisfied. Otherwise, it is rejected (xt115xt).

FIG. 1. Elastic stringxt5$xi
t% i 50, . . . ,L on a spatial square lattice

with disorder potentialV( i ,x). Periodic boundary conditions ini
andx are assumed for the lattice and the disorder, respectively.
direction of the driving forcef is indicated, as well as a propose
local Monte Carlo move. The local dynamics leads to a trivial cri
cal force in the limit of large systems.
©2001 The American Physical Society02-1
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This rule has been used in past simulations, in sp
of its very serious shortcomings. Consider, for example,
site in Fig. 1 marked with a circle, (i 0 ,x0). The stringxt

shown in Fig. 1 can only move away from (i 0 ,x0) if
f .V( i 0 ,x011)2V( i 0 ,x0)1c. Even an infinitely long
string (L→`) is thus stopped by a single deep pinV( i 0 ,x0)
and the motion does not differ qualitatively from the one o
point in a disordered potential.15,16 For an unbounded distri
bution of V, the critical force is infinite. Notice thatf is a
forcedensity. The local Monte Carlo algorithm generates t
inconsistent feature that in order to liberate a long flux l
from a single deep pin we have to apply an infinite drivi
force on any single point on the line. The scenario which
just discussed for the metric constraint remains unchan
for any elastic potential stronger than the harmonic one@e.g.,
Eel5c1(xi 112xi)

21c2(xi 112xi)
4#. Only for an at most

harmonic elastic potential may the local Monte Carlo alg
rithm overcome a single deep pin. In that case, we find
the lattice a critical force for the local Monte Carlo algorith
which differs from the one obtained with our more gene
algorithm.

Some authors have countered the mentioned difficul
by using a bounded distribution,uVu,Vmax. In this case, the
critical force of the local Monte Carlo algorithm will be trivi
ally f c52Vmax and, as already pointed out for the rando
Ising model,9 the dynamics of the string will be similar to th
motion of the nondisordered system.

We conclude that the description of a driven elastic str
by means of a local Monte Carlo algorithm or its variant11

eliminates the very feature which makes the problem in
esting in the first place: namely, the competition betwe
elasticity and disorder. This competition is preserved in
continuum Langevin dynamics.13,5

Within the Monte Carlo method, we are thus natura
lead to consider generalizations of the model. The o
option is to abandon the local moves in favor of rules wh
allow extended moves. The study of extended moves
dynamical Monte Carlo is the subject of this paper. Let
note from the beginning that in the continuum Langevin d
namics the energy is local, but that thegradientof the energy
¹E52dxt/dt is an L-component vector which will corre
spond to an extended move in our Monte Carlo approa
The above argument shows that, on a lattice for the ca
considered, we cannot consistently decompose gradient
tion into a succession of single-component moves.

Let us define ‘‘modela’’ dynamics by a proposed mov
xt→xt1d t with d t5$d i

t% i 50, . . . ,L such that

d i
t5H 11 p

0 with prob. 122p

21 p
J ; i ~modela!. ~4!

At zero temperature, the proposed move is accepted,xt11

5xt1d t, if the resulting configuration both satisfies the m
ric constraint, Eq.~1!, and decreases the string energy, E
~3!. Note that under modela dynamics a move is propose
with the same probability as its inverse. This serves to
force detailed balance, which allows us to naturally gene
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ize the rule to finite temperatures via the Metropolis alg
rithm. The same can usually not be done for cellu
automata methods.13,14,17

A possible second rule~‘‘model b’’ ! chooses at each tim
t with equal probability either to move forward (m t51) or
backwards (m t521). The following move is then proposed

d i5H m t p

with prob.

0 12pJ ; i ~modelb!. ~5!

The simulation of dynamical models with such glob
moves may appear hopeless because of the difficulty to
tect the few energetically favorable choices among the ex
nential number of possibilities in Eq.~4! or in Eq. ~5!.

To show that the situation is much less desperate, le
first define a ‘‘forward front’’ of lengthk as a contiguous
set of points i ,i 11, . . . ,i 1k21, which may advance
together without violating the metric constraints, Eq.~1!
(d i5d i 11 . . . 5d i 1k2151 with d i 21Þ1, d i 1kÞ1). A
‘‘backward front’’ is defined analogously. We call ‘‘unstable
a front which lowers the energy, Eq.~3!. The moves pro-
posed in Figs. 2~a! and 2~b! each consist oftwo fronts. At
least one of these must be unstable if the move is to
accepted~this is immediately apparent for modelb and fol-
lows for modela from an elementary consideration!. To de-
termine whether a configurationxt is unstable, we only need
to consider the at most 2L(L21)12 fronts ofxt rather than
the exponential number of moves in Eq.~4! or Eq. ~5!.

Besides modela and modelb dynamics, it is also possible
to set up single-front dynamical rules which respect deta
balance. These rules@as sketched in Fig. 2~c!# can be simu-
lated with less effort than modela or modelb. Even in the
latter cases, though, we have developed methods which
ize Eqs.~4! and~5! while never attempting a move forbidde
by Eq. ~1!.

Our main point in the present paper is that a great dea
information is available without actually simulating the d
namic rules. We will show thatf c is the same for all models
and that the critical string can be obtained easily.

We define, for an arbitrary stringxa, the ‘‘depinning
force’’ f d(xa) as the smallest non-negativef in Eq. ~3! which

FIG. 2. Nonlocal Monte Carlo moves which are considered
this paper. Modela: all positionsxi

t ( i 51, . . . ,L) may change at
the same time by a value61. Model b: as ina, but the motion is
either in forward or in backward direction. Modelc: as inb, but the
motion is restricted to single ‘‘fronts.’’
2-2



th

he
n

rl
o

e
s
go
d.
C

ra

hi

y
on
ly

ed

u
le
ch
e

n
x
im
.

ob
a
ed
s

em

e

e
t

ill

it
lly
is

odic

ow

e
tial.
-
e

e

m

o-
-

cal-

he

is
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destabilizes one forward front. Furthermore, we define
critical force of a given sample~of sizeL3M ) as

f c5max
$xa%

f d~xa!, ~6!

where$xa% is the set of all possible strings. Notice that t
definiton of f c or f d(xa) is model independent. We show i
the following that f c in Eq. ~6! is an appropriate definition
for all cases as, for a driving forcef , f c , the system will be
pinned in the long-time limitt→`.

To prove the above, we introduce a variant Monte Ca
~VMC! algorithm which, as a by-product, will allow us t
actually computef c with great ease.

At each time stept50,1, . . . , the VMCalgorithm simply
moves a single front ofminimal lengthk among the unstable
forward and backward fronts. The VMC method violates d
tailed balance and is not a valid Monte Carlo algorithm a
stands. However, each move possible within the VMC al
rithm is also allowed with all the other models considere

We have proved the following theorem: if, under VM
dynamics at driving forcef, a string xa is pinned in the
forward direction, it can at most recede towards a configu
tion xb (xi

b<xi
a; i ), which is itself pinned in the forward

direction. Eventually, we will reach a stringxg which is
pinned in the both forward and backward directions. T
string xg is pinned for all models; if it is pinned atf c , we
call it a ‘‘critical elastic string’’xc. The theorem can be easil
proved for a general elastic energy, which is local and c
vex, by taking into account that the VMC algorithm on
moves fronts of minimal size.

The theorem allows us to understand that Eq.~6! is indeed
an appropriate definition for all models: As we defin
f d(xa) only with respect toforward motion, one might have
imagined that a string which cannot advance atf c could
move backwards and then be avoided during the subseq
forward evolution. Our theorem tells us that such loopho
do not exist: Under VMC dynamics, an elastic string whi
can no longer move forward, will move backwards and th
stop.

Conversely, we can show that a string which can
longer move backwards under the VMC dynamics will e
clusively move forward and then stop. This observation s
plifies the numerical computations of the VMC algorithm

Now, we show how to actually determinef c andxc. There
is no guarantee that a generic dynamic rule~such as modela
or modelb) will actually stop atxc, when driven at forces
f < f c . We performed simulations in small systems, wheref c
and xc could be obtained by exact enumeration, and
served that the string could pass the periodic sample m
times without getting pinned. We initially even suspect
thatxc could be dynamically inaccessible from part of pha
space.

In this context, we were able to prove a second theor
Starting at an initial configurationxt0 with xi

t0<xi
c , the VMC

algorithm at driving forcef < f c can never passxc ~cf. Ref.
18 for a related ‘‘no-passing’’ theorem for continuum Lang
vin motion!.

In practice, we simply update the driving force by th
present depinning forcef 5 f d(xt) each time we get stuck a
01220
e

o

-
it
-

-

s

-

ent
s

n

o
-
-

-
ny

e

:

-

a configurationxt. In one pass through the system, we w
have obtained the critical force. The computation off c and
of the critical string is thus extremely simple.

Furthermore, the VMC algorithm gives an explic
construction—for any of the methods—which dynamica
connects an arbitrary initial state with a critical string. Th
proves that all the models in Fig. 2 possess a single erg
component.

We now present our numerical calculations which sh
that f c is finite for a sample of size (L,M ) in the limit
L,M→` with L/M5const. In all our calculations, we hav
used a Gaussian normal distribution for the random poten

For finite sizes (L,M ), we define the integrated distribu
tion functionPL,M( f ) as the probability that a sample of siz
(L,M ) possesses a critical forcef c< f . Because of the metric
constraint, Eq.~1!, we know that the lateral extension of th
string, maxi,juxi2xju, will be at mostL/2. This can be used to
show that forM@L/2

PL,2M~ f !5PL,M
2 ~ f !. ~7!

We will be interested in the intersection pointf L,2L be-
tween the integrated probability distribution for the syste
of size (L,M ) and the one of size (2L,2M ):

PL,M~ f L,2L!5P2L,2M~ f L,2L!. ~8!

In fact, the single intersectionf L,2L will not depend onM for
largeM, by virtue of Eq.~7!. In our opinion, this observation
implies that the natural scaling for our system in the therm
dynamic limit isM;Lg with g51, i.e., that we should com
pare the system of size (L,M ) with another one, double in
size both inL and inM.

We have checked numerically that corrections to the s
ing relation, Eq.~7!, are already negligible forL;M ~for
L.4) and that intersection pointsf L,2L indeed do not depend
on M.L. In Fig. 3 we show data forPL,L( f ) for L
516,32, . . . ,512. The inset of the figure gives thef L,2L as a
function of 1/L for all sizes. It is evident thatf L,2L extrapo-
lates to a finite value, the critical force of the model in t

FIG. 3. Main figure: probabilityPL,L( f ) to have a critical force
f c, f vs f for samples of size (L,L) vs L for L516,32, . . . ,512.
The elastic constant isc/251, and a Gaussian normal distribution
used for the disorder potential. For all largeM, the curvesPL,M( f )
andP2L,2M( f ) intersect at the same force,f L,2L which, in the inset,
is plotted vs 1/L. The extrapolated value off L,2L in the limit 1/L
→0 is the critical forcef c

` of a macroscopic sample.
2-3
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BRIEF REPORTS PHYSICAL REVIEW B 65 012202
thermodynamic limit, f c
` . We find f L,2L→ f c

`50.9160.01
for c/251. The numerical value off c

` is due in part to the
value ofc and to the imposed constraint. We stress again
f c

` is independent of the aspect ratioL/M .
The study of the statistical properties of the critical stri

xc goes beyond the scope of this paper.19 We simply point
out here that the sizek of the minimal unstable front is dis
tributed approximately asp(k);exp(2k/ktyp) ~for large k).
Here,ktyp depends on the elasticity parameterc, but remains
finite as L→`, although the VMC algorithm authorize
fronts of all sizes.

Finally, we discuss possible extensions of the work p
sented here. We already indicated that our metric constr
was introduced mainly for convenience as our theorems
the VMC algorithm remain valid ifEel is a general convex
function. In the absence of the constraint, the lateral ext
sion of the string may however scale asLg with g.1. If so,
our scaling assumption, Eq.~7!, would have to be modified
We have also extended most of our results to high
dimensional manifolds and embedding spaces. There,
only critical issue seems to be the complexity of the VM
algorithm, as the number of possible fronts can be mu
larger than in the linear string.

In conclusion, we have put the dynamical Monte Ca
algorithm for the motion of elastic manifolds in random m
s

I.

0122
at

g

-
int
nd

n-

r-
he

h

o
-

dia on a solid footing. We have shown that only extend
move schemes can capture the subtle interplay between
ticity and disorder, which is totally absent from th
customary local algorithms. Our theorems allowed us
compute features universal to all members of this cla
namely, the critical force, as well as properties of the criti
string. The variant Monte Carlo algorithm is crucial in that
allows us to compute the critical force with full rigor eve
for samples which are several orders of magnitude lar
than those accessible to exact enumeration methods. In
continuum, the Langevin dynamics also satisfies a ‘‘n
passing’’ condition,18 which has so far not allowed the rigo
ous computation of critical elastic strings, as the numer
discretizations have to be controlled. Our dynamical Mo
Carlo approach can be thought of as a rigorous cellular
tomaton model which is consistent with the continuum mo
els. Furthermore, it implements the basic concept of deta
balance and is therefore much easier to generalize to fi
temperatures than previous continuum and lattice form
tions.
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