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X-ray diffraction of a disordered charge density wave
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We study the x-ray-diffraction spectrum produced by a collectively pinned charge density wave, for which
one can expect a Bragg glass phase. The spectrum consists of two asymmetric divergent peaks. We compute
the shape of the peaks, and discuss the experimental consequences.
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The statics and dynamics of disordered elastic object3he study of the spectrum has been carried out so far either
govern the physics of a wide range of systems, either perifor strong pinning or at high temperaturgs?®
odic, such as vortex flux linésand charge density waves In this paper we focus on the low-temperature limit where
(CDV\/),2 or involving propagating interfaces, such as domaina well-formed CDW exists, and on weak disorder, for which
walls in magnetit or ferroelectrié¢ systems, contact lines of One expects to be in the Bragg glass regime. We show that
||qu|d menisci on rough Substratésand propagation of the diffraction Spectrum consists in two asymmetriC peakS. In
cracks in solid€.It was recently shown that periodic systems contrast to previous assumptiotfswe show that the asym-
have unique properties, quite different from the ones of thénetry is present also in the weak pinning limit. The peaks are
interfaces. If topological defecté.e., dislocations, etgin  Power-law divergent, with an anisotropy in shape. This form
the crystal are excluded, displacements grow onlyiS consistent with the Bragg glass behavftthe asymmetry
logarithmically!~° instead of the power-law growth as for iS & subdominant power law too, with an exponent that we
interfaces. The positional order is only algebraically determine. We also briefly discuss the role of unscreened
destroye&,rloieading to divergent Bragg peaks and a neariycoulomb Interaction fOI‘ the CDW on the dlffl‘aCtlon
perfect crystal state. Quite remarkably, it was shown that foSPectrum. _ _ o _
weak disorder this solution istableto the proliferation of ~ The general expressihfor the total diffraction intensity
topological defects, and thus a thermodynamically stabldn @ crystal is given by
phase having both égolassy properties and quasilong range po-
sitional order exists: This phase, nicknamed Bragg glass, 1 (R R, ——
has prompted many further analytical and experimental stud- Ha)=y Iz] e MRTR(F fjema ), @
ies(see, e.g., Refs. 11,12 for reviews and further references '
Although its existence can be tested indirectly by the consewhereu; is the atom displacement from the equilibrium po-
quences on the phase diagram of vortex flux lines, the mosiition R;=ja, with a indicating the lattice constant; the
direct proof is to measure the predicted algebraic decay Oftomic scattering factor, ar{d. . . ) denotes the double aver-
the positional order. Such a measurement can be done kyye over the disorder and over the thermal fluctuations. As an

means of diffraction experiments, using either neutrons or example, let us first consider the case of fixed atoms (
rays on the crystal. Neutron-diffraction experiments have re— o) \we obtain

cently provided unambiguous evidehtef the existence of
the Bragg glass phase for vortex lattices.

Another periodic system in which one can expect a Bragg 1(q)=f2>, 8(q—K)+Af2N,, (2
glass to occur are charge density wa%aeshere the elec- K

tronic density is spatially modulated. Disorder leads to the ) ) ) )
pinning of the CDWH In such systems very high-resolution Where Af=f,—f is the difference between the impurity

x-ray experiments can be perform&dThe resolution is, in @nd the host atom scattering factokg=n,(1-n,), where
principle, much higher than the one that can be achieved bg, is the impurity concentration aridis the average scatter-
neutrons for vortex lattices, consequently, CDW systemdng factor. The usual Bragg peaks, in correspondence to the
should be prime candidates to check for the existence of geciprocal lattice vector, arise from the first term in Eq.
Bragg glass state. However, compared to the case of vorte®), the second term is responsible for a background inten-
lattices, the interpretation of the spectrum is much moresity, called Laue scattering, due to the disorder.

complicated for two main reason@) the phase of the CDW In a second stage we take into account displacements of
is the object described by an elastic energy, whereas the the atoms related to the presence of a CDW. To this purpose,
rays probe the displacements of the atoms in the crystal lawe consider an electron density characterized by a sinusoidal
tice (essentially, a cosine of the phaséi) since the impu-  deformatior?

rities substitute some atoms of the crystal, the very presence

of the impurities changes the x-ray spectrum. This generates p(X)=pocog QX+ ¢(X)]. ©)]
nontrivial terms of interference between disorder and atomic

displacement$>1® It is thus necessary to make a detailed ¢ is the phase of the charge density wave &ds the
theoretical analysis for the diffraction due to a pinned CDW.modulation vector. The associated Hamiltonian reads
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c broadening is absent. To interpret the experimental
:j ddXE[V¢(X)]ZiVof d%S(X)p(x), (4  findings!®818in particular, to explain the measured strong
asymmetr{® between the peaks #+Q and atk —Q, we
where d is the dimension of the space. The first term inneed to account for the effect of impurities.
Hamiltonian (4) represents the elasticity. The second term In the literature the terni, was evaluated by means of
reflects the effect of the disorder on the electron density. Thenodel$®~*® which describe the pinning by imposing a con-
Gaussian random function(x) describes the impurity dis- stant valueg, to the phase in Eq(3) in proximity of each
tribution and is characterized by the correlao¢x) (y) impurity, and |, was conjectured to be negligibté?? In
=N,5(x—Y), V, is a positive constant which measures thethat approach, the observed satellite asymmetry is seen as a
impurity potential, and finally the sigr- (—) is related to  clear sign of the strong disorder; in fagt, is not constant
the repulsive(attractive interaction between the electrons and, for sufficiently large domains, one should Have
and the local impurity. In the following, we restrict our |xcos(,)~0. To go beyond this phenomenological ap-
analysis to the repulsive case; is absorbed iV, and we  proach and also deal with the weak disorder limit, in which

define the disorder strengi=V3N, . one expects the Bragg glass, we use a Gaussian variational
A density modulation is accompanied by a lattice distor-approacht®?*We first perform the average over the disorder
tion u given at low temperature by using the standard replica techniques. The replicated Hamil-
tonian corresponding to E@4) is
Uo
u(x)=-=V cog Qx+ ¢(x)]. (5) D
Q eff jddl’E _(V¢a _?E COS{Q’)a(I’ ¢b(r)]i
We are interested in the behavior of the scattering intensity a0 8
I(g) near a Bragg peakg(-K). Since|dq|=|q—K|<K, ®)
we can take the continuum limit—x and we obtain from whereT is the temperature and the sum over theplica has
Eqg. (1): to be considered in the limit—0. We stress that, moving
from Hamiltonian(4) to its replicated version we also need
_ T AR EIA) to change the correlation functions containing explicitly the
() f“rlzf*”ze ) ©) disorder: we have, for example(S(—r/2)u(r/2))

B _ ——(DINTVp)Z o p{pa( —1/2)uy(r/2))er. After some ma-
where [, =(1/a) fde™"*" andf,,=f+Afa®?3(r/2). | nipulations and éEjsmé; Eq3), we obtain
Eq. (6) we have applied the standard decomposition in center

of massR and relativer coordinatedx=R+r/2 andy=R — ior

—(r/2)]. The integration oveR has already been performed lq=f"q J[e +e.c]Cq(r), ©)
becauseu vary slowly at the scale of the lattice spacing.

Assuming that in the elastic approximation displacements o

remain small ¢;<R;), one can expand E@6) as powers of I = —fquuO\/N|aaDJ[e“Qr—c.c.]Ca(r),

Ku,. Developing up to the second order we'get r

where Cy(r)=1n3 (e'l%a(= 4=ty o and  C4r)

=Tt ot T, @) =(UTn)s] (€14~ d(=112)]) o are the positional corre-
with lation functions controlling the behavior of each contribu-
N tion. We notice that the intensity of the peaksgat Q+ K
| :f—zqu < u(£> u( _ £)> andq= K_—Q is symmetric, as in the_case _of a pure_system,
d ' for the displacement ternhy, but it is antisymmetric for

.. The sum of these two terms leads to an asymmetry
. r r r r of the peaks. Figure 1 show the behavior of the different
e [5G 5)

5 5 5 contributions.
Following the method used in Ref. 10 for flux lines in the
r r r r
- i 2.d _ sl _J—ul ==
lipi = —1gAf"a fr<2( 2)2<2) u(z) u( 2) tonianHo= [ 4Gan(q) $a(q) ¢u(—a) in replica space, which
approximates Eq8). Defining

presence of weak disorder, we can calculate the various
While the contributionl 4 represents the intensity due to the

> terms in Eq.(9). We look for the best trial Gaussian Hamil-

atomic displacements alone, the contributibpandl, are Bao(r)={([da(r)— ¢p(0)1%)

generated by the coupling between the disorder and the dis-

placement. The presence of a CDW is signaled by the for- =2Tf P 1
mation, around each Bragg peak, of two satellites at recipro- q[G(q) Gar(a)cosar], (10

cal vectorsK = Q. In the absence of disordeDE0 and ¢ ~ . _

~const) the displacement term has the foriy  Where G is the diagonal element o&,,, and using the
=f2q2u3s« 8(q+ K+ Q) and the other terms are vanishing; Gaussian approximation, the positional correlation functions
in this case the two satellites have the same intensity and tHeecomeC,(r) = (1nT)=1 e B2 and Cy(r)=e B2,
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FIG. 1. Intensities of the different contributions to satellite ~ FIG. 2. Ratio between the RSB and RS solutions ¢r). At
peaks. The more divergent terty, is symmetric.l, and |, are  large distance this ratio tends towards a constant vialuehereb
antisymmetric, withl > I i . ~0.018. This means that the RSB solution affegfs) only by a

multiplicative factor.

whereB is the diagonal element &,;,. Two general classes i i

of solutions exist for this problem: while the first class pre-For weak disordeR,>a it follows thatl 2> I, and we thus
serves the permutation symmetry of the repli@s), the need only to considelr andlq. .
second claséRSB) breaks the replica symmetry. It has been Since ford=3_the RS solution is unstable, so to obtain
showrt® that the stable solution fai>2 corresponds to the the correct physics one has to look for the RSB method.
RSB class, while the RS solution remains valid at short disWithin this schemé? the off-diagonal elements dB(q)
tances.Cq is similar to the correlation calculated for flux &ré parametrized b(q,v), where 6<v<1, and the solu-
lines'® and will be discussed later. To evaluate the contribution is characterized by a variational breakpoint. The
tion of the interference between disorder and displacemerffrm of the symmetric part is given in Ref. 10:

we factorize the antisymmetric ter@y(r) = x(r)Cqy(r). We I\

first consider the RS approximation Cd(r)~e‘¢$’2 F) ' (15)

1
x(r)= T ' (1D where ¢$22T/wca measures the strength of thermal fluc-
tuations andyp~1 is the Bragg glass exponent @+ 3. At

whereG.= 1/cq? is the connected part @,;,. Ind=3 we  low temperature one hds-R,. The algebraic behavior of

1—exp{ —Tf G.(qg)cosqr
q

estimate Eq. (15) is controlled by small (v<uv.). Values ofv above
) the breaking point{>v.) give the small distance contribu-
CRY(r)~ zlefs(r)/z' (12) tion. Finally, one finde .= %gb%(all).
@ cr To fully characterize the spectrum it still remains to evalu-

The triplet term can be evaluated in an analogous way, but @tex(r) in the RSB scenario:

gives nonzero contributions only considering higher-order 1
harmonic terms in the electron density. Equati8nbecomes 1_f dvexp[ _TJ [é(q)—G(q,v)]cosqu.
p(X)=pocosn[Qx+ ¢(x))], with n=1,2. As we have al- 0 q

ready found forl,, we get an antisymmetric term with a (16)
prefactor «Af?quyN;a’D and a correlation Cripl
:(1/2nT2)22,b,c<(e_i[¢'c(r/2)_2¢a(r/2)+¢b(_r/2)]>eff- In d=3
and at low temperatures we finally obtain

1
X(r)=f

Restricting to the casé=3, we write

() -Glqu)==| ———+ 2 at
RS 2T & | e q*+17% 12 on
Ciipl(1)~——e "% (13

ctar

1
212 |-
i
- . . N (17
It is interesting to evaluate, at this stage, the relative weight ) ) ) )
of the two antisymmetric terms in a satellite peak. We intro-BY integrating Eq(17) overq and with some manipulations,
duce the Fukuyama-Lee lengtbor Larkin-Ovchinikov — Ed.(16) becomes:
length'*?*R,= (c?/D)*¥*~9 (for d=3, R,=c?/D) such that . it
¢ varies on scale given by the leng®y . The ratio of the 1_f dzex;{ —87r3f Te_ml
0 z
The low-temperature behaviol {R,) of this term is

two intensity peaks is
i Af a in Fi i
Twiph __\/Wl Rl (14) shown in Fig. 2. As for the replica symmetry case, we have
af Ra C,(r)<(1/r)e ¥ M2 We can now compare the two terms:

t
q2+(-

(18

Uc
X(r)=7

la
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(19 to Eq.(4) by redefining the spatial variables=x/\/c; and
y' =ylc,, with c=(c,c5 Y)Y The main effect in the dif-
fraction spectrum is thus to make tlshapeof the peaks
anisotropic, but this will not change the overall divergence.
The local, but anisotropic, elasticit0) is valid beyond the
After executing thed-dimensional Fourier transforms, we distance at which .the Coulomb intgaraction l?etween various
) R ' parts of the CDW is screened. If this length is very large, or
conclu((j:iia that bothd_te[r?s are divergent: in particularit one wants to examine the short-range regime, one should
lq1/q°" 7 andl < 1/q"" 7~ ", This effect, shownin Fig. 1,is  yeep the dispersion af,(q) ~ 1/92. This leads to a different
a clear sign of a quasi-long-range positional ordered phas¢enavior of the peaks with respect to Eq.9). In particular
We have found that the peak Kt+Q is smaller than the \ye have found 4 1/g® andl 2 1/q. This means that, in this
K—Q one, as the potential between the impurity and CDWcase, the peaks should be even more divergent than in Eq.
is repulsive(we would have the opposite asymmetry in case(19), but the asymmetric term becomes negligible. All details
of an attractive potential We observe that for an ideal infi- concerning this calculation will be examined elsewltére.
nite resolution experiment, the symmetric term would be On the experimental side few detailed diffraction spectra
dominant, sinceC4(r) decays to zero less rapidly than are available at the moment. One case is doped blue bronzes
C4(r). However, if the divergence in EqQ19) is cut by the where the line shape corresponding to the CDW has been
finite resolution of the experiment, both terms should beobtained after subtraction of a Friedel oscillation
taken into account becausg is quadratic in the small pa- contribution!® The observed asymmetry of the peaks would
rameterKuy wheread , is only linear. be compatible with both strong and weak pinning. However,
The power-law line shape is obtained for a short-rangegiven the short correlation length extracted from the data,
isotropic elasticity. The elasticity is actually anisotrdfic this particular experiment is most likely in the strong pinning

_ R,\” remainingd—1 directions are much easier. We are led back
|d(K+Q):f2K2u3f —

r

Ia(K+Q)=—2w2f_Af\/N—,\/RiKuof (%

7ha
-

along theQ direction and has the form regime, whereas our calculations concern the weak pinning
limit. It would thus be highly desirable to have more detailed
1 G Cz analysis of the line shapes either in this compound, for dif-
_ 1,,-1 2, 22 2 )
Ha f dxef Y2 (9xp) "+ 2 (9y®)" (20 ferent impurity concentrations, or in less disordered systems,

. where one can expect a Bra lass behavior.
where x||Q and c;>c,. The compression along corre- P 999

sponds to an increase of electric charge density and thus pays We thank J.-P. Pouget and S. Ravy for stimulating
the price of Coulomb repulsion, while distortions along thediscussions.
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