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We calculate the x-ray diffraction spectrum produced by a pinned charge density wave(CDW). The signa-
ture of the presence of a CDW consists of two satellite peaks, asymmetric as a consequence of disorder. The
shape and the intensity of these peaks are determined in the case of a collective weak pinning using the
variational method. We predict divergent asymmetric peaks, revealing the presence of a Bragg glass phase. We
deal also with the long range Coulomb interactions, concluding that both peak divergence and anisotropy are
enhanced. Finally we discuss how to detect experimentally the Bragg glass phase in the view of the role played
by the finite resolution of measurements.
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I. INTRODUCTION

The study of disordered elastic objects sheds light on the
physics of a wide range of systems. A first class of systems is
accurately modeled by elastic manifolds in the presence of
randomness; significant examples include domain walls in
magnetic1 or ferroelectric2 materials, contact lines of liquid
menisci on a rough substrate,3 and propagating cracks in
solids.4 A second class of disordered elastic systems is given
by periodic structures such as charge density waves
(CDWs),5 vortex flux lines in type-II superconductors6 and
Wigner crystals.7 It was recently shown that periodic systems
have unique properties, quite different from the ones of the
interfaces. In fact, if topological defects(i.e., dislocations,
etc.) in the crystal are excluded, displacements can grow
only logarithmically,8–10 in contrast with the power-law
growth of interfaces. The positional order is only algebra-
ically destroyed,10,11 leading to divergent Bragg peaks and a
nearly perfect crystal state. Quite remarkably, it was shown
that for weak disorder this solution isstableto the prolifera-
tion of topological defects, and thus that a thermodynami-
cally stable phase having both glassy properties and quasi-
long-range positional order exists.11 This phase, nicknamed
Bragg glass, has prompted many further analytical and ex-
perimental studies(see, e.g., Refs. 12 and 13 for reviews and
further references). Although its existence can be tested in-
directly by the consequences on the phase diagram of vortex
flux lines, the most direct proof is to measure the predicted
algebraic decay of the positional order. Such a measurement
can be done by means of diffraction experiments, using ei-
ther neutrons or x rays. Neutron diffraction experiments have
recently provided unambiguous evidence14 of the existence
of the Bragg glass phase for vortex lattices.

Another periodic system in which one can expect a Bragg
glass to occur are CDWs,5 where the electronic density
shows a sinusoidal modulation. As a consequence of the
electron–phonon interaction, this modulation generates a per-
manent distortion of the underlying lattice. This distortion
can be revealed thanks to x-ray measurements: in fact, the
corresponding x-ray spectrum presents satellite peaks around
each principal Bragg peak. These satellites contain informa-
tion concerning the positional order of the CDW. In particu-
lar, we are interested in the detection of effects due to

disorder.15 The x-ray experimental resolution is in principle
much higher than the one that can be achieved by neutrons
for vortex lattices, consequently CDW systems should be
prime candidates for studying the detailed nature of a Bragg
glass state.16 It should in particular be possible todirectly
probe the power law nature of the Bragg peaks predicted for
a Bragg glass. However, compared to the case of vortex lat-
tices the interpretation of the spectrum is much more com-
plicated for two main reasons:(i) the phase of the CDW is
the object described by an elastic energy, whereas the x rays
probe the displacements of the atoms in the crystal lattice
(essentially a cosine of the phase); (ii ) since the impurities
substitute for some atoms of the crystal, the very presence of
the impurities changes the x-ray spectrum. This gives rise to
nontrivial terms of interference between disorder and atomic
displacements.16,17 It is thus necessary to make a detailed
theoretical analysis of the diffraction due to a pinned CDW.

In the past, the study of the spectrum has been carried out
only either for strong pinning or at high temperatures.16–19In
this paper we focus on the low temperature limit, where a
well formed CDW exists, and on weak disorder, for which
one expects to be in the Bragg glass regime. Both the short
and long range screening of the Coulomb interactions are
considered. We show that in both cases the diffraction spec-
trum consists of two asymmetric peaks. The peaks are
power-law divergent, with a stronger anisotropic shape in the
case of unscreened long-range Coulomb interaction. This
finding is consistent with the Bragg glass behavior.11 The
asymmetry divergence follows a subdominant power-law as
well, with an exponent that we determine. A short account of
part of the results of this paper was published in Ref. 20.

In Sec. I we derive the model used to describe the inter-
action between the CDW and impurities. Two elastic limits
are considered: if free electrons are present the elasticity has
a simple short-range form, while, in the unscreened case,
Coulomb interactions are responsible for a long range
strongly anisotropic elastic term. In Sec. II we discuss the
x-ray intensity spectrum behavior in presence of a pinned
CDW. In particular, we derive the different contributions to
the satellite peaks and we study their symmetry properties. In
Sec. III we evaluate explicitly the different terms by means
of the replica techniques. Section IV contains the physical
discussion in view of all the results obtained in this paper.
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The reader not interested in the details of calculations may
move directly to this section skipping the previous one. Fi-
nally, in Appendix A we evaluate the triplet contribution and
in Appendix B we calculate the functionfsg, used in Sec. IV.

II. THE MODEL

The system we have studied is a CDW in a three dimen-
sional space. The electron density has the form:21

rsrd = r0 +
r1ucuQ−1

p
¹ fsrd + r1ucucosfQr + fsrdg, s1d

where a single sinusoidal deformation of modulation vector
Q is considered andc= ucueif is the CDW order parameter
normalized to unity atT=0. The first term of Eq.(1), r0, is
the average density. The second one corresponds to a density
averaged at scales larger thanQ−1. This contribution, also
called forward scattering, encompasses the local changes of
the electron density related to the compression modes. The
last term, also called backward scattering, describes the sinu-
soidal modulation at a scale of the order ofQ−1. We can
neglect all contributions stemming from higher harmonic
terms as they are known to be important only at very low
temperature. The effective Hamiltonian can be obtained by a
Ginzburg–Landau expansion of the order parameter

H =E d3r
1

2
ucu4 − aucu2 +

b

2
u ¹ cu2, s2d

where a=sTc−Td /Tc and b is a parameter whose value is
defined by the microscopic theory. The configuration at mini-
mum energy corresponds toucu=Îa with the phasef equal
to a constant. Around this equilibrium solution, fluctuations
involve both the amplitude and the phase of the order param-
eter. We remark that while the first ones are more expensive
in terms of energy variations, due to the presence of the
quadratic term, the second ones are massless. Following the
model developed by Fukuyama-Lee-Rice(FLR),15,22,23 we
take into account only the phase fluctuations(i.e., we neglect
amplitude fluctuations). The mass of these excitations, called
phasons, turns out to be quite large, because it depends on
the ionic mass via the electron–phonon interaction. For this
reason, we can neglect in the Hamiltonian the kinetic term
giving rise to quantum fluctuations. Within these hypotheses,
the elastic Hamiltonian associated to the CDW reads

Hel =E d3r
c

2
f¹fsrdg2, s3d

wherec=bucu2 is the elastic constant. The thermal fluctua-
tions of the phase, denoted asfT, are easily evaluated:

fT
2 = 2kf2sxdl

= 2E Dff2e−H/T = 2TE
BZ

1

cq2 ,
QT

p2c
. s4d

The integral inq extends all over the Brillouin zone. In the
low temperature regime, the fluctuations are thus small
enough to guarantee the presence of an ordered phase. More-

over, we observe that the value of the integral(4) is related to
the shortest length scale in the problem. Here we assume that
this cutoff momentum,L, is given by the periodicity of the
CDW sL,Qd.35

The form of the Hamiltonian(3) is actually anisotropic
along theQ direction. In fact, a compression alongQ pro-
duces an increase of the electric charge density which yields
an increase of the stiffness, whereas all distortions along the
other two directions do not involve any change in electro-
static energy.

We evaluate the contribution of Coulomb interactions
screened beyond the characteristic lengthl. Without any loss
of generality we assumeQix andy is along one of the other
two equivalent directions. The electrostatic energy takes the
form:

U ~
1

2V
E d3rd3r8e−ur−r8u/lrsrdrsr8d

ur − r8u
. s5d

The main contribution to the electrostatic energy comes from
the variations of the electron densityr, expressed by Eq.(1).
Therefore, we restrict to consider only the forward scattering
term:

U ~
r1

2ucu2

2p2Q2V
E d3rd3r8e−ur−r8u/l

]xfsrd]x8fsr8d

ur − r8u

=
r1

2ucu2

pQ2 E
BZ

sqxld2

1 + l2q2ufsqdu2. s6d

This term introduces aq dispersion in the elastic constant

Hel =E
BZ

Fc1sqdqx
2 +

c

2
q2Gufsqdu2

c1sqd ~
l2

1 + q2l2 .

Two regimes can be identified as a function of the screening
length l. (i) In the first one, valid forl not very large, we
can neglect the dispersion inq and the resulting elasticity is
short range. The effect of Coulomb interaction is an enhance-
ment of the elastic constant along thex direction

Hel =E dxd2yFc1

2
s]xfd2 +

c

2
s]yfd2G . s7d

By redefining the spatial variables,x8=x/Îc1 andy8=y/Îc,
with c=sc1c

2d1/2, the Hamiltonian(7) can be finally turned
into an isotropic form.(ii ) The second regime is character-
ized by large values ofl. In this case, the electrostatic en-
ergy takes the formU,eBZsqx

2/q2dufsqdu2, and consequently
a long-range term appears in the elasticity:

Hel =E dqx

2p

d2q

s2pd2Fc1

2

qx
2

q2 +
c

2
q2Gufsqdu2. s8d

At this stage, we briefly discuss the dispersion relation of
different elastic regimes. The full FLR Hamiltonian is:
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HFLR =E
BZ

1

2M
PqP−q +

csqd
2

fqf−q, s9d

wherePq is the Fourier transform of the momentum density
and M is the phason mass density. The first term gives the
kinetic energy and the second the elastic energy. Using the
standard canonical transformation we derive the correspond-
ing dispersion relation:

vsqd =Îcsqd
M

. s10d

If we decompose the vectorq in its longitudinal
sqx=q cosud and transversalsq'=q sinud components, it is
clear that in the short-range caseq obeys a linear dispersion
law, with a slope equal toÎfc1 cossud+c sinsudg /M. The dis-
persion for the long-range elasticity(8) is displayed in Fig. 1:
The transversal modes remains acoustic, the longitudinal
ones instead develop a gap.24

Finally, we consider the effect of a distribution of impu-
rities with concentrationnI. The simplest coupling with the
electron density is expressed by:

Hdis = ± V0E d3rSsrdrsrd, s11d

where Ssrd is the impurity probability distribution. Long
range interactions are neglected andV0 is a positive constant
which measures the impurity potential. At last the sign
+s−d is related to the repulsive(attractive) interaction be-
tween the electrons and the local impurity. Above two di-
mensions we can drop out the forward scattering term in
the development ofrsrd. In fact, this term leads only to a
trivial redefinition of the correlation functions.11 If V0 is
small (the opposite case, the effect of a strong impurity,
is discussed in Ref. 25) the FLR model for the elasticity is
justified. In this case, the collective pinningSsrd is well
described by a Gaussian distribution with zero average(we
can always incorporate the effect of the averaged disorder
into the bare parameters) and the correlator is given by
SsrdSsr8d=NIdsr −r8d, with NI =nIs1−nId. In the following,

we will restrict our analysis to the repulsive case:r1ucu
is absorbed inV0 and we define the disorder strength
D=V0

2NI.
On one hand, the disorder favors local distortions of the

phasef, on the other hand these deformations increase the
elastic energy. A natural sizeRa is defined if we consider the
region wheref varies by 2p. A simple energetic balance
gives for ad-dimensional CDW:

Etot =
c

2
S2p

Ra
D2

−
D1/2

Ra
d/2 . s12d

Optimizing the gain in potential energy versus the cost in
elastic energy we getRa=sc2/Dd1/s4−dd (for d=3 Ra=c2/D).
This length, called Fukuyama-Lee length(or Larkin-
Ovchinikov length),15,26 is interpreted as the correlation
length of the system. In this scenario the equilibrium state is
always disordered and the long-range coherence in the phase
is lost. Nevertheless, in this paper we show that, as in the
case of vortex lattice, the latter prediction is correct only if
we consider scales smaller thanRa, while it breaks down at
larger distances. In particular, we see that it is the Fukuyama-
Lee length to define the crossover between the short distance
regime and the asymptotic one.

III. SPECTRUM INTENSITY

The x-ray diffraction is a powerful tool to detect any
subtle change of the perfect crystalline structure. The elec-
tron density modulation is accompanied, via the electron–
phonon interaction, by a lattice distortionu given by

usrd =
u0

Q
¹ cosfQr + fsrdg ~ ¹ rsrd. s13d

Thus, the CDW instability produces a permanent sinusoidal
displacement of the atoms from their equilibrium position.
This deformation is signaled, in the x-ray spectrum, by the
presence of satellite peaks around each principal Bragg peak.
The analysis of the shape, the intensity and the symmetry of
such peaks allows to fully characterize the structural proper-
ties of the CDW. In this section, we isolate the different
terms which contribute to the satellite peaks, and study their
symmetry properties. This discussion is general and model
independent.

The expression for the total diffraction intensity of a crys-
tal is:27

Isqd =
1

V
o
i,j

e−iqsRi−Rjdkf i f je
−iqsui−ujdl. s14d

As shown in Fig. 2,ui is the atom displacement from the
equilibrium positionRi = ia, with a indicating the lattice con-
stant.k. . .l denotes the double average over the disorder and
over the thermal fluctuations.f i represents the total ampli-
tude scattered by the atom at the positioni and depends
exclusively on the atom type. We consider the simple case of
a disordered crystal, made of one kind of atoms, character-
ized by the scattering factorf, and containing impurities of
scattering factorf I. To understand the role of the scattering

FIG. 1. Dispersion relation of the phase mode given by Eq.(8).
The transversal modesu=90°d is acoustic, the longitudinal mode is
gappedsu=0°d. The gap is reduced by the presence of longitudinal
componentssu=60°d.
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factors, let us start by evaluating the case of fixed atoms
sui =0d. We obtain:

Isqd = f̄2o
K

dsq − Kd + Df2NI , s15d

whereDf = f I − f and f̄ is the average scattering factor. The
usual Bragg peaks, corresponding to the reciprocal lattice
vectorsK, arise from the first term in Eq.(15), while the
second term is responsible for a constant background inten-
sity, called Laue scattering, due to the disorder.

Now we move back to the general caseui Þ0. We are
interested in the behavior of the scattering intensityIsqd near
a Bragg peaksq,Kd. Sinceudqu= uq−Ku!K, we can take the
continuum limit i → r and obtain from Eq.(14):

Isqd = E
r1,r2

e−idqsr1−r2dkf r1
f r2

e−idqfusr1d−usr2dgl, s16d

whereer1,r2
=1/Vadeddr1d

dr2 and f r = f̄ +Dfad/2Ssrd. Assum-
ing that in the elastic approximation the displacements re-
main small sui !Rid, one can expand Eq.(16) as a power
series ofKu0. Developing up to the second order we get:18

Isqd = Id + Ia + I tripl , s17d

with

Id = f2q2 E
r1,r2

e−idqfusr1d−usr2dgkusr1dusr2dl,

Ia = − iqDf E
r1,r2

e−idqfusr1d−usr2dgkSsr1dusr2d − Ssr1dusr2dl,

I tripl = − iqDf2ad E
r1,r2

e−idqfusr1d−usr2dg

3kSsr1dSsr2dfusr1d − usr2dgl.

While the contributionId represents the intensity due to the
atomic displacements alone, the contributionsIa andI tripl are
generated by the coupling between the disorder and the dis-
placements. In the following we consider onlyIa and Id; the
term I tripl is evaluated in Appendix A where we show that it
is smaller than the other two.

In a pure systemfSsrd=0g we expect that only the first
term can be different from zero. Referring to the case of a
CDW without disorder and neglecting the thermal fluctua-
tions, we can replace in Eq.(17) the displacement term Eq.
(13) with fsrd=const. This gives:

Idsqd = f2q2o
K

dsq ± Q − Kd. s18d

The presence of two satellites around each Bragg peak is one
of the most clear experimental evidence of a CDW. In a pure
system these satellites are symmetric and without any broad-
ening. To interpret the experimental findings,16,17,19 which
reveal the presence of asymmetric peaks, we need to account
for the effect of impurities. In particular, we want to explain
not only the measured intensity asymmetry(IA ) between the
two satellites, but also the profile asymmetry(PA) of each
peak, which is measured in strongly doped samples.

The symmetry properties of the termsIa and Id can be
determined by considering the lattice displacements and the
disorder expressed in terms of their Fourier components:

usrd =E
BZ

e−iqruq

Ssrd =E
BZ

e−iqrSq. s19d

It is easy to obtain:

Idsqd = f̄2q2kudqu−dql, s20d

Iasqd = 2ad/2qDf f̄kImfS−dqudqgl. s21d

The two prefactors,f̄2q2 and Df f̄q vary slowly in q and
one can assume they are constant in the neighborhood of the
reciprocal lattice vectorK. Due to the fact that Eq.(21) is an
imaginary part, we can deduce:

IdsK + dqd = IdsK − dqd

IasK + dqd = − IasK − dqd. s22d

In Fig. 3 we show the following symmetry properties of
different terms:Id generates two satellites symmetric with
respect to the Bragg peak, whileIa gives antisymmetric con-
tributions. We conclude that the IA is due toIa while the PA
is not excluded in both terms, in particular we have a mirror
symmetry for Id. Plugging the displacement form Eq.(13)
given by the FLR model in Eq.(20), we get

IdsK + Q + kd = u0
2f2K2E

r

e−ikrCdsrd, s23d

where er =1/adeddr and Cdsrd is the positional correlation
function

Cdsrd = keiffsr/2d−fs−r/2dgl. s24d

Examining this equation one is able to connect the symmetry
properties of the satellite peak profile with the symmetry

FIG. 2. Example of one-dimensional crystal. The position of the
ith atom is given by the equilibrium positionRi and the displace-
ment ui. In the figure the black circles are the host atoms with
scattering factorf and the white circle represents an impurity with
scattering factorf I.

A. ROSSO AND T. GIAMARCHI PHYSICAL REVIEW B70, 224204(2004)

224204-4



properties of the system. In particular, ifCdsrd is an even
function in r, the Id term cannot show a PA. On the other
handIdsqd is a real function so the latter condition is equiva-
lent to require the presence of af→−f symmetry in the
system. We will make use of these observations to interpret
the experimental findings in Sec. IV.

IV. THE REPLICA METHOD

In this section we calculate the different terms of the de-
velopment of Eq. (17) using a Gaussian variational
approach.11,28We consider first the isotropic case, to include
later the corrections due to the Coulombian interactions. The
physical interpretation of these results is presented in more
detail in Sec. IV.

We consider a FLR HamiltonianH=Hel+Hdis where the
second term is Eq.(11) and the first one is described either
by Eq. (3), in case of a short range elasticity, or by Eq.(8)
taking into account the effect of long-range Coulombian in-
teractions. We first perform the average over the disorder
using the replica techniques. The replicated Hamiltonian is

Heff = o
a

Hel
a −E ddr

D

To
a,b

cosffasrd − fbsrdg, s25d

whereT is the temperature and the sum over then replicas
has to be considered in the limitn→0. We observe that the
system isf→−f invariant. This means that the FLR model
with a Gaussian disorder cannot generate satellite peaks with
a PA. Finally, we stress that, moving from the original
Hamiltonian to its replicated version we also need to change
the correlation functions containing explicitly the disorder. In
particular, using Eq.(13), the termsId andIa obtained in Eq.
(17) become

Id = Fd E
r1,r2

e−idqsr1−r2d¹r1
¹r2

kr1sr1dr1sr2dleff

Ia = Fa E
r1,r2

e−idqsr1−r2d
¹r1

− ¹r2

n
o
a,b

n

krasr1drbsr2dleff,

whereFd= f̄2q2u0
2/Q2 and Fa= iqu0Dad/2Df f̄ /QTV0. Replac-

ing the backward scattering term of the electron density and
performing an integration by parts we get to the form:

Id = f̄2q2u2
0E

r

e−idqrfe−iQr + c.c.gCdsrd, s26d

Ia = − f̄Dfqu0
ÎNIa

dDE
r

e−idqrfe−iQr − c.c.gCasrd.

Cdsrd =
1

n
o
a

keiffasr/2d−fas−r/2dgleff

Casrd =
1

Tn
o
a,b

n

keiffasr/2d−fbs−r/2dgleff

are the positional correlation functions controlling the behav-
ior of each contribution. To obtain this result we have applied
the standard decomposition in center of massR and relative
r coordinates(r1=R+r /2 and r2=R−r /2). Since u varies
slowly at the scale of the lattice spacing, we performed the
integration overR. We notice that Eq.(26) reveals clearly the
presence of two peaks situated atq=Q+K andq=K−Q. In
particular, as expected, the contribution to the two satellites
of the displacement termId is symmetric, while the one ofIa
is antisymmetric. The sum of these two terms leads to the IA
experimentally observed.

Following the same method used to study the flux lines in
the presence of a weak disorder,11 we can evaluate the dif-
ferent terms in Eq.(26). We look for the best trial Gaussian
HamiltonianH0=eqGab

−1sqdfasqdfbs−qd in the replica space
which approximates Eq.(25). TheGab

−1sqd is then3n varia-
tional matrix. Without loss of generality, this matrix can be
chosen of the formGab

−1=cq2dab−sab. The connected part is
defined asGc

−1=obGab
−1. By minimization of the variational

free energy we derive thatGc is given by the bare elastic
propagator. In the isotropic case we write

Gc
−1 = cq2. s27d

For a long range elasticity, ind dimension, it follows:

Gc
−1 = c1

qx
2

qd−1 + cq2. s28d

Finally, the parameterssab are given by:

saÞb =
D

T
e−Babsr=0d/2, s29d

where

FIG. 3. Sketch showing the symmetry properties of the two
different terms contributing to the satellite intensities(the Bragg
peak atK is not shown). Top: termId. The intensity is symmetric
with respect to the Bragg peak. Bottom: termIa. The intensity is
antisymmetric with respect to the Bragg peak.
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Babsrd = kffasrd − fbs0dg2l0 = 2TE
BZ

fG̃sqd − Gabsqdcosqrg.

s30d

G̃ is the diagonal element ofGab. In the Gaussian approxi-
mation, the positional correlation functions become:

Cdsrd = e−B̃srd/2 s31d

Casrd =
1

Tn
o
a,b

n

e−Babsrd/2, s32d

whereB̃ is the diagonal element ofBab. In order to simplify
the notation we write Eq.(32) as Casrd=xsrdCdsrd. Finally,
using Eq.(30), we get:

xsrd =
1

nT
o
a,b

n

e−TeqfG̃sqd−Gabsqdgcosqr. s33d

Two general classes of solutions exist for this problem:
while the first class preserves the permutation symmetry of
the replicas(RS), the second class(RSB) breaks the replica
symmetry. It has been shown11 that the stable solution for
d.2 corresponds to the RSB class, while the RS solution
remains valid at short distance. In the following we will refer
directly to thed=3 case.

A. Replica symmetric solution

We discuss first the RS solution which gives the correct
evaluation of the correlation functions at a distance smaller
thanRa. Within this Ansatz the matrixG andB are defined

by two of their elements: the diagonal valuesG̃, B̃, and the
off-diagonal ones,B=BaÞb andG=GaÞb. The simple algebra
of symmetric matrix yields, forn=0:

G̃ = Gcs1 + GcsaÞbd, s34d

G̃ − G = Gc, s35d

where from Eqs. (4) and (29), we deduce that
saÞb,D /T exps−fT

2 /2d.
We focus first on the short range elasticity. Replacing the

form of Gc given in Eq.(27) we easily calculate the displace-
ment

B̃srd , fT
2 +

4r

3p2Ra
. s36d

The first term take into account the thermal fluctuations and
saturates tofT

2 at a large distance. The second term, due to
the disorder, grows with a power law and it is responsible for
the exponential decay of the positional correlation functions.
To characterize the spectrum it remains to calculate

xsrd =
1

T
f1 − e−2p2T/crg ,

2p2

cr
. s37d

We can conclude that in the RS scenario the two positional
correlation functions decay exponentially fast, moreoverCa
has a power law extra factor.

Before calculating the stable RSB solution, we evaluate
the scaling behavior of the same objects in the case of an
unscreened Coulombian potential. The only change consists
in taking the connected propagator given in Eq.(28) to de-
termine the physical quantities. It is instructive to discuss
first the generald-dimensional case. The displacement takes
the form

B̃srd =E dd−1qdqx
q2d−2

fc1qx
2 + cqd+1g2f1 − cossqrdg. s38d

A similar integral was discussed in Ref. 29. A general remark
is that qx scales asqsd+1d/2. The scaling behavior of these
integrals is determined by smallq’s, for this reason we can
neglect theqx dependence inq. The strong anisotropy along
x andy can be studied performing the following substitution:

v = xqx, t = qy

z=Î c

c1

x

y
d+1
2

. s39d

We obtain

B̃srd =
y

9−3d
2

Îc3c1
E dd−1t

dv
z

t2d−2

FSv
z
D2

+ td+1G2f1 − cosst + vdg

=
y

9−3d
2

Îc3c1

H1szd, s40d

whereH1s0d=const. andH1sz→`d~zs9−3dd/sd+1d. It is easy to
check that, ford=3, there are only logarithmic divergences:

B̃sx = 0,yd ,
D

s2pd2Îc3c1

logsLyd,

B̃sx,y = 0d ,
D

2s2pd2Îc3c1

logsLxxd.

This result is a clear evidence that, because of the long range
interactions, the system is more rigid and the critical upper
dimension becomesd=3, in contrast with the resultd=4 for
the short range case. To confirm this statement we evaluate

the Fukuyama-Lee length by imposingB̃srd=s2pd2:

R̃asx = 0,yd , L−1e
s2pd4Îc3c1

D ,

R̃asx,y = 0d , Lx
−1e

2s2pd4Îc3c1
D . s41d

The exponential law is characteristic of the upper critical
dimension and is an extrapolation of the power law. The
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equivalent form Eq.(B7) has been derived for an isotropic
short-range elasticity ind=4.30,31It remains to determine Eq.
(37). At low temperature we write

xsrd , E ddqqd−1 cosqr

c1qx
2 + cqd+1

=
y

5−3d
2

Îcc1
E dd−1t

dv
z

td−1

Sv
z
D2

+ td+1

cosst + vd

=
y

5−3d
2

Îcc1

H2szd, s42d

where H2s0d=const. andH2sz→`d~zs5−3dd/sd+1d. In d=3 a
straightforward calculation confirms this scaling behavior:

xsx,y = 0d ,
1

16pcx

xsx = 0,yd ,
1.1

2p2Îcc1y
2
.

We observe that the anisotropic scalingx,y2 is always veri-
fied. Since ford=3 the RS solution is unstable, to obtain the
physics at large distance one has to consider the RSB
method.

B. Replica symmetric breaking solution

Within this scheme, the off diagonal elements ofGabsqd
are parametrized byGsq,vd where 0,v,1. The saddle
point equation becomes

ssvd =
D

T
e

−Bsr=0,vd
2 . s43d

We look for a solution such thatssvd is constant above a
variational breakpointvc. This can be done in an easy man-
ner by recasting the equations in terms of a new variable

fsgsvd = vssvd −E dussud. s44d

It is not difficult to show thatfsg8svd=vs8svd. We refer to
Appendix B, where we summarize the previous results for
fsg and we calculate its form in the case of an unscreened
Coulombian elasticity. As a first step one uses the inversion
rules of hierarchical matrices,28 Eqs.(34) and (35) become

G̃ = GcS1 +E dv
v2

fsg
Gc

−1 + fsg
D , s45d

G̃ − G = 3 1

Gc
−1 + S

+E
v

vc

dt
s8std

fGc
−1 + fsgstdg24 , s46d

whereS=fsgsvcd is a variational parameter, whose expres-
sion is determined in Appendix B.

Starting from the short range case we calculate the dis-
placement using Eq.(45), replacing the expression(B3) for
fsg:11

B̃srd , fT
2 + 4p2E

BZ

f1 − cosqrg
q3 , fT

2 + 2 logsLrd.

s47d

The logarithmic behavior9,10 of Eq. (47) is controlled by
small vsv,vcd. Values of v above the breaking pointsv
.vcd give the small distance contribution. To fully charac-
terize the spectrum it still remains to evaluatexsrd in the
RSB scenario:

G̃sqd − Gsq,vd ,
2

cl2
E
v/vc

1

dt
1

fq2 + st/ld2g2 , s48d

where the parametersl and vc are given by Eq.(B4). By
integrating Eq.(48) overq and with some manipulations, we
get:

xsrd =
vc

T 31 −E
0

1

dzexp1− 8p3E
z

1

dt

t
e−rt/l24 . s49d

The low temperature behaviorsl ,Rad of this term is
sketched in Fig. 4.

Finally we study the RSB solution for the Coulombian
elasticity. Replacing Eq.(B8) in Eq. (45), the diagonal cor-
relator becomes

G̃ , GcE dv
v

1

Gc
−1 log2S Alrv

Îc1cLx
D + Alrv

, Gc
2 log−1S Gc

−1

Îc1cLx
D . s50d

The latter form is characteristic of the upper critical dimen-
sion. Inserting Eq.(50) in Eq. (30), takingc1=c=1, and em-
ploying the usual substitution Eq.(39) we get

FIG. 4. Ratio between the RSB and RS solutions ofxsrd. At
large distance this ratio tends towards a constant valueb, with
b,0.018. This means that the RSB solution affectsxsrd only by a
multiplicative factor.
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B̃srd = S2E dt
dv
z

t5

FSv
z
D2

+ t4G2f1 − cosst + vdg.

This equation leads to the same conclusions discussed for the
isotropic upper critical dimension. The asymptotic displace-
ment is thus given by

B̃sxd , logflogsLxxdg. s51d

As in the case of the short-range elasticity, it can be shown
that the RSB solution does not affect the asymptotic power
low behavior ofxsrd.

V. PHYSICAL DISCUSSION

In this section we summarize the results obtained in the
previous sections and compare them with the experimental
findings.

We start by evaluating for the short-range elasticity model
the positional correlation functionCdsrd, defined in Eq.(24).
This function is the analog of the correlation function deter-
mined for vortex line systems.11 It is well known that ford
.2 it exists a finite temperature(the critical temperatureTc)
below which thermal fluctuations are prevented from disor-
dering the system. In fact, the direct calculation of the posi-
tional correlation function ind=3 yields

Cd
therm.srd = e

fT
2

2
f1−SisLrd/Lrg, s52d

with SisLrd=e0
Lrdt sin t / t. As shown in Fig. 5 the correlation

function saturates after a few lattice parameters to a nonzero
value, which witnesses the presence of long-range order in
the system.

However, the quenched noise originated in the impurities
is still able to destroy the long range order, even ind=3 (see
Fig. 5). In this circumstance, the more traditional scheme32

describes the system as organized in ordered domains(called
Fukuyama-Lee-Rice domains), characterized by the average
sizeRa. Beyond this characteristic length, the CDW disloca-
tions become dominant and any order disappears. This sce-
nario is captured by the RS solution. From Eq.(36) we ob-
tain:

Cd
RSsrd = Cd

therm.srde− 4r

3p2Ra
. s53d

As a direct consequence, we expect to find Lorentzian satel-
lites, whose half-width at half-height is of the order ofRa

−1.
However, the RS approach is unstable at large distances and
the correct solution is given asymptotically by the RSB.
Within this assumption, the correlations decrease following a
power law:

Cd
RSBsrd = Cd

therm.srde− 4

3p2SRa

r
Dh

. s54d

Applying the variational approach,33 one finds, from Eq.
(47), h=1. The corresponding quasi-ordered phase,11,10

called Bragg glass, is characterized by an infinite correlation
length and the characteristic sizeRa represents now the
crossover between the RS and RSB solutions. One can give a
simple physical interpretation of the two identified regimes,
by observing that at the scaleRa the phase distortions are of
the order of the CDW period 2p. This means that for dis-
tances smaller thanRa the development of the Hamiltonian
Eq. (25) is allowed and leads to the RS solution. For dis-
tances larger thanRa, instead, the phase feels its periodic
nature and this trivial development of the Hamiltonian is no
more valid.

In order to determine the intensity and the shape of the
two satellites we need to evaluate all the terms contributing
to the development Eq.(17). In particular, we consider the
displacement termId, and the asymmetric termIa, arising
from the coupling between disorder and displacement. In the
literature this latter term was previously estimated by means
of models17–19 which describe the pinning imposing a con-
stant valuef0 on the phase in proximity of each impurity.
According to these approaches, the observed satellite asym-
metry is a clear signature of strong disorder.17 Thanks to our
more accurate calculation, we found that the termIa is non-
zero also in case of weak disorder and it gives rise to a
divergent contribution similar to the one stemming fromId.
Using Eqs.(37), (47), and(49), our final results read:

IdsK + Q + kd = f̄2K2u0
2E

r

e−ikrSRa

r
Dh

, s55d

IasK + Q + kd = − 2p2f̄DfÎNIa

Ra
Ku0E

r

e−ikrSRa

r
Dhba

r
.

After computing thed-dimensional Fourier transforms,
we conclude that both terms are divergent: in particular,
Id~1/qd−h andIa~1/qd−h−1. This result, summarized in Fig.
6, is a clear sign of the quasi-long range positional ordered
phase. In this particular case, the peak atK+Q is smaller
than theK−Q one, since the specific interaction between the
impurity and the CDW is repulsive(we would have the op-
posite asymmetry in case of an attractive interaction). We
observe that for an ideal experiment with infinite resolution
the symmetric term would be dominant, asCdsrd decays to
zero less rapidly thanCasrd. However, in a real measurement

FIG. 5. Behavior ofCdsrd. The thermal contribution saturates to
exps−fT

2 /2d, the RSB solution is valid beyondRa, while the RS one
is valid belowRa.
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the divergence in Eq.(55) is always cut by the finite resolu-
tion and both terms have to be accounted for, as the prefactor
Ku0 of the less divergent termIa is larger.

At this stage, following the analysis of the experimental
data of Ref. 14 concerning neutron diffraction spectra, it is
interesting to discuss the role played by the experimental
resolution in determining the peak shape. With the low reso-
lution achieved by means of neutrons to describe a vortex
lattice, in the above cited experiment,14 it is possible to de-
terminate the intensity spectrum only along one direction,
after performing an integration on the other two directions.
Instead, the much higher resolution reachable in x-rays ex-
periments, is in principle adequate to perform the whole
three-dimensional Fourier transform of the spectrum. For
concreteness sake, we assume a Gaussian resolution with
variancej2, wherej.Ra (the opposite case is not interesting
as the resulting peak shape is affected only by the resolu-
tion). We consider first the behavior of the direct termId in
case of a RS solution. The peak obtained from theCd

RSsrd
function is essentially independent of the resolution and has
the shape of as a squared Lorentzian of height~Ra

3 and half-
width ~1/Ra. The profile drastically change if we consider
instead the correct RSB solution. Settingh=1 we can find an
analytical expression for the experimental peak:

Id
expsK + Q + kd ~ Ra

2E
r

e−ikre−r2/2j21

r

= s2pd3/2Ra
2j

k
e−k2j2/2 erf iS kj

Î2
D , s56d

where erfisxd=−i erfsixd is the imaginary part of the error
function. This expression gives a nondivergent peak, shown

in Fig. 7, whose height is 4p f̄2K2u0
2Ra

2j2 and its half-width
,1.5034/j. We remark that the peak decays with the char-
acteristic lawq−2 only for Ra

−1,q!j−1, while a wide region
around the maximum height is dominated by the effects re-
lated to the finite resolution. In Fig. 7 we also report the
function Id

approxsqd= Id
exps0ds1−q2j2/3d. It is possible that, in a

real experiment, the signal–noise ratio is low enough to hide
the q−2 behavior. In this specific case, to put in evidence the

existence of a Bragg glass regime one should vary the
Fukuyama-Lee lengthRa.

14 In fact, if the peak shape is
Lorentzian, varyingRa produces a change both in the width
and the height of the peak, whereas if the peak follows a
power law, only its height is changed due to a variation of
Ra, while the width is fixed by the resolution.

In absence of screening, the long range Coulomb interac-
tions become important: the system is more rigid and the
upper critical dimension is shifted fromd=4 to d=3. As a
consequence, the satellite peaks become more divergent. In
particular, we find that the symmetric termId goes asymp-
totically asq−3 instead ofq−2. Moreover, the strong aniso-
tropy between the longitudinal directionsxd and the transver-
sal onessyd leads to an anisotropic scaling of the correlation
functions. We verified that ind=3 the dependence onx andy
of the correlation functions[as clearly shown in Eq.(42)]
and of the characteristic length scale Eq.(41) respects the
relation fsx,y=0d, fsx=0,y2d. As a result, in this regime,
we expect more divergent and more anisotropic peak shapes
in comparison to the ones observed in the short-range case.

On the experimental side few detailed diffraction spectra
are available at the moment. An example of prototype sys-
tems are doped blue bronzes,16 where the disorder is intro-

FIG. 8. Sketch of the experimental findings(Ref. 16). The two
satellites present an IA in agreement with our predictions, but also
an evident PA.

FIG. 6. Intensities of the different contributions to satellite
peaks. The more divergent term,Id, is symmetric.Ia is antisymmet-
ric. In this figure we consider a repulsive potential andDf .0.

FIG. 7. Dotted line: divergent peakIdsqd=q−2 for a perfect
experimental resolution. Full line: peak convolved with a finite
experimental resolution according to Eq.(56). The height of
the peak is,j2Ra

2, the half-width half-height,j−1 is also indicated.
Dashed line: an approximate form for the peakId

approxsqd= Id
expds0d

3s1−q2j2/3d.
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duced by partially replacing Mo6+ for the nonisoelectric V5+.
In this kind of system, the interactions between the CDW
and the impurities are repulsive andDf is negative. The
shape of the observed spectrum is sketched in Fig. 8. The
sign of IA is consistent with our prediction as well as with
the predictions of the strong pinning approach. However, we
also remark the presence of PA of each single satellite. The
mirror symmetry of the shape of the two peaks suggests that
the PA is originated in the correlation functionCdsrd. As we
have previously discussed, the correlation function obtained
from the FLR model with Gaussian disorder is real and pro-
duces two peaks with profile symmetry. One can wonder
what is the effect of non-Gaussian disorder. To this purpose,
we studied a one-dimensional model with a binomial distri-
bution of impurities. If we restrict to the forward scattering
term in the development(1), the problem is exactly soluble.
We find two Lorentzian peaks without PA, centered around a

vectorK± Q̃ shifted with respect toK±Q as a consequence
of the presence of odd moments in the disorder distribution.
It remains to investigate the role possibly played by the am-
plitude fluctuations. The short correlation lengths extracted
from the experimental data suggest that this particular effect
is most likely to happen in the strong pinning regime,
whereas our calculations concern the weak pinning limit.
The authors of Ref. 16 indeed justify the PA with the pres-
ence of Friedel oscillations and hence with the presence
strong fluctuations of the amplitude of the condensate, at
least in the neighborhood of the impurities.

VI. CONCLUSIONS

Summarizing, we determined the shape and the intensity
of the satellite peaks characterizing the spectrum of a pinned
charge density wave. We analyzed in detail the case of a
weak and collective disorder, when the Fukuyama-Lee-Rice
model is justified. We considered both the short-range elas-
ticity as well as the long-range elasticity generated by an
unscreened Coulomb interaction. In both these cases, we
found divergent peaks displaying intensity asymmetry. The
divergent nature of the peaks is, as it was discussed, the
clearest sign of a Bragg glass phase. Moreover, the long-
range elasticity, when present, is responsible for a larger an-
isotropy and a stronger divergence. Let us stress that the
calculated sign of the intensity asymmetry is in agreement
with the experimental data. We discussed the role played by
the finite resolution of the experimental setup, calculating the
convolved shape of the peaks, where the divergence is cut.
From these observations, we illustrated possible methods to
reveal experimentally the presence of the Bragg glass phase.
Concerning the asymmetry of the peak profile, we showed
that, on general symmetry grounds, it is not expected in the
weak pinning regime. We conjectured that its observation in
a recent experiment16 is likely due to the strong pinning
present in the measured system. Finally, we observe that the
profile asymmetry may hide the power law behavior of the
satellite peaks. It would thus be highly desirable to dispose
of measures in less disordered systems where one can expect
a Bragg glass behavior, e.g., using isoelectric impurities.
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APPENDIX A: THE TRIPLET TERM

In this appendix we discuss the behavior of the termI tripl
of the intensity development(17). This term was only con-
jectured to be negligible,18,34 before that20 a direct calcula-
tion of it was performed.

We start analyzing the symmetry properties ofI tripl show-
ing it has the same symmetry ofIa. Next we evaluateI tripl
within the RS scheme. Independently of the elasticity range,
we find that the difference between the two contributions is
given by a simpleq-independent multiplicative factor.

Applying a Fourier transform(19) we obtain

I triplsK + dqd = − 2iKDf2adE
BZ

kSdqSq1
u−dq−q1

l. sA1d

This equation gives a nonzero contribution only if we con-
sider higher harmonic terms of the electron density(1):
rsxd,r1ucucoshQfx+fsxdgj+r1ucucosh2Qfx+fsxdgj. The
two satellites take the form:

I triplsK + dqd = − 2iKDf2adkSdqfS−2dqudq + Sdqu−2dqgl.

At this stage it is evident thatI tripl has the same symmetry of
Ia. Performing the integration over the Gaussian disorder by
means of the standard replica techniques we obtain

I tripl = Df2qu0NIa
dDE

r

e−idqrfe−iQr − c.c.gCtriplsrd.

Using the usual decompositionCtriplsrd=e−B̃/2xtriplsrd we
write

xtriplsrd =
1

nT2 o
a,b,c

fe−TeBZ2fG̃−Gacge−TeBZfsG̃−Gabd+sGbc−Gabdgcosqrg.

sA2d

We introduce the replica symmetric Ansatz. It is easy to
check that forn=0

1

n
o
abc

Aabc= Aaaa− o
aÞb

sAaab+ Aaba+ Abaad + 2 o
aÞbÞc

Aabc.

Using this relation and Eq.(35) we can evaluatextriplsrd. In
order to simplify the notation we recall thatfT

2=2TeBZGc
and xsrd=f1−exps−TeBZGccosqrdg /T. From Eq. (A2) we
obtain

xtriplsrd =
xsrd

T H1 − e−fT
2/2F2 sinhSTE

BZ

Gc cosqrD + 1GJ .

Because we are interested in the long distance behavior we
remark thateBZGccosqr→0, wheneverr →`. Developing
up to the first order we get
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xtriplsrd , xsrd
1 − e−fT

2/2

T
, xsrd

fT
2

2T
, sA3d

where the last step is valid at low temperature. In fact, in this
regimeCtriplsrd andCasrd have the same behavior inr. If we
take a spherical cutoffL=2p /a, wherea is the lattice space,
the integralfT

2 / s2Td=scpad−1 is independent of the range of
the elasticity(for a→0). We can compare the two termsI tripl
and Ia, by writing the ratio between the two intensities

I tripl

Ia
= −

Df

p f̄
ÎNIa

Ra
. sA4d

For weak disorderRa@a; it follows that Ia@ I tripl.
The evaluation of this term in a more accurate RSB ap-

proach is very complicate becausextriplsrd involves the sum
over three replicas. However, in analogy withxsrd we can
argue that the RSB solution does not affect the asymptotic
power low behavior ofxtriplsrd. In Fig. 9 we summarize our

result taking the correct RSB behavior forB̃.
We conclude that the triplet term renormalizes the prefac-

tor of Ia without changing the power law behavior. In par-
ticular, whenDf .0, I tripl enhances the asymmetry between
the two satellites, while whenDf ,0, I tripl slightly decreases
the antisymmetric contribution.

APPENDIX B: CALCULATION OF †s‡

In this Appendix we determine the variational function
fsgsvd defined in Eq.(44). We start from the saddle point Eq.
(43). From Eq.(30) we know that

Bsr = 0,vd =E
BZ

G̃sqd − Gsq,vd. sB1d

The integral in the momentum space is performed in the
Brillouin zone. To simplify the analytical form of our inte-
grals the ultraviolet cutoff,L, is taken equal to infinity when-
ever it is possible(i.e., whenever the integrals are ultraviolet
convergent). Inserting Eq.(46) in the previous equation and
taking the derivative of Eq.(43) leads to the equation deter-
mining fsg:

ssvd E ddq

s2pdd

T

fGc
−1 + fsgg2 = 1. sB2d

Solving the integral for 2,d,4 sL→`d and deriving
again, one gets

fsgsvd = Ssv/vcd2/u for v , vc

fsgsvd = S for v . vc, sB3d

whereu=2−d. The values of the breakpointvc andS=cl−2

determine the crossover between a short distance regime
sx! ld, wherefsg is constant and the RS solution valid, and
the asymptotic regimesx. ld, where the physics is deter-
mined by the smallv behavior offsg. Using Eqs.(B2) and
(43), after some manipulation it is found11 for d=3:

l =
1

8p
Rae

−fT
2

vc =
T

8lc
. sB4d

We observe that the crossover between the two regimes
is l ,Ra in agreement with the dimensional result in Eq.(12).

For d=4, and more in general at the upper critical dimen-
sion, the integral in Eq.(B2) has a logarithmic ultraviolet
divergence. As discussed in Ref. 30, the behavior offsg
whenv is small is not described by a pure power law. Start-
ing from Eq.(B2) for d=4 we get

1 = ssvd E d4q

s2pd4

T

fcq2 + fsgg2

=
S4ssvdQ2

c2 E
0

Îc/fsgL

q3dq

fq2 + 1g2 ,
S4ssvdT

2c2 logScL2

fsg
D ,

sB5d

where Sd=21−dp−d/2/Gsd/2d is the angular integration ind
dimension. DefiningA=2c2/ sS4Td, we obtain after one more
derivative

FIG. 10. Continuum line: integral overq in (B8) as a function of
qx. Dotted line: limiting behaviorIfqxg→p /8qx. Finally If0g=0.5.FIG. 9. Intensities of the antisymmetric contributions to satellite

peaks. We remark thatIa@ I tripl.
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fsg =
Av

log2 fsg
cL2

,
Av

log2 Av
cL2

. sB6d

This result is valid up to log-log corrections. From Eqs.(B5)
and(43) we can estimate the crossover lengthl. In the short
distance regime, wherefsg=cl−2, it turns out:

l , L−1e8p2c2/D. sB7d

At this stage we can discuss the case of the Coulombian
long range elasticity. Starting from Eq.(B2) and using Eq.
(28) for Gc, we write

1 = ssvdE
0

Lx

dqx

2p
E
0

L

d2q

s2pd2

T

Fc1qx
2 + cq4

q2
+ ssdG2

.

To solve this equation we consider the physical case, where
Lx,Q, L,2p /a and a is the lattice space. In this limit

Lx!L so we can assumeL→` and solve the integral

1 =
Tssvd

4p2Îc3c1
E
0

Îc1cLx/fsg

dqxIfqxg

Ifqxg =E
0

`

q5dq

sqx
2 + q4 + 1d2 .

The behavior ofIfqxg is shown in Fig. 10. In conclusion, we
obtain

fsg =
Alrv

log2 fsg
Îc1cLx

,
Alrv

log2 Alrv
Îc1cLx

, sB8d

where Alr =16pÎc3c1/T. This equation is equivalent to the
one found for an isotropic system at the upper critical
dimension.
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