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Coulomb disorder in periodic systems: Effect of unscreened charged impurities
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We study the effect of unscreened charged impurities on periodic systems. We show that the long-
wavelength component of the disorder becomes long ranged and dominates static correlation functions. On the
other hand, because of the statistical tilt symmetry, dynamical properties such as pinning remain unaffected. As
a concrete example, we focus on the effect of Coulombian disorder generated by charged impurities on

three-dimensional charge density waves with nonlocal elasticity. We calculate the x-ray intensity and find that
it is identical to the one produced by thermal fluctuations in a disorder-free smectic-A phase. We discuss the

consequences of these results for experiments.
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I. INTRODUCTION

The effect of quenched disorder on various condensed
elastic systems is one of the fascinating problems in statisti-
cal mechanics. Examples of physical systems range from do-
main walls in magnetic and ferroelectric materials, contact
lines of a liquid meniscus on a rough substrate,® crack
propagation,* to vortex lattices in type-II superconductors,>®
charge density waves (CDWs),”® and Wigner crystals.>"'? In
these systems, the competition between elastic interactions
which tend to impose some long-range order in the system
and quenched disorder, leads to the formation of glassy
phases. Two broad classes of elastic systems can be distin-
guished: random manifold systems such as domain walls,
contact lines, and cracks, and periodic systems such as vor-
tex lattices, charge density waves, and Wigner crystals. The
latter are characterized by a long-range crystalline order in
the absence of disorder and thermal fluctuations. For these
systems, a crucial question is whether a weak disorder en-
tirely destroys the crystalline order, or whether some rem-
nants of the underlying periodic structure remain observable.

One of the earliest attempts to answer this question, was
the pioneering work by Larkin'? on vortex lattices. Using a
random-force model, he showed that due to the relevance of
disorder in the renormalization group sense, long range order
was entirely destroyed below four dimensions. Above four
dimensions, long range order persists as disorder becomes
irrelevant. A similar conclusion was reached by Sham and
Patton for the case of a CDW with short-range elasticity,'*
where, using an Imry-Ma approach,' they concluded that
long-range order was impossible in the presence of disorder
below four dimensions. The problem of short-range disorder
in periodic systems with short-ranged elasticity was recon-
sidered in Refs. 16—19. It was argued that the periodicity
present in systems like CDWs and vortex lattices plays a
pivotal role in determining the physics of the system in the
presence of disorder. More precisely, it was shown that,
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though the disorder is relevant below four dimensions, due to
the underlying periodicity of the system a quasi-long-range
order persisted for dimensions between 2 and 4. This is in
stark contrast to the earlier results which predicted a total
destruction of order. The resulting phase, nicknamed the
Bragg glass phase, possesses both quasi-long-range order
and metastability and glassy properties.'®!° It was further
shown that the Bragg glass phase is stable to the formation of
defects.!*2 Recent neutron scattering experiments on vortex
lattices have furnished clear evidence for the existence of
such a phase.?

A complication arises in charged periodic systems due to
the Coulomb repulsion, which renders the elasticity
nonlocal.?*~?7 This nonlocal elasticity tends to rigidify the
system, so that short-range-correlated disorder could be irrel-
evant in dimension smaller than 4.2® For instance, within the
random force model, the correlation function of the displace-
ment in three dimensions displays a logarithmic growth in-
dicating quasi-long-range order.?*~2¢ In fact, when the peri-
odic structure of the CDW is properly taken into account, the
growth of the displacement correlation function is even
weaker, increasing only as log[log(r)] with the distance r.?°
A second complication arising from Coulomb interaction is
that the disorder induced by charged impurities has long-
range correlations. This type of disorder can exist in certain
doped CDW materials*® such as K, ;Mo;_,V,0s.

In this paper, we study the effect of the competition of the
nonlocal elasticity produced by the Coulomb interaction with
the long-range random potential resulting from the presence
of charged impurities on the statics. The paper is organized
as follows. In Sec. II, we introduce a decomposition of the
Coulomb potential on the Fourier modes of the periodic
structure. With this decomposition, we show that only the
long-wavelength component of the random potential, i.e.,
forward scattering disorder, possesses long-range correla-
tions. Using statistical tilt symmetry,>! we deduce that due to
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the short-ranged nature of the backward scattering terms en-
gendered by the disorder, the dynamical properties in the
presence of charged impurities are not qualitatively different
from those in the presence of neutral short-ranged impurities.
In Sec. III, we consider the problem of the CDW system, and
we derive the nonlocal elastic Hamiltonian. In Sec. IV, we
derive the static displacement correlation functions and x-ray
intensity of the CDW with charged impurities and we high-
light the similitude of the latter to the x-ray intensity of
smectic-A liquid crystals subjected to thermal fluctuations.??
In Sec. V, we discuss the experimental significance of our
result and suggest that the smecticlike correlations should be
observable in experiments on Kj;Mo;_,V Os. Finally, we
summarize the possible behavior of the static correlators in a
pinned charge density wave according to the local or nonlo-
cal character of elasticity and the presence or absence of
charged impurities.

II. ELASTICITY AND DISORDER IN PERIODIC SYSTEMS

In this section, we discuss how Coulomb interactions af-
fect elasticity and disorder in periodic systems. For a peri-
odic elastic structure, the density can be written as

p(r) = po(r) + X &G0, (1)
G

where py(r)=py(1-V-u) describes the density fluctuation
arising from the long-wavelength deformation of the periodic
structure and p, is the average density. In the second term,
the vectors G belong to the reciprocal lattice of the perfect
periodic structure, and u(r) represents a slowly varying’?
elastic deformation of the structure.!® The quantities
¢/6lru] gescribe fluctuations of the density on the scale of
a lattice spacing. The low-energy physics of the periodic
structure can be described in terms of a purely elastic Hamil-
tonian which has the generic form for isotropic systems

Ho= f %(Vu)z )

where ¢ is the elastic coefficient and [, is a shorthand for
Jdr. This form can easily be generalized to anisotropic sys-
tems. Well-known examples of charged periodic structures
are the Wigner crystal,>~'!3334 charged colloidal crystals,*
and charge density waves.’*% In many charged systems,
unscreened Coulomb interactions are present:

2 '
che_J prp(r’) 3)
8mwe) pr |r—r'|

and strongly affect the elasticity and dispersion of the com-
pression modes of the system. Moreover, in the presence of
charged impurities, the original charge density on the lattice
interacts with the charge impurity yielding:

g J P(1) Piap(r”) "
W 4mre) o r-v|

where py,, denotes the impurity density. Using the decom-
position of the density (1), we now show that the Coulomb
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interactions fundamentally modify only the long-wavelength
components of the elasticity and of the disorder energy.

To better handle the periodicity of the elastic structure, it
is convenient to use the decomposition of the Coulomb in-
teraction in terms of the reciprocal lattice vectors G. In three
dimensions, this decomposition reads

1 d3q eiq'r )
= =3 V) (5)
4| Qem’ ¢ G ¢
where
d3q 6‘iq~1‘
V. = —_—, 6
G(r) - (277)3 (q + G)2 ( )

and [, indicates that the integral is restricted to the first
Brillouin zone. It is straightforward to check that V_g(r)
= Vg(r). Using Eq. (5), the interaction term H can be rewrit-
ten as

2
e . ’
HC _ = E VG(I' _ l,/)ezG»[u(r)—u(r )]
26-G?’IO r.r’
€2
+ —f Vo(r —1")po(r)po(r”). (7)
2e rr’

Note that due to the slow variation of u(r), terms involving
the oscillatory factors ¢G=6)T can be dropped from the in-
teraction. Let us first consider the term involving long-
wavelength fluctuations of the density. Since we are inter-
ested only in the long-wavelength properties, we can replace
the integration over the Brillouin zone in V(r) by a Gauss-

ian integration:

[
5y 27)°

with the parameter a chosen so that 7/a~ |G |, Gin being
the reciprocal lattice vector having the shortest length. In this
case, V(r) can be obtained indirectly by solving the Poisson
equation with a Gaussian charge density and is found to be

d’q )
—q 3
amC (®)

Vo(r) = ﬁ»erf(i) . )

In the limit r>a, we recover the known result V,
~1/(47r). Clearly, the nonoscillating component of the
Coulomb potential remains long ranged and tends to rigidify
the system.

It now remains to be seen whether the oscillating parts of
the Coulomb interaction specified by Vg for G are long
ranged or not. We first note that the above trick of replacing
the integration over the Brillouin zone by a Gaussian integral
over the entire space is not applicable anymore, as it would
introduce a spurious integration over a region where G+q
=0. This would result in an (incorrect) 1/r behavior of
Vg=o(r). To obtain a correct estimate for Vg we replace the
integral over the Brillouin zone by
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f (271')3 f(z )SFBZ(q"S) (10)
BZ

where Fg,(q,d) is an indefinitely derivable function with a
compact support contained in the first Brillouin zone [see
Appendix A for an explicit form of Fy,(q,5)].”> Obviously,
for G#0, Fgy(q,€)/|q+GJ? is also an indefinitely differen-
tiable function of compact support. A well-known
theorem®* then shows that the Fourier transform of
Fp/q.€)/|q+G|? is indefinitely differentiable and for r— oo
is o(1/r") for any n>0. This implies that the function V(r)
is short ranged. Incorporating the above results in Eq. (7), we
see that while the nonoscillating part of the Coulomb inter-
action modifies the long-wavelength behavior of the elastic-
ity, rendering it nonlocal, the short-ranged nature of the os-
cillatory terms merely renormalizes the elastic coefficients.
This is explicitly shown in Appendix B for the particular
case of a CDW. The resulting nonlocal character of the elas-
tic interactions modifies strongly the static and dynamic
properties of the system.?”-2%41:42

To understand the nature of the interaction with the
charged impurities, we use the above procedure to rewrite
the random potential generated by the impurities as

d’q " pinp(q)
U(r) = f o7 qz ,
=2, e CTUG(r). (11)
G

Using this in Eq. (4), the interaction of the system with the
random potential is given by

2
Hu= S UG(r>e"G'“<” += J Uo(r)po(r). (12)
€ G#0 €Jr

In Eq. (12), the interaction of p, with the random potential
U, is called forward scattering, and the terms containing
€60 are called backward scattering. This nomenclature
originates in the theory of electrons in one-dimensional (1D)
random potential.*> To calculate the disorder correlation
functions, we consider the case of Gaussian distributed im-
purities where* p;, (G +q)pimy(G'+q')=(2m)°D g g 8(q
+q’), the parameter D measuring the disorder strength. Con-
sequently, we find that for G # 0

_— d3q eiq~(r—r')
Ug(r)U_g(r") = DfBZ (277)3—((1 A (13)

Using the same arguments as before, we infer that the corre-
lations of Ug(r) are short ranged, as in the case of neutral
impurities, for all G except G=0. This implies that the back-
ward scattering terms induced by disorder are short ranged
and the treatment of these terms within the replica or the
Martin-Siggia-Rose**® methods is identical to the case of
neutral or screened impurities. However, the G=0 compo-
nent

PHYSICAL REVIEW B 73, 035112 (2006)

3 iqr

d
oy g Pl (14)
BZ

manifests power law decay of the forward scattering corre-
lations. This term however can be gauged out by the statis-
tical tilt symmetry,' and affects mainly the static properties
of the periodic system. Typically, in periodic systems with
both short-range disorder and local elasticity, the contribu-
tion of the forward scattering disorder can be neglected and it
is the backward scattering that induces collective pinning
and Bragg glass features like a quasi order in the static cor-
relation functions. Here, we have shown that even in the case
of long-range disorder, the backward scattering terms behave
essentially like their short-ranged (neutral impurities) coun-
terparts. However, the effect of the forward scattering terms
on the correlation functions has to be studied carefully. In the
next section, we show that in the case of charged impurities
in a charge density wave system, the forward scattering term
strongly modifies the static correlation. Finally, we remark
that our decomposition of the elastic energy and the impurity
potential is not exclusive to the Coulomb potential and is
applicable to other long-range potentials. As a result, the
conclusions of the present sections are expected to be valid
for more general long-range potentials.

Uy(r) =

III. CHARGE DENSITY WAVES

In this section, we rederive the elastic Hamiltonian for a
three-dimensional CDW with screened Coulomb interactions
between the density fluctuations at zero temperature. We
consider an incommensurate CDW, in which the electron
density is modulated by a modulation vector Q incommen-
surate with the underlying crystal lattice. In this phase, the
electron density has the following form:®

p(r) = po + S)

Q- Vo(r)+pycos[Q -1+ ¢(r)], (15)
where p, is the average electronic density (see Appendix C
for details). The second term in Eq. (15) is the long-
wavelength density and corresponds to variations of the den-
sity over scales larger than Q~!. The last oscillating term
describes the sinusoidal deformation of the density at a scale
of the order of Q7! induced by the formation of the CDW
with amplitude p; and phase ¢.

In the absence of Coulomb interactions, the low energy
properties of the CDW can be described by an effective
Hamiltonian for phase fluctuations. For CDW aligned along

the x axis, i.e., Q=Qx, this phase-only Hamiltonian
reads*70
hvgn, 2 v?
Hy= 4F f (((9 P+ ;(ay¢)2+v—§(az¢)2), (16)

where v is the Fermi velocity and n,. is the number of chains
per unit surface that crosses a plane orthogonal to Q. The
velocity of the phason excitations parallel to Q is v,
=(m,/m+)"?v; with m" the effective mass of the CDW and
m, the mass of an electron. v, and v, denote the phason
velocities in the transverse directions. A crucial observation
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is that a deformation of ¢(r) along Q produces an imbalance
of the electronic charge density which then augments the
electrostatic energy due to Coulomb repulsion between den-
sity fluctuations. We evaluate the contribution of Coulomb
interactions screened beyond the characteristic length A
which accounts for the presence of free carriers. This length
diverges in the limit 7— 0.3°2 The electrostatic energy takes
the form:

e (17)

where we have assumed for simplicity an isotropic dielectric
permittivity € of the host medium.?*?331-335% Dye to the pe-
riodicity of the CDW system, we can use the decomposition
of the Coulomb potential derived in Sec. II, obtaining

J [V_o(r —r)el?W=41 cc ] (18)
rr’

2 2 —\r —r'|/\
He= e”)J. 0. (0) =0, (")
8meQ” ) p r -

€2P1
4L
2€

In Eq. (18), we have neglected the contribution of the higher
harmonics of the CDW. Note that the oscillating terms, as
discussed in Appendix B, only contribute to a renormaliza-
tion of the coefficients in the short-range elastic Hamiltonian
(16) and thus can be neglected. However, the contribution of
the long-wavelength term has more dramatic effects and
reads

0y f i’q q
Hq= L 2, 19

It is interesting to note that Coulomb interactions generate a
nonlocal elasticity, i.e., a ¢ dispersion in the elastic constant.
The total Hamiltonian now reads

Hy =Hy+H, —lf q G (20)
el. — 410 Cc— 2 (277)3
nAuvp q v? v?
G_1 _ ¢ ( X + 2+ Zy 2+ -z g
(@)=""" FrrHe T 20t
where the length scale ¢ is defined by
) nchUF 2
=——50€. 21
€=l (21)

Depending on the ratio N/ &, two regimes of behavior can be
identified. (i) Short-ranged elasticity: when N/ ¢<<1 the Cou-
lomb correction to the short-range elasticity is small even in
the limit ¢— 0 and hence can be neglected. (ii) Long-range
elasticity: for N/£> 1, the Coulomb correction to the short-
range elasticity cannot be neglected. This regime is relevant
at low temperatures, when the number of free carriers avail-
able to screen the Coulomb interaction is suppressed by the
CDW gap.>!? Mean field calculations show that this regime
is obtained for temperatures 7<<0.27,. where T.. is the Peierls
transition temperature.’”> In the following, we focus on re-
gime (ii), and accordingly, we take A~'=0 in Eq. (20).
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IV. FORWARD SCATTERING

As discussed in Sec. I, the case of the short-ranged elas-
ticity has been studied by various authors. For charged peri-
odic systems with short-range disorder and a nonlocal elas-
ticity generated by Coulomb interactions, it is known that the
upper critical dimension is three for disorder and the dis-
placement correlations grow as B(r)=log logAr.?%?° Here,
we study the effect of the long-range disorder on the static
correlations of a charged periodic system. Since, the back-
ward scattering terms generated by such a disorder are short
ranged, they lead to the same physics as that of short-ranged
disorder with the corresponding nonlocal elasticity. These
terms contribute a log logr term to the displacement correla-
tions. However, in this case a simple dimensional analysis
shows that the forward scattering terms generate the leading
contribution to the correlation functions. In the following, we
calculate the contribution of the forward scattering disorder
to the displacement correlation function in CDW.

A. Displacement correlation functions

The displacement correlation function is defined by

B = T60) ~ GO = =3 [@H@d a1 ~cos -]
q

(22)

The calculation of the correlation induced by the forward
scattering disorder is analogous to the calculation of Larkin
for the random force model.'3 Assuming an infinite screening
length N, the Hamiltonian reads:

H=Hy+ f p‘—“"’r(i)%('r. (23)

Using Eq. (15) in Eq. (23), we obtain an expression of the
form Eq. (12). Keeping only the forward scattering term we
get

& G_] i
Q;(ZMWZWmew@.
(24)
Shifting the field ¢
iqg.G
ama>em%@%m (25)

brings the Hamiltonian (24) back to the form of Eq. (20).
The average over disorder now yields

(d(q)d(-q))
Po 0 4G (q)2

- <¢(Q) ¢(_ Q)> plmp(q)plmp( ‘I)

*py Q§G(q)2 D) 26)

_L3(TG( )+ 72 o4

where (- ) and ... denote thermal average and disorder av-
erage, respectlvely Equation (25) shows that even in the
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presence of Coulombian disorder, the statistical tilt
symmetry> is preserved. This implies that in the presence of
backward scattering disorder, the forward scattering term can
be gauged out by Eq. (25), and the contribution of the for-
ward scattering disorder B is simply added to the one ob-
tained from the backward scattering disorder, B?5.2%5¢ We
conclude

Pq 4,G(q)’

o
0 . [1-cos(q-1)].

0*é ] 2n)}

BFS(r)=2D

(27)

We want to evaluate this integral for the case of v,=v_=v .
In the following we will use qi=q§+q§. To obtain the
asymptotic behavior of B(r) for r— o we need to consider
the ¢— 0 limit of the integrand. The form of G(q) suggests a
scaling g, ~ qi which then allows us to consider the integral

[ dq 4,
N F s R

1 g ,
=—{ln[1+(ALrL)2]+E1< & )+e-ri/<4lx§ >},

167¢' 4x| &’
(28)
where ¢'=6v | /v,, ri: y*+z? and A | is a momentum cutoff.

A study of the limits of this function for r, —o and |x|
— o shows that its asymptotic behavior is well described by

2
+4 /
F(r) ~ Ox ln( x (vf2|x|§ vJ ) (29)
167v € AT
Therefore, we have for r— oo,
2
+4 /U,
BFS(I‘) =K IH<L2|X|§U)) ) (30)
A
i
where
D 2
Q vx (31)

K= —2.
167T§povi

The full asymptotic correlation function is given by the sum
of the forward scattering contribution, Eq. (30), and the
backward scattering contribution given in Eq. (51) of Ref. 29
for the case of a short-range disorder and nonlocal elasticity:

BB3(r) = log(log{max[Alx|,(Ar,)?]}). (32)

Obviously, the contribution of the backward scattering terms
is subdominant and can be neglected.

B. Analogy with smectic-A crystals

We note that the result Eq. (29) can be obtained in the
entirely different context of liquid crystals. If we consider a
smectic-A liquid crystal, its elastic free energy reads>’-¢°

Fus f (%szu)%%kn(muv), (33)

where u represents the displacement of the smectic layers, B
is the compressibility, and k;; measures the bending energy
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of the smectic layers. If we now assume a random compres-
sion force given by:

]:dis=f 7(r)du(r), (34)

7(r)n(r’) =Dd(r —r'), (35)

a straightforward calculation shows that the displacement
correlation function [u(r)—u(0)]> is given by Eq. (29).
Smectic-A crystals with disorder have been considered pre-
viously in Ref. 61 albeit with a different type of disorder
coupling to V  u. This yields a displacement correlation
function superficially similar to F(r) with ¢> replacing ¢* in
the numerator. The random compression force, which is not
natural in the smectic-A context, is thus easily realized with
charge density wave systems.

V. EXPERIMENTAL IMPLICATIONS

In the preceding sections, we have shown that the forward
scattering terms generated by charged impurities lead to
smecticlike order in a charge density wave material. A fre-
quently used technique to characterize positional correlations
in CDW systems is x-ray diffraction.®? In the present section,
we provide a calculation of the x-ray intensity resulting from
such a smecticlike order, and we provide a quantitative esti-
mate of the exponent «.

A. X-ray intensity

The intensity of the x-ray spectrum is given by®

1 . .
I(q) = EE T RR)(f, e~y (36)
i,j

u; is the atom displacement from the equilibrium position R;,
fi represents the total amplitude scattered by the atom at the
position i and depends exclusively on the atom type. We
consider the simple case of a disordered crystal, made of one

kind of atom, characterized by the scattering factor J_‘— Af12,

and containing impurities of scattering factor f+Af/2. Since
we are interested in the behavior of the scattering intensity
near a Bragg peak (¢~K), we can use the continuum
approximation.?® In the case of the CDW, the lattice modu-
lation is given by

u(r) = gax{cos[gx + B0}, (37)

It is well known that the presence of a CDW in the com-
pound is associated with the appearance of two asymmetric
satellites at positions g ~K=+Q around each Bragg peak.®”
The intensity profiles of these satellites give access to the
structural properties of the CDW. For this reason a lot of
work has been done to compute and measure these
intensities.??3%-366465 By expanding Eq. (36) for low ¢(u;
—u;), one finds an expression of the x-ray satellite intensity
comprising a part /3, which is symmetric under inversion
around the Bragg vector K and a part /, which is antisym-
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metric under the same transformation.? The symmetric part
is given by the following correlation function:

L) =f*q* f e u(r/2)u(-r/2)), (38)
r
and the antisymmetric part by

a-(bXc) =2¢Af Im fre X pinn(T/2)u(=1/2)),

(39)

where 8g=(q—K)~Q, and a-(bXc¢) is the volume of the
unit cell of the crystal. After some manipulations, Eq. (38)
can be rewritten as

L(K+Q+k)= uéle(zf e *TCy(r),

r

IL(K+Q+Kk)= —j_fKquf\//\ﬁf e KTC (r)  (40)

r

where A is the number of impurities in the unit cell, and

Cd(r) — <ei G(r/2)—p(-r/2 ) (41)
=CP3(r)CB(r), (42)
C,(r) = x(r)Cy(r), (43)

where x(r) is defined by Eq. (33) of Ref. 29. It is easy to
show, using this definition and the statistical tilt symmetry
that x(r) is independent of the forward scattering disorder. In
Eq. (41), C5® is the backward scattering contribution which
has been obtained in Ref. 29, and c}js is the forward scatter-

ing contribution, given by
A—2 K
- ) , (44)

rzL + 4(UL|X|§/UX)

C(r) = (

where we have used Eq. (30), assuming a Gaussian disorder.
Using Eq. (32), one sees that the term C5° gives only a
logarithmic correction to Eq. (41). As a result, the symmetric
structure factor /; is dominated by the contribution of the
forward scattering disorder. To obtain the structure factor, we
Fourier transform Eq. (44) to obtain

-1\ 2k 2
14(q) = dzrieimn(A—i) Dibx
ry 28v |

f e du (Iqxlrivx )
X Ccos uj.
0 (1 + lfi)y 4§UL

Using the relation

¥ du )&”J*” v?
M)=——| dve™ 45
fo (ray M=), P @

we finally obtain
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K-Q K K+Q
FIG. 1. A sketch of the x-ray intensity in a CDW with Coulomb

elasticity and charged impurities for K,Q parallel to the chain di-
rection. We have taken k=0.5 in the expressions of /, and /.

w(lg A7) AT
226D (k) (v, o)<

Iy(q) =

+% Wl—K N
X J dwa—e & I 2l (46)
0 wo+1

so that Iy(q)~(lg,})*? for ¢°(év,/v)<l|q,] and I4(q)
~ (g, |)***=?) otherwise. The intensity I,(q=0) is divergent
for k<2 but is finite for k> 2, i.e., for strong disorder. Next,
we turn to the evaluation of /,. From Ref. 29, we know that
x(r)~1/x when x¢é>r% and x(r)~1/r> when |x|é<r?.
This implies that /,, is subdominant in comparison with /,. In
particular, I,(q)~(|g,)*" for ¢’ (&, /v,)<l|q,] and I,(q)
~(Jg . |)***=V otherwise. We illustrate the behavior of the
x-ray intensities on Fig. 1.

We note that these intensities are remarkably similar to
those of a disorder-free smectic-A liquid crystal®” at positive
temperature. In fact, the expression of the exponent « Eq.
(31) is analogous to the expression (5.3.12) in Ref. 59, with
the disorder strength D playing the role of the temperature
kgT in the smectic-A liquid crystal.

B. Estimate of the exponent «

Let us turn to an estimate of the exponent « appearing in
the intensities to determine whether such smecticlike inten-
sities are indeed observable in experiments. To do this, we
first need to determine whether Coulomb interactions are un-
screened by comparing the screening length with & given by
Eq. (21). This question is relevant only to a material with a
full gap, in which free uncondensed electrons cannot screen
charged impurities. A good candidate is the blue bronze ma-
terial Ky3MoO3 which has a full gap, and is well character-
ized experimentally. We now evaluate the quantity & for this
material. Using the parameters of Ref. 66:

n.=10% chains/m?, (47)
vp=13X10°ms™!, (48)
po=3 X 10?7 e7/m?, (49)

0=6x%x10"m™, (50)

and a relative permittivity of €k, 3M00?:1, so that € in Eq.
(21) is equal to the permittivity of the vacuum, we obtain &
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TABLE I. The different cases with short-range and long-range
random potential and elasticity. »=1 is the Bragg glass exponent
(Ref. 68). k is defined in Eq. (31).

Disorder
Elasticity Short range Long range
Local I(q)~q™> Lig)~q
Nonlocal Unphysical L(q,) ~ g2

L(g ) ~|q, P2

=5 A. Therefore, the screening length can be large com-
pared to & at low temperature, and we expect that Coulom-
bian effects will play an important role in this material. We
can use this value of ¢ to evaluate the exponent « in Eq. (31).
For the doped material K,3;Mo;_,V,05, we find that the dis-
order strength can be expressed as a function of the doping
and obtain

(No. of Mo atoms/unit cell)
D=x(1-x) . (51)
a-(bXe)

This formula is derived in Appendix E. For the crystal pa-
rameters, a=18.25 A, b=7.56 A, ¢=9.86 A, B=117.53°%"
with 20 molybdenum atoms per unit cell, and a doping
x=3%, the disorder strength D=4.8 X 10%® m~3. Moreover,
using the experimental bounds of the velocities, 3.6
X102 ms'<v, <1.6X10*ms™" and v,=3.7X10° m s/,
we find that « is in the range 0.16-0.8. Therefore, the smec-
ticlike order should be observable in x-ray diffraction mea-
surements on this material.

VI. CONCLUSION

In this paper, we have introduced a decomposition of the
disorder induced by charged impurities in terms of the recip-
rocal lattice vectors of a periodic charged elastic system.
Using this decomposition, we have shown that only the long
wavelength (forward scattering) component of the disorder
was long-range correlated. Components with wave vectors
commensurate with the reciprocal lattice of the periodic elas-
tic system remain short ranged. The latter can thus be treated
with the standard techniques developed for impurities pro-
ducing short range forces.'” We find that only the forward
scattering is affected by the long-range character of the
forces created by charged impurities. Due to the statistical tilt
symmetry, this implies that only the statics of the periodic
elastic system is modified by Coulombian disorder. This has
allowed us to obtain a full picture of the statics of three-
dimensional charge density wave systems in the presence of
charged and neutral impurities. The results are summarized
in Table I. A remarkable result is that in the case of charged
impurities in a system with unscreened Coulomb elasticity,
the x-ray intensity turns out to be identical to that produced
by thermal fluctuations in a smectic-A liquid crystal,*? with
the disorder strength playing the role of an effective tempera-
ture. This behavior of the scattering intensity should be ob-
servable in the blue bronze material Kj,3MoO; doped with
charged impurities such as vanadium.
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FIG. 2. The graph of the function F 4(qa/ ), of compact support
for a value of 6=0.1 (solid line). Dotted lines represent
Fs(ga/w+2). We can graphically check the validity of Eq. (A3).
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APPENDIX A: DECOMPOSITION OF THE COULOMB
POTENTIAL

In this appendix, we provide an explicit decomposition of
the Coulomb potential using infinitely differentiable func-
tions of compact support.® First, let us discuss a simple de-
composition in 1D. We consider the function F5(x) (see Fig.
2) such that

Fyx)=Fs-x),

1. 0<x=>1,
1 2(1-x) )
Fox)=9 =| | —tanh{| ———= ||, |x-1]|< 3§,
ol¥) 2[ an((x—l)2+52] e=1]
0, x>1+56.
(A1)

It is easy to check that F5is continuous, infinitely differen-
tiable, and that

> Fs(x-2n)=1.

n=—0

(A2)

Applying this formula to a one-dimensional reciprocal
space, we obtain

(A3)

i.e., we have constructed explicitly a partition of the unity.®”
The generalization to a cubic lattice in a three dimensional
space is obvious:
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I e R C e

a 2mn
XFa(—(qz— z>)=EFBZ(q—G,5>=1.
T a G

(A4)

The function F%D has a compact support, and vanishes rap-
idly outside the Brillouin zone. Using this decomposition in
Eq. (5) for fixed & with & sufficiently small, we avoid the
oscillations induced by having a hard cutoff on the edge of
the Brillouin zone.

APPENDIX B: CONTRIBUTION OF THE OSCILLATING
COMPONENTS OF THE DENSITY TO THE
ELASTIC HAMILTONIAN IN THE PRESENCE

OF COULOMB INTERACTION

In this appendix, we calculate the contribution of the os-
cillating terms to the Hamiltonian of the charge density wave
with unscreened Coulomb interactions, Eq. (17), and show
that they only induce corrections to the short-range elasticity.
Inserting the expression of the density, Eq. (15), in Eq. (7),
the contribution of the oscillating component of wave vector
Q is given by

Hosc_ip%E dx dx'V ’ '
¢ = xdx'Vo(x—x",n-n")
nn’

Xcos[ ¢(x,n) — p(x',n’)], (B1)

where we have reestablished the discrete character of the

transverse dimension y. Both the intrachain (n=n’) and the

interchain (n# n’) contributions are short ranged. Let us first

consider the case of n#n’. We have to compute integrals
l(‘]x"ﬂh ‘n)

Volm) = fz o Vg d

To evaluate the above integral in closed form, we need to
make some approximations. Since F g4 vanishes for Q+¢,=0,
we can neglect g, compared to Q in this integral. Then, we
can extend the integration over the whole reciprocal space
without encountering any singularity. The ¢, integration pro-
duces a 8(x) function, and the ¢, integration gives

(B2)

Ko(Q\(n,€,)* + (n€.)%)
2

VQ(X,n) = 5(~x)a (B3)

where €, and €, are interchain spacings. Due to the exponen-
tial decay of the interchain interaction with the distance, it is
justified to neglect interchain interactions beyond nearest
neighbors. The logarithmic divergence in Eq. (B3) for n=0
is an artifact of the approximation we make when we inte-
grate over the entire reciprocal space instead of the first Bril-
louin zone. A more refined estimate yields a finite, short-
ranged intrachain contribution. The short range contribution
in the electrostatic energy thus reads
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FIG. 3. The ground state of an array of CDWs coupled by a
repulsive interaction.

HY = 2 J, f dx, cos[¢(x,n+e,) — ¢(x,n)]

+ > J Vo(x —x",0)dx dx" cos[ ¢(x,n) — ¢p(x,n)],

(B4)

where
Ja ——KO(Q€) (B5)
In Eq. (B4), we expand cos[d(x,n)—¢(x',n)]~1

—(x=x")%/2[d,¢(x,n)]* to show that the backscattering term
reduces to short-ranged elastic forces. Making ¢(x,n)

=(x,n)+n,m+n,m, we can make the sign in front of J,

negative, and obtain the ground state for ¢=0. In its ground
state, the CDW is out of phase on two nearest neighbor
chains. This ground state is represented in Fig. 3. The exci-
tations above this ground state are described by the Lagrang-
ian (D3) derived in Appendix D.

APPENDIX C: ZERO-TEMPERATURE LIMIT OF THE
CHARGE DENSITY IN A CDW

In the present appendix, we discuss the zero-temperature
limit of the expression of the charge density in a CDW. Let
us consider the form of the charge density in the presence of
a nonuniform ¢. It is given>*77%7! by the expression

p( |Ylcos(Qx + p(r))  (C1)

pOﬁc
Q X
where py is the average electron density,
amplitude at 7=0,
CDW order by thermal fluctuations (|¢/|=1 at T=0), the fac-
tor p,. takes into account the presence of noncondensed
electrons’! at finite temperature (at T=0, p,=1) and Q=2k.
Using the relation kp=(7/2)py, valid in a one-dimensional
system, one can see that this relation simplifies (at 7=0) to

%
=

p; is the condensate

op= (C2)

The relation (C2) is well known in the bosonization treat-
ment of one-dimensional interacting Fermi systems.** In the
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paper, we consider temperatures very low compared to the
Peierls transition temperature, and we take |¢/|=1, p.=1. This
yields Eq. (15).

APPENDIX D: DERIVATION OF THE HAMILTONIAN
OF A THREE-DIMENSIONAL CHARGE DENSITY WAVE

In this appendix, we provide a derivation of the Hamil-
tonian of a three dimensional CDW starting from the original
Fukuyama one-dimensional description. The Lagrangian of a
CDW in a single chain is given by*’

ﬁ——fd(wd))z—(ﬂcb))
4ar Uy

Obviously, this Lagrangian describes phason waves propa-
gating with the velocity vy. vy is the Fermi velocity of the
electrons forming the CDW and ¢ is the phase of the CDW.
We define an effective mass m" by

(D1)

2 *
v m
—<== (D2)
vy M,

where m, is the electron mass.

In a three-dimensional CDW with screened Coulomb in-
teractions, the chains are coupled by a backscattering inter-
action. The resulting Lagrangian reads

2
c=53 [ (—"”) 092 e

+E > J(n,n’ )fdxcos[gb(x n) — ¢(x,n’)],

(n.n")

(D3)

where J(n,n’) is short ranged and is given by Eq. (B5).
Expanding the cosines,

cos[p(x,n) — p(x,n +ey)]
1 [¢(x,n) - Qs(x’n +ey)] + 0(v§)
e
-0, + 00,0, (D4)
and defining
hopve. G (D3)
4 vfb a2

the Lagrangian in Eq. (D3) can be rewritten as>

% v2 2
£=3 4LF dx ((‘?—"’) — () - ;(ayqs)z - “—;(ayd))Z) .

n 7 Vg ) )
(D6)

The sum over lattice sites in the transverse direction can be
replaced by an integral, by writing
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(&,d))z 5 U_% 5 v2 2)
L= 47T€\€ZJ;‘< vé - (0:¢)" - Ué(a}‘ﬁ) —;%(z?yqb) .
(D7)

The phason dispersion is now w(q.)zzvfﬁqi+ v§q§+vzq§. The
momentum conjugate to ¢ is obtained by the usual relation

oL _ ﬁU F
80,p)  2mvye L,
yielding the Hamiltonian

oy f (471%3,(6},@)2

Tame )\ w0l

1=

9, (D8)

IT? + (9,¢0)*

vl v:

+ 2(@@2 + ;z(aysé)z) : (D9)
From the Hamiltonian Eq. (D9), it is straightforward to ob-
tain the Debye-Waller factor associated with the zero-point
fluctuations of the phase ¢. In the 1sotroplc case, v,=v,
=vy, one finds that (cos ¢(x))r_o~e” Clme!m)'2 G here C
~ /4 is a dimensionless constant of order 1. Due to the
smallness of the ratio m,/m”~ 1072, the zero-point motion
can be neglected, and the kinetic term «II? in Eq. (D9) can
be dropped. This leads to the Hamiltonian (16).

APPENDIX E: ESTIMATION OF THE DISORDER
STRENGTH

Here, we give an estimation of the disorder strength D in
doped KMo,_,V,0;. We assume a binomial distribution of
vanadium impurities on the molybdenum sites. The vana-
dium impurities carry an extra electron compared to the mo-
lybdenum ions. The resulting charge density fluctuation
reads

op(r) = E (x=0;,)8r-R;,), (ED)

where 7 is the index of the cell and « is the index of the
molybdenum site in a given cell. o; ,=0 if the site is occu-
pied by a molybdenum ion, and o; ,=1 if it is occupied by a
vanadium impurity. By construction, the expectation value of
Op(r) is zero. We estimate the second moment of Sp(r) as

o) op(r) = X (v, (x = 0,80~ R, )5 ~R; )
i.j,a.B

=x(1-20)2 (r—R; )&r 1), (E2)

where we have used the property that (x—o;,)(x-0 B)
=6, 6, glx—0; p)*. The expectation value of 2, ,8(r—R; a) is
s1mply the number of molybdenum ions per unit volume,
leading to the formula Eq. (51).
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