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We study numerically the relaxation of a driven elastic string in a two-dimensional pinning landscape. The
relaxation of the string, initially flat, is governed by a growing length L�t� separating the short steady-state
equilibrated length scales from the large length scales that keep memory of the initial condition. We find a
macroscopic short time regime where relaxation is universal, both above and below the depinning threshold,
different from the one expected for standard critical phenomena. Below the threshold, the zero-temperature
relaxation towards the first pinned configuration provides an experimentally convenient way to access all the
critical exponents of the depinning transition independently.
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The study of the dynamics of elastic interfaces in disor-
dered media is relevant for diverse experimental situations
ranging from magnetic1–3 or ferroelectric4,5 domain walls,
contact lines of liquid menisci on a rough substrate,6 to crack
propagation.7,8 A fundamental problem is the response of
these systems to external fields which pull the elastic inter-
face with a force f .

Considerable progress has been made in understanding
the steady-state dynamics under the applied force. At zero
temperature, the system is pinned by the disorder and the
velocity of the interface remains zero up to a critical force fc.
Above fc the system undergoes a depinning transition9–13 and
moves with a nonzero average velocity. Fisher viewed the
depinning transition as a critical phenomenon14: the driving
force f plays the role of the control parameter, the mean
velocity v is the order parameter vanishing at fc with an
exponent �, and the divergent correlation length � f ��f
− fc�−� can be defined from the velocity-velocity correlation
function.13 The analogy of the depinning transition with stan-
dard critical phenomena has been, however, recently chal-
lenged. By studying the low-temperature limit of the steady-
state motion it was found that no divergent length scale
exists below threshold.15

The nonsteady dynamics, although experimentally rel-
evant, has received less attention. Recently, Schehr and Le
Doussal16 investigated this regime for an interface initially
flat by analyzing two-time correlation functions, as f → fc

+.
Their functional renormalization group calculations show
that the transient dynamics displays universal behavior. Be-
low threshold, numerical studies of the zero-temperature re-
laxation towards the pinned state have identified a length
scale � f diverging with the exponent � at fc.

17,18 In Ref. 15 it
was shown that this length � f does not affect steady-state
properties, but describes transient processes �deterministic
avalanches triggered by thermally activated events� during
the steady-state low-temperature motion for f � fc, and it is
ultimately related to the vanishing of the density of meta-
stable states as one approaches fc. The f =0 relaxation to-
wards equilibrium at finite temperature has been studied both
numerically19–23 and analytically.24,25

In the present paper we analyze the transient dynamics of

an interface pulled with a finite force close to fc and show
that it is a powerful method to extract the critical properties
of the depinning transition. Indeed, the analysis of the relax-
ation dynamics has been used extensively to study equilib-
rium critical phenomena.26 The basic idea behind this dy-
namic approach is the existence of a growing length L�t�. Let
us use for simplicity the example of the Ising model: the
system is prepared in the ground state, characterized by a
global magnetization m=1, and at t=0 it is annealed at a
temperature T, close to the critical point Tc. The global mag-
netization m relaxes to its equilibrium value following a time
evolution controlled by L�t�: for lengths below L�t� the sys-
tem is equilibrated, while for lengths larger that L�t� the sys-
tem keeps memory of the t=0 initial condition. After a mi-
croscopic time, the relaxation is governed by the dynamical
exponent z and L�t�� t1/z before reaching the equilibrium
correlation length. In this macroscopic time regime scaling
arguments lead to a universal behavior for the relaxation of
the order parameter, although the system is far from its equi-
librium state.26 Analogously, if we assume the presence of
such a growing length L�t� in the transient regime of an
initially flat driven elastic interface, the scaling form for the
relaxation of the velocity is given by

v�t, f� = � f
−�/�F„L�t�/� f… , �1�

where the function F�s��s−�/� for small s. When s�1,
F�s��const for f � fc, in order to get the steady-state veloc-
ity v��f − fc��; for f � fc, where the order parameter is zero
at T=0, F�s� must be modified to take into account the ex-
ponential decay of the velocity. In standard phase transitions,
a scaling form equivalent to Eq. �1� describes, in general, the
evolution of the order parameter. In this paper we show that
the scaling form �1� describes the relaxation near depinning,
but in a nonstandard way. While in standard critical phenom-
ena � f represents the correlation length on each side of the
transition, for depinning � f represents the steady-state corre-
lation length only above threshold but a purely transient cor-
relation length below threshold, absent in the steady-state
geometry of the line.15 With this identification of the relevant
lengths the analysis of the transient gives access to all the
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critical exponents of the transition. To make the study more
transparent we consider only the case of strictly zero tem-
perature, in which the interface relaxes deterministically to-
wards a final pinned configuration without reaching any
steady state below threshold, thus probing transient deter-
ministic dynamics only. We also restrict ourselves here to the
simple case of a string with short-range elasticity moving in
a two-dimensional random landscape, but our method natu-
rally applies to higher-dimensional systems as well.

The string is described by a single-valued function u�x , t�,
which measures its transverse displacement u from the x axis
at given time t. The equation of motion is given by

�tu�x,t� = �x
2u�x,t� + Fp�u,x� + f , �2�

where Fp�u ,x� is the pinning force with correlations
Fp�u ,x�Fp�u� ,x��=��u−u����x−x��, the overbar represents
the average on the disorder realization, and ��x� is a short-
ranged function. In our simulations we have set this range
equal to 1, analyzed system sizes up to L=2048, and results
were averaged from 2000 to 10 000 disorder realizations. For
a fixed force f � fc we let evolve an initially flat line
u�x ,0�=0, up to its final pinned configuration, which can be
detected by a very efficient algorithm in polynomial time.27

The geometrical properties of the line can be described using
the averaged structure factor, which for a general configura-
tion is defined as

Sf�q,t� =�� 1

L
�

0

L

dzu�x,t�e−iqx�2� , �3�

where L is the length of the line, q=2	n /L, with n
=1, . . . ,L−1. For a self-affine line we have S�q��q−�1+2
�,
thus yielding the roughness exponent 
. In Fig. 1�a� we show
the structure factor of the pinned line Sf�q��Sf�q , � � for
different values of f � fc. Two regimes can be identified: at
small length scales, the geometry of the line becomes self-
affine and it is characterized by the depinning roughness ex-
ponent 
	1.25.34 At large length scales Sf�q� reaches a pla-
teau which represents the memory of the initial flat
condition. As shown by the perfect collapse in the inset,
Sf�q� is governed by a single length � f, given by the cross-
over between these two regimes. In Fig. 1�b� we see that the
crossover length increases with the force, diverging with the
depinning exponent � at a finite value, identified with the
threshold fc. Small deviations from this behavior are ob-
served at very small forces and whenever the crossover
length approaches the system size L. Using the finite-size
analysis of Fig. 1�b� we can easily extrapolate the value of
the critical force for the infinite system and identify the
crossover length with � f. This length corresponds to the size
of the minimal string rearrangement needed to reach a meta-
stable configuration from the flat one, and its divergence is
due to the vanishing density of metastable states approaching
fc from below. � f can be associated with the divergent length
found in Refs. 17 and 18 and with the size of the determin-
istic avalanches in the steady-state motion.15 In the following
we show that although � f does not affect steady-state prop-
erties below threshold,15 it affects the transient relaxation.

Let us now analyze the time evolution of the line towards

the final pinned configuration for f � fc and to the sliding
steady state for f � fc. For this purpose we solve numerically
Eq. �2� by using a second-order Runge-Kutta method. In Fig.
2�a� we show the typical evolution of Sf�q , t� for a force f
=1.80. Once again, two roughness regimes are observed, one
corresponding to the memory of the flat initial configuration
and the other to the depinning roughness 
=1.25. As we can
see in the inset, a growing length scale, identified with L�t�,
governs the time evolution. In Fig. 2�b� we show the time
evolution of L�t� for forces above and below the threshold.
We can distinguish three regimes for the evolution of L�t�.
After a first microscopic time regime where the line is prac-
tically flat, we find a macroscopic short time regime where
the growth of L�t� is controlled by the depinning dynamical
exponent z�1.5, as L�t�� t1/z. This result shows that the
depinning transition is characterized by a universal short-
time relaxation. The crossover to the third regime occurs
when L�t��� f, after which we can distinguish the relaxation
above or below threshold. For f � fc, L�t� saturates to � f, the
characteristic length of the final pinned configuration. For f
� fc, L�t� continues to grow as L�t�� t1/2. The thermal dy-
namical exponent z=2 is produced by the finite velocity,

FIG. 1. �a� Structure factor Sf�q� of the pinned configuration
obtained by relaxing an initially flat line for different forces f
=0.325, . . . ,2.0, increasing from the bottom to the top curve. Inset:
collapse using the crossover length � f, and the depinning roughness
exponent 
=1.25. �b� Finite size study of � f vs f . The solid line is a
fit to � f ��fc− f�−�, where �=1.33. The dashed-dotted line indicates
the extrapolated value of fc.
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which makes disorder act as an effective thermal noise above
the length scale � f.

13 Finite-size effects are expected if one of
the two important length scales � f and L�t� become of the
order of the system size L.

In the steady state the observables are controlled by the
correlation length � f. In particular, the mean velocity, the
order parameter of the depinning transition, is given by v
�� f

−�/�. However, in the transient regime, L�t� plays a crucial
role in the relaxation of all the observables. In particular, in
Fig. 3�a� we see that the three growth regimes previously
found for L�t� correspond to three regimes of v�t , f�. At the
shortest times the line moves freely, v� f , since pinning
forces average to zero for a flat line. The first nonzero cor-
rections to this free-flow behavior can be therefore obtained
by using a second-order perturbation theory in the disorder.
This gives

v�t, f� � f −
��0� − ��ft�

f
. �4�

The inset of Fig. 3�b� shows that �4� holds up to times t
�rf / f , where rf =1 is the correlation length of the disorder.

The first stage of microscopic relaxation of v�t , f� thus gives
access to the shape of the disorder correlator ��u� for u
�rf. The data obtained at longer times verify the scaling
relation proposed in Eq. �1�, as we show in Fig. 3�b�. This
collapse shows that the velocity is controlled by the ratio
L�t� /� f. When L�t��� f the growing length L�t� is the only
relevant scale in the problem and replaces � f in the steady-
state relation v�� f

−�/�. This leads to v�t , f��L�t�−�/�, as is
observed in the initial slope of the collapsed curves in Fig.
3�b�, with ��0.33. Subsequently, for f � fc the scaling func-
tion tends to a constant while for f � fc has a fast decay. A
similar relaxation of the velocity was found in other disor-
dered models.28,29

In conclusion, we have identified the relevant static and
dynamical lengths L�t� and � f controlling the dynamics of
relaxation of an elastic line under an applied force. We have
shown that Eq. �1� describes well the universal relaxation of
the velocity observed for t�1/ f and f close to the threshold.
In contrast to standard critical phenomena, below threshold
the static length � f does not represent any steady-state corre-
lation length. The proposed scaling relationship for the time

FIG. 2. �a� Typical evolution of the structure factor Sf�q , t� dur-
ing the relaxation at f =1.80, calculated at different times, increas-
ing from the bottom to the top curve, obtained by using lines of size
L=1024. Inset: collapse using the crossover length L�t�. �b� Growth
of L�t� for f = fc ���, f =1.75� fc ���, and f =2.05� fc ���. The
lines indicate the power law behaviors in the different regimes:
L�t�� t2/3 �solid lines�, L�t�� t1/2 �dashed line�, and L�t��cte
�dash-dotted line�. The data for each force have been vertically
shifted for clarity.

FIG. 3. �a� Relaxation of the velocity v�t , f� for different forces
around the critical force, from f =0.5 to f =2.50. The dashed line
indicates the power-law behavior t−�/�z, where �, �, and z are criti-
cal exponents. �b� Collapse of all forces using the scaling of Eq. �1�
based on the existence of a growing length L�t� and a second static
length � f associated with the density of metastable states. The
dashed line indicates the power-law behavior L�t�−�/�. The inset
shows the scaling in the microscopic time regime, as predicted by
the perturbation theory 
Eq. �4��.
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relaxation can be used to get all the critical exponents of the
depinning transition independently: we can get � from the
characteristic length � f of the pinned configuration below
threshold 
or from the crossover to the thermal growth of
L�t� above threshold�, z from the evolution of L�t�, and �
from the relaxation of the velocity. This is best accomplished
close to the depinning threshold since � f is large and the
macroscopic short time regime longer. As for equilibrium
critical phenomena, this is a convenient method for both nu-
merics and experiments, since it avoids the problem of
equilibrating a sample in the steady state near the depinning
threshold. When L�t� becomes of the order of the correlation
length � f all the observables approach their steady-state value
for f � fc or their value at the final pinned configuration for
f � fc exponentially fast. This study is therefore relevant for
experimental situations whenever T is low enough to assure
well-separated time scales for deterministic and thermally
activated motion.

Finally, we point out that the experimental characteriza-
tion of interfaces pinned below fc, prepared under an unusual
protocol should be a convenient tool to investigate depin-
ning, since the geometry of these interfaces yields an inde-
pendent measure of the exponents 
 and �, as shown in Fig.

1. This feature is important, as these exponents are usually
related. The so-called statistical tilt symmetry �STS� is
present whenever the elastic force is a linear function of the
deformation field u�x�. In general, the STS relation depends
on the range of the elastic interactions: for a short-ranged
elasticity, as in Eq. �2�, the relation reads �=1/ �2−
�, while
for the long-ranged interactions, expected for crack propaga-
tion in solids or for the contact line of liquids, the relation
becomes �=1/ �1−
�. Recent experiments in these two
systems7,30 gave roughness exponents 
 that are systemati-
cally bigger than the one computed by numerical
simulations.27 In order to explain these deviations the pres-
ence of nonlinear elastic corrections able to change the uni-
versal behavior of the depinning transition27,31,32 has been
invoked. The measurement of an eventual violation of the
statistical tilt symmetry relation from the study of interfaces
pinned below fc could be thus used as a smoking gun test for
this hypothesis.
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