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The cavity method is a well-established technique for solving classical spin models on sparse random graphs
�mean-field models with finite connectivity�. Laumann et al. �Phys. Rev. B 78, 134424 �2008�� proposed
recently an extension of this method to quantum spin-1/2 models in a transverse field, using a discretized
Suzuki-Trotter imaginary-time formalism. Here we show how to take analytically the continuous imaginary-
time limit. Our main technical contribution is an explicit procedure to generate the spin trajectories in a
path-integral representation of the imaginary-time dynamics. As a side result we also show how this procedure
can be used in simple heat bath Monte Carlo simulations of generic quantum spin models. The replica
symmetric continuous-time quantum cavity method is formulated for a wide class of models and applied as a
simple example on the Bethe lattice ferromagnet in a transverse field. The results of the methods are confronted
with various approximation schemes in this particular case. On this system we performed quantum Monte
Carlo simulations that confirm the exactness of the cavity method in the thermodynamic limit.
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I. INTRODUCTION

Mean-field approximations are often useful first steps to
unveil the physical content of realistic models. This is all the
more true when exact solutions are probably impossible to
obtain in the finite-dimensional setting, in particular when
quenched disorder and/or quantum effects have to be taken
into account, as for instance in the case of Anderson
localization.1 Another example is dynamical mean-field
theory,2 which has been a very fertile approach to the prob-
lem of strongly correlated fermions. It can be sometimes
preferable to study mean-field theories not by making an
approximation to a finite-dimensional model but rather by
formulating a model which is mean field by nature, as this
allows in particular to state the results in a mathematically
clearer way. The simplest of such examples is the Curie-
Weiss model of ferromagnetism, in which N classical Ising
spins all interact attractively with each other, with a
coupling-constant scaling inversely with the size of the sys-
tem to ensure a well-defined thermodynamic limit. The
equivalent for quenched disordered systems is the
Sherrington-Kirkpatrick model3 of a spin glass, where again
all spins interact weakly with each other, yet with coupling
constants of random signs.

The mean-field character of the above mentioned models
arises from their infinite connectivity �in the thermodynamic
limit�. There exists however another class of models, which
are still mean field yet keep a finite connectivity, each of the
degrees of freedom they possess interacting only with a finite
�with respect to N� number of neighbors. For ferromagnetic

models they can be obtained by the Cayley tree construction,
where one draws an infinite regular tree and studies the mag-
netization of the root site.4 Cayley tree models have however
pathological surface effects, and the theory of finitely con-
nected mean-field frustrated systems is better defined on ran-
dom graphs,5,6 of fixed or fluctuating connectivity. Classical
models of spins on such random structures have been the
subject of extensive study in the last decade. These works
were motivated on the one hand by their somehow more
physically realistic features, namely, the finite connectivity,
and also because of their strong relationship with issues
originating from computer science, namely, the understand-
ing of phase transitions in random constraint satisfaction
problems.7–9 Finite-connectivity models are technically much
more involved than their fully connected counterparts. The
replica method10 that has been first developed to solve the
Sherrington-Kirkpatrick model3 becomes less practical in
this setting,11 and the alternative cavity method turned out to
be more useful.6

The interplay between quenched disorder and quantum
fluctuations can lead to a very rich phenomenology, and in
particular the properties of the glass phase found at low tem-
peratures in classical models can be qualitatively modified
when a transverse field acts on the system.12 More generally
the issue of the nature of the quantum phase transitions at
zero temperature13 in presence of disorder is a very rich one.
In the context of mean-field theory this point has been
mainly studied in fully connected models,14–20 with a few
exceptions that appeared in the last year.21–24 In a very inter-
esting contribution Laumann et al.,21 made a first step in
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extending the cavity method to quantum spin models in a
transverse field, and in this paper we shall develop further
this idea by solving a discretization problem which plagued
their proposal. Let us also mention here the work of Knysh
and Smelyanskiy,23 who developed a similar approach in the
framework of the so-called static approximation.14,16,18 The
motivation for this line of work is twofold. On the one hand
one can expect an even richer physical behavior of finitely
connected quantum models with respect to the fully con-
nected ones. The possible fluctuations in the local geometry
and some notion of distance which was absent in fully con-
nected models open the way to a more complex phenomenol-
ogy. On the other hand one can aim at a better understanding
of some issues of quantum computing and in particular on
the use of quantum annealing �or adiabatic algorithm�25–27 to
solve random constraint satisfaction problems. These quan-
tum algorithms do indeed rely on the application of a trans-
verse field on spin models that have been extensively studied
at the classical level with the cavity method. Computing the
location and nature of the phase transitions28 encountered
along the annealing path �as the transverse field is progres-
sively turned off� might give some information on the behav-
ior of these quantum algorithms themselves.

The remaining of the paper is organized as follows. In
Sec. II we recall the Suzuki-Trotter approach to spin-1/2
models in a transverse field and develop our main technical
contribution in Sec. II B, where we show how to actually
build the spin trajectories of the path-integral representation
of the imaginary-time evolution operator. Section III is then
devoted to the study of a very simple example of finitely
connected quantum model, namely, the Bethe lattice ferro-
magnet. We first explain the continuous-time quantum cavity
treatment of this model before presenting the results of the
method and confronting them with some approximate ap-
proaches. In Sec. IV we present numerical results of Monte
Carlo simulations we performed for this model and show
how the computations of Sec. II B can be turned in a simple
and versatile quantum Monte Carlo method. The generic for-
malism of the quantum cavity method is developed in Sec.

V; we hope this order of presentation and the inclusion of a
fully worked-out example before the general case will ease
the reading of this work. We finally draw our conclusions
and put forward perspectives for future work in Sec. VI.
Some technical details are deferred to a series of appendixes.

II. PATH-INTEGRAL REPRESENTATION
FOR SPIN-1/2 MODELS

A. Spin models in a transverse field: Suzuki-Trotter formalism

Let us consider the Hilbert space spanned by the ortho-
normal basis of 2N kets ��� �, where �� = ��1 , . . . ,�N� denotes a
configuration of N Ising spins, �i= �1. This space can be
viewed as the tensorial product of N spin 1/2, with operators
�i

z and �i
x, whose action on the base vectors is defined by

�i
z��� � = �i��� � ,

�i
x��� � = ��1, . . . ,�i−1,− �i,�i+1, . . . ,�N� . �1�

From a classical energy function of N Ising spins,

E��1 , . . . ,�N�, one can construct an operator Ê
=E��1

z , . . . ,�N
z �, diagonal in the ���� �� basis. The Hamiltonian

operators investigated in this paper are obtained from such a
classical energy by the addition of a transverse field,

Ĥ = Ê − B	
i=1

N

�i
x, with B � 0. �2�

Our goal is then to compute the quantum statistical-
mechanics properties at inverse temperature �, i.e., the par-
tition function Z and the average of observables �operators�
Ô, defined by

Z = Tr�e−�Ĥ�, 
Ô� =
Tr�Ôe−�Ĥ�

Tr�e−�Ĥ�
. �3�

A well-known way of tackling such problems is to transform
them into an extended Ising model by using the Suzuki-
Trotter formula,29 as summarized in the following lines:

Z = Tr��exp−
�

Ns
Ê +

�

Ns
B	

i=1

N

�i
x��Ns�

= lim
Ns→�

Tr��exp−
�

Ns
Ê�exp �

Ns
B	

i=1

N

�i
x��Ns�

= lim
Ns→�

	
�� 1,. . .,�� Ns

�
�=1

Ns


�� ��exp−
�

Ns
Ê�exp �

Ns
B	

i=1

N

�i
x���� �+1�

= lim
Ns→�

	
�� 1,. . .,�� Ns

�
�=1

Ns

exp−
�

Ns
E��� ����

i,�

�i

��exp �

Ns
B�x���i

�+1� . �4�
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In the two last lines �� Ns+1=�� 1. For a finite value of the
number of Suzuki-Trotter “slices” Ns, the problem has thus
become one of N�Ns Ising spins, each of the �i being
promoted to a ring ��i

1 , . . . ,�i
Ns� with nearest-neighbor ferro-

magnetic interactions along the “discrete imaginary-time” �
axis �with periodic boundary conditions�. The original inter-
action E acts identically and independently on each of the
configurations �� �. For notational convenience we shall use
bold symbols for quantities that depend on the slice �, for
instance, �i= ��i

1 , . . . ,�i
Ns� is the configuration of the ring of

Ising spins at site i and �= ��� 1 , . . . ,�� Ns� is the full configu-
ration of the N�Ns spins. We can thus introduce a probabil-
ity measure on the N�Ns Ising spins,

	��� =
1

ZNs

e−�Ẽ����
i=1

N

w��i� ,

ZNs
= 	

�

e−�Ẽ����
i=1

N

w��i� , �5�

such that the normalization constant ZNs
reduces to the par-

tition function Z in the Ns→� limit �in the following we
shall sometimes keep implicit the dependence on Ns�. To
write in a compact way this last equation we have defined,

Ẽ��� =
1

Ns
	
�=1

Ns

E��� �� , �6�

the average of independent copies of the classical energy on
the various slices and,

w��� = �
�=1

Ns


���e��/Ns�B�x
���+1�

= �
�=1

Ns �cosh�B

Ns
�
��,��+1 + sinh�B

Ns
�
��,−��+1� ,

�7�

the ferromagnetic interaction along the imaginary-time axis
induced by the transverse field �we use �Ns+1=�1�. One can
easily show that the average value of observables can be
obtained in this formalism as


Ô� = 	
�

	���

�� ��Ôe�−�/Ns�Ĥ��� �+1�


�� ��e�−�/Ns�Ĥ��� �+1�
, �8�

where the slice number � is here arbitrary, thanks to the
cyclic invariance around the discrete imaginary-time axis.

This can be simplified further for observables Ô diagonal in
the ���� �� basis, i.e., that can be written as O��1

z , . . . ,�N
z �,


Ô� = 	
�

	���O��� �� = 	
�

	���
1

Ns
	
�=1

Ns

O��� �� . �9�

A nondiagonal observable we shall study in the following is
the transverse magnetization 
�i

x� �written here for an arbi-
trary site i�, which can be computed as


�i
x� = 	

�

	���
1

Ns
	
�=1

Ns 
�i
���xe��/Ns�B�x

��i
�+1�


�i
��e��/Ns�B�x

��i
�+1�

= 	
�

	���
1

Ns
	
�=1

Ns �tanh�B

Ns
���i

��i
�+1

. �10�

B. Continuous imaginary-time limit

To recover the truly quantum properties of the model one
has to perform the limit Ns→�. The basic degrees of free-
dom �i which were the configurations of a ring of Ising spins
��i

1 , . . . ,�i
Ns� then become piecewise constant functions

�i�t�� �−1,1� of an imaginary-time parameter t, the discrete
coordinate �� �1,Ns� being mapped to t� �0,�� with the
correspondence t=�� /Ns. In this limit the sum over � in
expression �5� of the partition function is naturally inter-
preted as a path integral. The discreteness of the spin degrees
of freedom actually makes such a path-integral
representation30 easier to formulate than Feynman path inte-
grals for continuous coordinates31 and can be given a rigor-
ous mathematical content.32–35 Note that these continuous-
time trajectories can be easily represented in the memory of
a computer, as the trajectory of site i is fully specified by
�i�t=0� and the times at which the spin flips. Actually nu-
merous continuous-time quantum Monte Carlo algorithms do
exist �see, for instance, Refs. 36–39�.

The rest of the paper will crucially rely on the procedure
developed in Secs. II B 2 and II B 3. Though it will also be
useful for analytical purposes, it is more intuitively moti-
vated by the following simulational consideration. Maybe
the simplest way to ensure the detailed balance condition in
a Monte Carlo simulation which aims at sampling an arbi-
trary measure 	��� � is to perform transitions from the current
configuration �� to a configuration obtained by replacing the
value of a randomly chosen degree of freedom �i by a ran-
dom value drawn from the measure conditioned on all other
degrees of freedom. This procedure is known in classical
simulations as the heat bath or Glauber algorithm. Its equiva-
lent in quantum simulations consists in drawing a new
configuration of the ring �i or of the trajectory �i�t� in the
continuous imaginary time, according to the equilibrium
measure induced by the spin trajectories of all other sites. A
moment of thought reveals that this boils down to study the
evolution of a single spin 1/2 in the presence of a constant
transverse field and a piecewise constant longitudinal field,
the latter being the effective field induced by the rest of the
system on �i. This is precisely the issue we shall tackle in
Secs. II B 2 and II B 3 after having recalled in Sec. II B 1 the
well-established path-integral representation of a spin 1/2.

1. Path-integral representation of a single spin
in constant fields

Let us define the propagator for the evolution during an
interval of imaginary time � of a spin in constant transverse
and longitudinal fields �B and h, respectively�,

W�� → ��,h,�� = 
��e��h�z+B�x����� . �11�

The diagonalization of the order 2 matrix h�z+B�x easily
leads to
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W�� → ��,h,�� = �cosh���B2 + h2� + �
h

�B2 + h2
sinh���B2 + h2� if � = ��

B
�B2 + h2

sinh���B2 + h2� if � = − ��.� �12�

The path-integral representation of this propagator reads30,38

W�� → �,h,��

= 	
n=0

�

B2n�
0

�

dt1�
t1

�

dt2 ¯ �
t2n−1

�

dt2n exp��h�2t1 − 2t2

+ ¯ − 2t2n + ��� , �13�

W�� → − �,h,��

= 	
n=0

�

B2n+1�
0

�

dt1�
t1

�

dt2 ¯ �
t2n

�

dt2n+1 exp��h�2t1 − 2t2

+ ¯ + 2t2n+1 − ��� . �14�

Each term of these expressions corresponds to a spin trajec-
tory that changes value at times t1� t2�¯; it is weighted by
a factor B raised to the number of such discontinuities and by
exp�h�0

���t��. A spin trajectory with identical �opposite� ini-
tial and final values has to jump an even �odd� number of
times. There are two ways to convince oneself of the correct-
ness of this result. Applying the Suzuki-Trotter formalism to
this single spin problem leads to such a weight in the Ns
→� limit.40 Alternatively one can notice that Eqs. �13� and
�14� coincide with Eq. �12� at �=0 and that they obey the
same set of first-order linear differential equations,

�

��
W�� → ��,h,�� = ��hW�� → ��,h,��

+ BW�� → − ��,h,�� , �15�

which implies that they coincide for all values of �.

2. Generating trajectories for a constant longitudinal field

The above expressions �13� and �14� can be interpreted as
the normalizing constants of probability measures on the set
of piecewise constant functions from t� �0,�� to �−1, +1�,
conditioned on their initial ���t=0�� and final ���t=��� val-
ues. More explicitly, for instance, for ��t=0�=��t=��=�,
the probability of a trajectory with 2n flips at times in the
infinitesimal intervals �tj , tj +dtj�, with t1� ¯ � t2n, is de-
fined to be

1

W�� → �,h,��
B2ne�h�2t1−2t2+¯−2t2n+��dt1 ¯ dt2n. �16�

Our goal is now to construct a procedure for actually sam-
pling from these probability measures, which is constructing
spin trajectories according to these weights. We shall do this
by exploiting the following two identities:

W�� → �,h,�� = e�h� + B�
0

�

due�huW�− � → �,h,� − u� ,

�17�

W�� → − �,h,�� = B�
0

�

due�huW�− � → − �,h,� − u� .

�18�

The path-integral interpretation of these relations, more eas-
ily conveyed by the drawing of Fig. 1, is as follows. For the
first one, it means that a spin trajectory starting and ending at
the same value ��0�=����=� is either constant on the whole
time interval or made of a constant part up to time u, fol-
lowed by a jump to −� and a second part of the trajectory
representative of W�−�→� ,h ,�−u�. Similarly the second
one expresses the necessity for a trajectory from � to −� to
have at least one discontinuity at a given time u, followed by
a trajectory accounting for W�−�→−� ,h ,�−u�. These
equalities can be proven either from the path-integral repre-
sentation of Eqs. �13� and �14� or from the explicit expres-
sions of W given in Eq. �12�. As a consequence of Eqs. �17�
and �18� one obtains the following recursive procedure to
draw a spin trajectory for a constant longitudinal field on a
time interval of length �, constrained to ��0�=�, ����=��:

�i� If �=−��, draw a random variable u� �0,�� with den-
sity proportional to e�huW�−�→−� ,h ,�−u� �see below in
Eq. �19� for some details on how to perform this step�, set
��t�=� up to time u, and call the same procedure to generate
a trajectory from −� to −� on the remaining interval of
length �−u.

�ii� If �=��, with probability e�h� /W��→� ,h ,��, set
��t�=� on the whole time interval and exit the procedure;
otherwise, �a� draw a random variable u� �0,�� with density
proportional to e�huW�−�→� ,h ,�−u�, �b� set ��t�=� up to
time u, and �c� call the same procedure to generate a trajec-
tory from −� to � on the remaining interval of length �−u.

In order to draw u� �0,�� with a density proportional to
e�huW�−�→−� ,h ,�−u�, we compute its cumulative distri-
bution,

σ

σ

= +
∫

du

=
∫

du
u

σ

−σ

u

FIG. 1. A pictorial representation of Eqs. �17� and �18�.
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G�u� =

�
0

u

dte�htW�− � → − �,h,� − t�

�
0

�

dte�htW�− � → − �,h,� − t�

= 1 − e�husinh��� − u��B2 + h2�

sinh���B2 + h2�
. �19�

A simple way to draw u amounts to draw G uniformly at
random on �0,1� and to invert the above expression to obtain
u�G�. One can proceed similarly for the generation with the
density proportional to e�huW�−�→� ,h ,�−u�, which in-
volves another cumulative distribution G.

3. Generating trajectories for a piecewise constant
longitudinal field

In Sec. II B 2 we considered the particular case of a con-
stant longitudinal field h. Let us now address the general case
of a piecewise constant h=h�t� on the interval of imaginary
time �0,��, with the following definitions illustrated in Fig.
2: we shall call p the number of times it changes value be-
tween t=0 and t=�, 0= t�0� t�1� ¯  t�p� t�p+1�=� the
times of these changes, ��i�= t�i+1�− t�i� the length of these
intervals for i� �0, p�, and finally h�i� the values the field
takes in each of these intervals. We shall have to compute the
partition function of a spin acted on by such a field,

Z�h� = Tr�
i=0

p

e��i��h�i��z+B�x�� , �20�

and to generate spin trajectories according to the correspond-
ing weights. The computation of the partition function can be
performed by inserting p+1 representations of the identity in
Eq. �20�, corresponding to the spin values at the imaginary
times t�i� where h�t� is discontinuous,

Z�h� = 	
�0,. . .,�p

Z��0, . . . ,�p�h� ,

Z��0, . . . ,�p�h� = �
i=0

p

W��i → �i+1,h�i�,��i�� , �21�

with �p+1=�0. Given the trajectory h this computation is
easily performed, necessitating only the multiplication of the
p matrices of order 2 defined in Eq. �11�. The sampling of the

spin trajectory ��t� on the interval �0,�� is done as follows.
The values ��0 , . . . ,�p� of the spin at times �t�0� , . . . , t�p��
are generated41 according to the probability
Z��0 , . . . ,�p �h� /Z�h�. Then for each interval i� �0, p� a
spin trajectory from �i to �i+1 is generated according to the
procedure of Sec. II B 2, the longitudinal field being con-
stantly equal to h�i� on this interval of time. Finally the p
+1 trajectories are concatenated to obtain the full trajectory
from t=0 to t=�.

Let us emphasize that the path-integral representation of
the imaginary-time evolution is well known in the
literature;30–35 however we could not find in previous works
such an explicit sampling procedure for generating the spin
trajectories. Actually, as far as we know, all continuous-time
quantum Monte Carlo algorithms36–39 do not proceed in a
heat-bath way �i.e., by generating “from scratch” a new spin
trajectory conditioned on the local effective field� but rather
construct the spin update using the current configuration it-
self.

III. QUANTUM BETHE LATTICE FERROMAGNET

The remainder of this paper will be devoted to the study
of the simplest of the finitely connected models that can be
handled by the quantum cavity method, namely, the trans-
verse field quantum spin-1/2 ferromagnet on the Bethe lattice
�more precisely on a random regular graph�. The physical
properties of such a model are very intuitive: at low tempera-
ture and transverse field the model is ferromagnetically or-
dered, with a positive spontaneous longitudinal magnetiza-
tion. Thermal �increasing T� or quantum �increasing B�
fluctuations destroy this order outside a region delimitated by
a critical line in the �B ,T� plane, which ends up in a quantum
critical point at zero temperature.

An even simpler model displaying these features is the
�fully connected� quantum Curie-Weiss model, whose solu-
tion we recall in Appendix A. Both of them are of a mean-
field nature and should share most of their qualitative prop-
erties, yet the Bethe lattice model is quantitatively different
and technically more involved because of its finite connec-
tivity.

A. Quantum cavity method treatment

The quantum Bethe lattice ferromagnet is defined by the
Hamiltonian

Ĥ = − 	
i−j

�i
z� j

z − B	
i=1

N

�i
x, �22�

where the first sum runs over the edges of a random
l+1-regular graph of N vertices.42 This means that the graph
of interactions is uniformly chosen among all graphs on N
vertices for which each vertex has the same number l+1 of
neighbors. These graphs have the good properties to realize
finite-size Bethe lattices: the set of vertices at distance43

smaller than a given cutoff d from an arbitrarily chosen ver-
tex is, with a probability which goes to one when N diverges
with d held fixed, a regular tree of connectivity l+1. On the
other hand such a graph has no surface, contrarily to the

0 t(1) t(2) t(p) β

h(1)

t
λ(0) λ(1) λ(p)

h(t)

h(0) h(p)

FIG. 2. Definition of the effective-field trajectory.
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usual Cayley tree, and the problem of the boundary condi-
tions for frustrated models �that will be encompassed by the
generic treatment of Sec. V� is absent with such a definition.

The hypotheses of the cavity method are more simply
explained assuming first that the graph of interactions is ac-
tually a finite tree and that the quantum aspects of the prob-
lem have been handled by a finite number Ns of Suzuki-
Trotter slices. In such a case it is easy to solve the model
exactly by taking benefit of the natural recursive structure of
a tree: one breaks the graph of interaction into subtrees that
are then glued together. Let us explain this with more precise
formulas, defining 	i→j��i� as the probability law of the con-
figuration of the ring �i when the interaction with its neigh-
bor j has been removed from the graph. If we denote by �i
the set of vertex neighbors of i, the recurrence equations for
these distributions are

	i→j��i� =
1

zi→j
w��i� �

k��i\j
	
�k

	k→i��k�e��i·�k, �23�

where zi→j is a normalization constant, and we introduced for
two arbitrary imaginary-time dependent quantities a ·b
=	�=1

Ns a�b� /Ns. A graphical representation of this equation is
given in Fig. 3 in the case l=2. Site i has then two neighbors,
k1 and k2. The distributions 	k1,2→i encode the effect on k1,2

of the part of the tree that does not involve i; this is repre-
sented by the dashed line in Fig. 3. In absence of site i sites
k1 and k2 are decoupled �as we assume the graph to be a tree
there are no paths between k1 and k2 that do not go across i�
and hence independent. Therefore the distribution of �i in
absence of site j is given by Eq. �23�. A proof of such recur-
sion equations and a discussion of the connections with the
Bethe-Peierls approximation and the belief propagation algo-
rithm can be found in Refs. 44 and 45. On a given tree this
set of equations �one for each directed edge of the graph� has
a unique solution, which is a set of “messages” 	i→j, that can
be efficiently determined by sweeping the edges from the
leaves toward the center of the tree. From them all the rel-
evant thermodynamic quantities can be computed. For in-
stance, the probability law of the configuration of the ring �i
in the complete tree is given in terms of the messages sent by
its neighbors,

	��i� =
1

zi
w��i� �

k��i
	
�k

	k→i��k�e��i·�k, �24�

with zi as a normalization constant, while the joint law for
two neighboring sites i and j reads

	��i,� j� =
1

zi−j
	i→j��i�	 j→i�� j�e��i·�j . �25�

Moreover the free energy per site f can be expressed in terms
of the normalization constants of these laws,

− �f =
1

N
ln Z =

1

N
	
i=1

N

ln zi −
1

N
	
i−j

ln zi−j , �26�

where the second sum runs over the �undirected� edges of the
tree.

The above derivation was exact because we assumed the
graph of interactions to be a tree. The scope of the cavity
method is to extend these results to random graphs which are
only locally treelike in the precise sense explained above. In
its simplest version, called replica symmetric for historical
reasons, one assumes the existence of a single pure state in
the configuration space of the random graph model. This
implies a decay of correlations at large distance in the graph;
hence the effect of the long loops neglected in the tree deri-
vation amounts to create a self-consistent boundary condition
which traduces the absence of a surface in the random graph.
As in the present model all sites have the same neighborhood
�there is no fluctuation neither in the connectivity nor in the
intensity of the interaction couplings�, one has to look for a
solution of Eq. �23� where the messages 	i→j are all equal to
a single law, which we shall denote in the following ����,
which is seen from Eq. �23� to satisfy

���� =
1

zl
w���	

��

�����e��·���l
. �27�

The assumption on the unicity of the pure state can fail for
two kinds of reasons. In ferromagnetic models, as the one
considered now, there is an ordered phase at low temperature
and transverse field in which two pure states coexist because
of the up/down symmetry of the model. This is not a serious
limitation of the method; in the following it will be kept
understood that an infinitesimal longitudinal field is applied
to the system in order to select one of the two pure states. In
fact, the exactness of the cavity method for classical ferro-
magnetic models on random graphs has been recently proven
rigorously.46 A much more serious problem, which shall not
be discussed in this paper, arises in frustrated models when
an exponential number of pure states proliferate at low tem-
peratures; the replica-symmetry-breaking version of the cav-
ity method is then required to solve the problem.

Let us first write the solution of Eq. �27� in the classical
situation for B=0. In such a case the weight w forces all
spins along the ring to take the same value, hence

���� =
1 + tanh��h�

2
�

�=1

Ns


��,1� +
1 − tanh��h�

2
�

�=1

Ns


��,−1� ,

�28�

where h is solution of

µk2→i

i

µk1→i

k1

k2

µi→j

j

FIG. 3. A pictorial representation of Eq. �23�.
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h =
l

�
arctanh�tanh���tanh��h�� . �29�

The classical model thus exhibits a continuous paramagnetic
to ferromagnetic transition when the inverse temperature �
crosses its critical value, �c=arctanh�1 / l�.

We now come back to the general B case and rewrite
explicitly the cavity method prediction for the free energy
per site, which is obtained from Eq. �26� by substituting
	i→j =�,

− �f = ln�	
�

w����	
��

�����e��·���l+1�
−

l + 1

2
ln� 	

�,��

���������e��·��� , �30�

and for the probability law on one site and two adjacent sites,

	��� =
1

zl+1
w���	

��

�����e��·���l+1
,

	��,��� =
1

zedge
���������e��·��. �31�

Note that expression �30� is variational in the sense that its
derivative with respect to � vanishes on the solution of Eq.
�27�.

B. Convenient representation of �(�)

We turn now to the problem of the determination of the
probability law ���� solution of Eq. �27�. As this is a law on
the probability of Ns Ising spins, its complete characteriza-
tion should involve 2Ns −1 real numbers. Such a direct rep-
resentation becomes very soon impossible to handle when Ns
grows and in particular in the continuous-time limit Ns→�.
We shall however see that an alternative representation al-
lows us to bypass this difficulty. First we define a probability
law p�� �h� on the configurations of a ring of spins � by

p���h� =
1

Z�h�
w���e��·h, Z�h� = 	

�

w���e��·h,

�32�

where Z�h� ensures the normalization of p�� �h�. These defi-
nitions allow us to rewrite Eq. �27� as

���� = 	
�1,. . .,�l

���1� ¯ ���l�p����1 + ¯ + �l�

�
Z��1 + ¯ + �l�

zl
. �33�

Suppose now that one has an estimation of ���� given by a
representative weighted sample of Ntraj elements ��i�, which
is

���� = 	
i=1

Ntraj

ai
�� − �i� , �34�

such that the weights ai add up to one. A new estimation of �
�i.e., a new set of configurations �i� and weights ai�� can then
be obtained by plugging this estimation in the left-hand side
of Eq. �33�, which leads to the following procedure. To gen-
erate each of the new Ntraj representants of �, one repeats in
an independent way the following steps: �i� draw indepen-
dently l integers i1 , . . . , il in �1,Ntraj� with probability ai, �ii�
set h=�i1

+ ¯ +�il
, and �iii� generate a configuration �i� ac-

cording to the law p�� �h� and set ai�=Z�h�.
Once the Ntraj new elements have been generated one just

has to multiply the weights ai� by a global normalization
factor, and the new estimates can be again plugged in the
right-hand side of Eq. �33� to approach its fixed-point solu-
tion.

At this point the continuous-time limit Ns→� can be
taken without any difficulty of principle: as long as � is finite
the spin trajectories have only a finite number of discontinui-
ties and can then be easily encoded with a finite set of reals
corresponding to the time they change values. Moreover one
can easily show that in this limit drawing a spin trajectory
from the law p�� �h� corresponds exactly to the procedure
we defined in Sec. II B �we show explicitly this correspon-
dence for the normalization Z�h� in Appendix B�.

This representation of the probability law ���� by a
sample of representative elements is a widespread technique
in the field of disordered systems.1,6 We warn however the
reader accustomed to the classical cavity method that we did
not use it exactly in the usual way as the classical equivalent
of ���� is a single real number, not a probability law.

Before closing this section let us discuss the computation
of the physical observables in the continuous limit, taking as
representative examples the longitudinal and transverse mag-
netizations. These can be obtained by taking the Ns→� limit
of formulas �9� and �10�, which yields

mz = lim
N→�

1

N	
i=1

N


�i
z� = 	

�

	���
1

�
�

0

�

dt��t� ,

mx = lim
N→�

1

N	
i=1

N


�i
x� = 	

�

	���
1

�B
j��� , �35�

where in the right-hand side 	��� is to be computed from
Eq. �31�, the sums over � are understood as sums over
continuous-time trajectories, and we have defined j��� as the
number of discontinuities of ��t� on the interval �0,��.

C. Continuous-time results

We present now numerical results for l=2; the behavior is
qualitatively the same for any l. We followed the method of
resolution presented above using Ntraj=104 trajectories. For a
fixed temperature, we initialized the population at B=0; then
each trajectory is constant and its value is chosen in such a
way that the average magnetization is equal to the classical
magnetization that can be obtained from the solution of Eq.
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�29�. In this way we select one of the two possible ferromag-
netic states, which we can follow by increasing gradually the
transverse field. We increased B with a step dB=10−2 and for
each step we let the population equilibrate for 102 iterations
and averaged the observables over 103 subsequent steps. We
checked that the weights ai defined in Eq. �34� remain quite
uniformly distributed over the population at all investigated
temperatures and transverse fields.

In Fig. 4 we plot the magnetizations mz and mx as func-
tions of the transverse field B for three different temperatures
T�Tc�B=0�=1 /arctanh�1 /2�=1.820¯. At these low tem-
peratures, the system undergoes a continuous phase transi-
tion at a critical value Bc�T� of the transverse field. The tran-
sition is characterized by the vanishing of mz and by a jump
in the derivative of mx. Unfortunately obtaining reliable val-
ues of mz close to Bc is a difficult numerical task due to
critical fluctuations that cause strong finite-size effects in the
size of the population Ntraj. Therefore we located the transi-
tion by the jump in the derivative of mx; we fitted mx by
linear laws close to Bc from above and below and determined
their intersection.

The resulting phase diagram is reported in Fig. 5. We
found that for T�0.3 the temperature dependence of all ob-
servables is very weak and Bc�2.232, which is a reliable
estimate for the T→0 limit and is in excellent agreement
with the value determined in Ref. 24. The scaling of Bc for
T→0 is compatible with the essential singularity that is
found in the Curie-Weiss model �see Appendix A and in
particular Eq. �A8��. The very weak �practically unobserv-
able� temperature dependence of the free energy below T
=0.3 makes us confident that the entropic term is negligible
at these low temperatures and the free energy for T=0.1,

plotted in Fig. 6, is representative of the ground-state energy
eGS. The latter has a weak singularity �discontinuity of the
second derivative� at Bc which is not observable with our
numerical precision but is easily observed by a direct com-
putation of mx=−

deGS

dB �see Fig. 4�.
Overall, our results are in very good quantitative agree-

ment with the ones obtained at T=0 in Ref. 24 by a matrix
product state description, except for the value of the expo-
nent � characterizing the vanishing of the magnetization
close to Bc, mz��Bc−B��. Even if we do not have very
precise data close to Bc due to finite population-size effects,
our data are compatible with the mean-field exponent �
=0.5 at all investigated temperatures, while in Ref. 24 a
slightly smaller value of ��0.41 is reported at T=0. We will
further comment on this discrepancy in Sec. IV C.

D. Comparison with approximate treatments

In this section we compare the previous results with ap-
proximated solutions of Eq. �27�. First we consider the finite
Ns case, then we consider variational approximations to the
solution.

1. Resolution at finite Ns

At finite Ns, the distribution ���� can be encoded with
2Ns −1 real numbers �e.g., the probabilities of each of the 2Ns

configuration, with their sum constrained to be 1�. Then Eq.
�27� can be rewritten as a fixed-point equation for these num-
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FIG. 4. Longitudinal �mz, top panel� and transverse �mx, bottom
panel� magnetizations as functions of the transverse field B for T
=1.7,1.0,0.1. For the lowest temperature we could not obtain reli-
able data for mz close to the critical field due to critical fluctuations.
The dashed line is a fit to mz��Bc−B�1/2 done in the interval B
� �2.1,2.2� and serves as a guide for the eyes.
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FIG. 5. Phase diagram: the critical temperature Tc as a function
of the transverse field B.
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FIG. 6. Free energy as a function of B for T=0.1. The curves for
T=0.3,0.2,0.1 coincide within our numerical precision. Therefore
we assume that this curve is representative of the ground-state en-
ergy as a function of B. The asymptotic values for B→0 �eGS

=3 /2� and for B→� �eGS=−B� are reported as dashed lines. The
subleading correction for large B is �B−1 and is not reported.
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bers, and the solution can be found by simple iteration �be-
low we refer to this procedure as “exact solution” for finite
Ns�. This method is extremely precise but computationally
very heavy, as the time to solve the equation scales exponen-
tially in Ns. We are then limited to Ns13; the computation
for the largest Ns=13 took two weeks on a standard work-
station, while we estimated the one for Ns=14 to take at least
two months.

Therefore, in order to study the approach to the limit Ns
→�, we resorted to the population method described in Sec.
III B. We represented ���� by a population of discrete time
trajectories �= ��1 , . . . ,�Ns� and solved Eq. �27� by iteration
following the procedure detailed in Sec. III B without taking
the limit Ns→�. Similarly to the continuous-time case, we
used Ntraj=105 and performed 102 iterations to achieve con-
vergence, after which data have been collected along 103

iterations. The computation time is now polynomial in Ns so
we can go to much larger values �at the price of numerical
precision due to finite Ntraj�. Note that the continuous-time
computation is much more efficient. In the discrete time
case, at low B and large T, the spins �� are constant along
large time intervals and the information encoded in a discrete
trajectory is redundant. On the contrary, at low T and large B
the method at finite Ns is obviously incorrect because of the
discretization. One could think to adapt Ns in order to find
the optimal value for a given T, B; however this is most
naturally done in the continuous-time framework where the
number of spin flips is the natural variable describing a tra-
jectory. Therefore we think that the finite Ns population
method is useful only for the illustrative purposes of this
section.

Data reported in this section and in Figs. 7 and 8 have
been obtained by exact solution for Ns13 and by the popu-
lation method for Ns�13. We do not report detailed results
for the magnetization as a function of B; as expected, the
agreement with the continuous-time computation is very
good at high temperature and becomes poorer and poorer on
lowering the temperature. We focused on two points in the
phase diagram: the first at intermediate temperature T=1.0
and B=1.5; the second at very low temperature T=0.1 and
B=1.8. In Fig. 7 we plot the longitudinal magnetization mz
for different values of Ns. As expected, finite Ns effects are
much stronger at low temperature. Note that for large Ns the
leading correction is �Ns

−2, as in the Curie-Weiss model �see

Appendix A�. For T=1 deviations from the leading term are
very small and Ns�10 is enough to get a fair estimate of the
true mz. On the contrary, for T=0.1 deviations are very large
and Ns�256 is needed.

In Fig. 8 we report the critical temperature as a function
of B for different values of Ns together with the continuous-
time result. Note that in the limit of large transverse field,
each of the Ns time slices becomes independent of the others.
The model reduces to Ns copies of the classical system �B
=0� with a ferromagnetic coupling rescaled by 1 /Ns. Then in
this limit the critical temperature is given by the classical one
divided by Ns, Tc�Ns ,B→��=1 / �Ns arctanh�1 / l��. Below
this temperature the system is always in the ferromagnetic
phase, so that the quantum phase transition cannot be studied
within this approximation.

For generic spin-1/2 models, the finite Ns approximation
might be useful in order to understand the behavior at inter-
mediate temperatures and might also give quantitatively ac-
curate results far from T=0. This might be useful in cases
where more complicated cavity treatments �such as the
so-called one-step replica-symmetry breaking� are necessary.
Still the continuous-time method appears to us preferable as
it remains reliable down to very low temperatures.

2. Static approximation

A different strategy to obtain approximate solutions of
these models is to use the variational property of Bethe free
energy �30�: the free energy of the model is the minimum of
the free energy defined by Eq. �30� over the function ����
�in the classical case the correctness of this procedure has
been proven in Ref. 46�. Then one can propose a variational
form for ���� and minimize the free energy with respect to
the free parameters to obtain an upper bound to the true free
energy of the problem.

A popular variational form is the so-called static approxi-
mation, which in our context amounts to the following ansatz
for ����:

���� = �� 1

�
�

0

�

dt��t�� = �� 1

Ns
	
�=1

Ns

��� , �36�

i.e., the probability of a trajectory depends only on its aver-
age spin value along the imaginary time. This approximation
has been widely used in computations based on the replica
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FIG. 7. Longitudinal magnetization mz as a function of 1 /Ns for
T=1.0, B=1.5 �triangles� and for T=0.1, B=1.8 �circles�. In both
cases the point at 1 /Ns=0 corresponds to the continuous-time re-
sult. Full lines are guides for the eyes, dashed lines are fit to qua-
dratic laws, mz−mz�Ns→���Ns

−2.
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FIG. 8. Phase diagram at finite Ns: the critical temperature Tc as
a function of the transverse field B. Note that for a fixed Ns, Tc�B
→��=Tc�B=0� /Ns. Filled squares are the result of the continuous-
time method, already reported in Fig. 5.
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method for fully connected models14–16,18 and has been re-
cently applied to the random k satisfiability in a transverse
field.23 The present derivation based on the cavity method
gives back the same results originally derived in Ref. 23 but
is simpler because the use of replicas is avoided. Here we

discuss only the case of the ferromagnet on a regular graph
but the equations can be easily generalized to more compli-
cated cases where fluctuations of the couplings and/or the
connectivity are present.23

Equivalently we can rewrite the equation above as

���� = �
−�

�

dhp�h��
�=1

Ns � eh��

2 cosh h
� = �

−1

1

dmp�m��
�=1

Ns �1 + m��

2
� , �37�

where with a slight abuse of notation we used p for the distribution of both the effective field h and its associated magneti-
zation m=tanh h. This expression makes evident that the assumption of the static approximation is that the spins in a trajectory
are uncorrelated along the imaginary time and subject to a common field extracted from the distribution p�h�.

From Eq. �37� it follows that, in the limit Ns→�,

	
��

�����e��·�� = �
−1

1

dmp�m��
�=1

Ns �cosh
�

Ns
+ m�� sinh

�

Ns
� � �

−1

1

dmp�m��
�=1

Ns

em���/Ns,

	
�,��

���������e��·�� = �
−1

1

dmdm�p�m�p�m��e�mm�,

	
�

w����	
��

�����e��·���l+1
= �

−1

1

dm1p�m1� ¯ dml+1p�ml+1�	
�

w���exp��	
p=1

l+1

mp�Ns
−1	

�=1

Ns

����
= �

−1

1

dm1p�m1� ¯ dml+1p�ml+1��
−1

1

dm exp�m	
p=1

l+1

mp�	
�

w���
m −
1

Ns
	
�=1

Ns

���
= �

−1

1

dm1p�m1� ¯ dml+1p�ml+1��
−1

1

dm exp�m	
p=1

l+1

mp�ws�m� , �38�

where in the last line we defined the function

ws�m� = 	
�

w���
m −
1

Ns
	
�=1

Ns

��� . �39�

The following explicit expression for ws�m� can be found in
Ref. 23 �where it was called e−�u0�m��:

ws�m� =
�B

�1 − m2
I1��B�1 − m2� + 
�m − 1� + 
�m + 1� ,

�40�

with I1 as the modified Bessel function of the first kind. For
completeness we provide a proof of this result in Appendix
C. From the equations above one obtains free energy �30� as
a functional of p�m�, which has then to be minimized. Re-
markably, the resulting expression for the free energy is
equivalent to the cavity free energy for a classical system
whose variables are the continuous mi� �−1,1� and whose
Gibbs measure is defined by

	s�m� � =
1

Zs
e−�Hs�m� � =

1

Zs
exp�	

i−j

mimj��
i=1

N

ws�mi� ,

�41�

i.e., it is obtained from quantum measure �5� by replacing the
quantum operators by their average and the transverse field
term by its average as defined in Eq. �39�. The analogy with
a classical system or a direct differentiation of the free en-
ergy with respect to p�m� allows us to write a cavity equation
for p�m� which is the analog of Eq. �27�,

p�m� =
1

zl
ws�m��

−1

1

dm�p�m��e�mm��l

. �42�

Given the structure of ws�m� it turns out that p�m� can be
decomposed as a+
�m−1�+a−
�m+1�+ p̃�m�, where p̃ has
its support strictly between −1 and 1. We solved Eq. �42� by
iteration using a discretized representation of the regular part
p̃ and keeping explicitly the weights a�. Note that at B=0
the first term in Eq. �40� vanishes. Then a�

= �1� tanh��h�� /2 where h is the solution of Eq. �29�: the
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static approximation is obviously exact in the classical case.
For a given temperature T�Tc�B=0�, we initialized p�m�
on the classical solution and increased gradually the trans-
verse field B at each step iterating Eq. �42� until convergence
�typically after �102 iterations with a discretization step
dm�10−3�.

Equation �42� can be further simplified in the limit T
→0. As I1�x��ex for large x, the Dirac distributions can be
neglected in Eq. �40� for any B�0 and at the leading expo-

nential order ws�m��e�B�1−m2
. We can thus use the simpli-

fied expressions p�m��e���m�, zl�e−�el at this order, and
hence obtain from Eq. �42�

��m� = el + B�1 − m2 + l max
m�

�mm� + ��m��� , �43�

where the normalization el must be determined in such a way
that maxm ��m�=0. Like Eq. �42�, the latter equation can be
solved iteratively. In this case a good starting guess is
�0�m�=B�1−m2+h0m+const, where the symmetry m→−m
is initially broken by the term h0m �with h0 reasonably small�
in order to select one state. Also in this case we used a
discretization step dm�10−3 and observed convergence after
�102 iterations.

The results of the static approximation are reported in Fig.
9. In the left panel we compared mz obtained from the static
approximation with the exact one obtained by the
continuous-time solution of the cavity equation. As expected
the approximation is very good for T�1 and becomes poor
close to T=0. Still, the qualitative prediction of the static
approximation remains reliable down to T=0 even if the
value of Bc

static�T=0�=3.0 predicted by the static approxima-
tion is different from the exact one, Bc�T=0�=2.232. In the
right panel of Fig. 9 we show the typical shape of p�m�: it is
a symmetric function at large B, where a�=0. On lowering B
below Bc

static, the distribution becomes asymmetric and a+
�a−�0 even if a� remain very small at intermediate B. On
approaching B=0, a� grow faster and p̃�m� vanishes until
the classical solution is recovered.

In summary, the static approximation is a reliable varia-
tional tool to study qualitatively the phase diagram of the
system. Remarkably, it can be solved down to T=0 �the so-
lution at T=0 being easier than for finite T�.

IV. QUANTUM MONTE CARLO SIMULATIONS

A. Methods and algorithms

The quantum Monte Carlo method is an important tool
that is widely used to study quantum statistical physics and
quantum phase transitions, especially in the context of lattice
models.47 In this section, we discuss the application of the
ideas discussed in this paper to quantum Monte Carlo simu-
lations.

1. Generic quantum heat-bath Monte Carlo scheme

The procedure we discussed in Sec. II B to generate the
“continuous-time” spin configurations can be actually used
directly as a continuous-time quantum heat-bath algorithm.
Once the procedure that generates the new continuous-time
configuration given the local-field trajectory is available, the
implementation of the Monte Carlo simulation is rather
straightforward: one just randomly picks a site, computes the
local-field trajectory due to its neighboring spins, and gener-
ates a new imaginary-time trajectory of this spin according to
the rules discussed in Sec. II B.

The advantage of this method is that one can apply it to
any discrete spin models on any kind of lattice. In the case of
ferromagnetic nonfrustrated interactions, there exist of
course a number of algorithms that allow us to considerably
speed up the simulation and this is the subject of Sec.
IV A 2. However, for highly disordered and frustrated sys-
tems such as spin glasses, for instance, no such generic clus-
ter algorithm exists even at the classical level �although in-
teresting progresses are being made �see Refs. 48–51�� and
most classical simulations52 rely on the Metropolis or the
heat-bath algorithm and the parallel tempering technique.53

In the case of quantum spin glasses, to the best of our knowl-
edge, only the usual discrete time Suzuki-Trotter decompo-
sition has been tried.54–56 Another important case where no
loop algorithm is known is the one of multispin interactions,
where the problems are defined on a factor graph �see Sec.
V�, which is very common in the context of constraint satis-
faction problems such as satisfiability or in coding theory.
There is thus a clear need of an efficient generic heat-bath
strategy when no cluster or loop algorithm exists, which
would result in a substantial gain of simulation time.

In Fig. 10, we show the first application of our
continuous-time quantum heat-bath algorithm to the case of
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FIG. 9. �a� Longitudinal magnetization mz as a function of the transverse field B. The full lines are the exact results reported in Fig. 4 for
T=1.7,1.0,0.1 �from left to right�. Points are the results of the static approximation: T=1.7 �squares�, T=1.0 �circles�, T=0.1 �triangles�, and
T=0 �open triangles�. �b� The function p̃�m� defined in the text at temperature T=0.1 and transverse field B=3.2,2.2,1.2 �from left to right�.
For smaller values of B, the maximum approaches m=1 and the weight of the 
�m−1� starts to increase until p̃�m� vanishes at B=0.
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the ferromagnetic model on a regular random graph of con-
nectivity 3, as studied in the rest of the present paper. The
results of our algorithm converge fastly, with respect to the
number of Monte Carlo sweeps, to the asymptotic ones for
very large samples �i.e., N=105 spins�. In the paramagnetic
phase, the convergence is even faster than for the loop algo-
rithm that will be discussed in Sec. IV A 2. The application
of these ideas and methods to more complex models is an
interesting direction of study.

2. Continuous-time loop algorithm

Since we are dealing with a ferromagnetic nonfrustrated
model, we expect the usual cluster and loop algorithms36,39,57

to allow for a significant speed up of the simulation with
respect to the heat-bath procedure even on random graphs.
We have thus implemented the algorithms devised by Rieger
and Kawashima in Ref. 38, which is an adaptation of the
classical Swendsen-Wang58 algorithm to quantum systems in
continuous time. The results are compared with the heat-bath
method in Fig. 10. Indeed, the loop algorithm performs very
well and better than the heat-bath method close and below
the critical point, and we thus have used this method to com-
pare the results of the cavity approach with finite-size in-
stances.

B. Cavity method versus simulation

How does the cavity predictions compare with numerical
simulations? To answer this question, we have performed
quantum Monte Carlo simulations on random regular graphs
of N spins and connectivity 3. For large N we expect the
results to be self-averaging and thus we always consider a
single instance and do not perform averages of many realiza-
tions. The results for two different temperature T=1 and T
=0.1 are shown in Fig. 11 where we plot the longitudinal and
transverse magnetizations as a function of B for different
sizes from N=64 to N=2048. The agreement with the
asymptotic cavity result is perfect �apart from finite-size ef-
fects in mz for B�Bc �see next paragraph��: this demon-
strates the correctness of the approach we have developed in
the present paper.

C. Finite size scaling and critical exponent

The transition between the ferromagnetic and the para-
magnetic phases is of second order; below the threshold
Bc�T� the longitudinal magnetization grows with an exponent
�, i.e., mz� �Bc−B��, in the thermodynamic limit. We have
used finite-size scaling techniques59,60 to analyze our data in
the neighborhood of the transition and to check the mean-
field value of the exponent �=1 /2. Let us first briefly recall
the basic idea of the finite-size scaling method and the way
in which it has to be amended for mean-field models.

In a generic infinite size d-dimensional model, in the vi-
cinity of a second-order phase transition driven by a param-
eter denoted B, the correlation length diverges as �� �B
−Bc�−�. For a system of finite extent L the observables de-
pend on the size through a scaling function of the ratio L /�.
This has to be corrected for dimensions d larger than the
upper critical dimension du of the considered universality
class or when the model lacks any underlying finite-
dimensional structure. In that case the scaling function is
found61–65 to depend on the size N �total number of degrees
of freedom, equivalent to Ld of a d-dimensional model�
through N1/�du���B−Bc�, where � takes its mean-field value in
the universality class under investigation. More explicitly the
scaling forms of the longitudinal magnetization and of the

Binder cumulant g= 1
2 �3−


mz
4�


mz
2�2 � read

mz�B,N� = N−�/du�m̃�N1/�du���B − Bc�� ,

g�B,N� = g̃�N1/�du���B − Bc�� . �44�

We present in Fig. 12 the results of such an analysis for our
Monte Carlo data obtained at temperature T=1. At this
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FIG. 10. Quantum heat bath �full symbols� vs loop algorithm
�open symbols� for a random regular graph of degree 3 with 105

spins at B=1.6 �circles�, in the ferromagnetic phase, and B=2.6
�squares�, in the quantum paramagnetic phase, for T=1. Dashed
lines correspond to the values computed with the cavity method.
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FIG. 11. Longitudinal and transverse magnetization curves for
temperatures T=1 �top� and T=0.1 �bottom�. Continuous-time cav-
ity method �mz—solid line and mx—dashed line� vs Monte Carlo
simulations for different sizes increasing from the top to the bottom
�N=64,128, . . . ,2048�. For the largest size the agreement with the
cavity result is excellent �except close to the critical point�.
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positive temperature the critical behavior of a quantum
d-dimensional system is equivalent to a classical
d-dimensional Ising model,13,29 which implies du=4 and �
=1 /2. Using the cavity method predictions Bc�T=1�=1.98
and �=1 /2 we found a very good data collapse �see Fig. 12�,
which confirms the validity of these values of � and Bc.

To close this section, let us discuss the value of the critical
exponent � at T=0. We believe that because of the mean-
field nature of the Bethe lattice model, � keeps the same
value 1/2 at positive and zero temperatures. This is indeed
what happens for the Curie-Weiss model �see Appendix A�.
A simple argument is the following. For ferromagnetic mod-
els the Suzuki-Trotter formalism and numerical simulations
suggest that the critical behavior of the quantum
d-dimensional model at zero temperature corresponds to the
one of the classical model in d+1 dimensions.13,29,38 Hence
if a model behaves in a mean-field way at positive tempera-
ture it should also do so at zero temperature, having formally
gained one more spatial dimension. To give further credit to
our theses we performed quantum Monte Carlo simulations
at very small temperatures, T=0.01. The plot of Fig. 13
shows again a very good collapse with the value �=1 /2
using the zero-temperature critical value of the transverse
field extracted from the cavity computation, Bc=2.232. This
collapse has been obtained with du=3; indeed at such a low
temperature we are well inside the low-temperature regime
where the transition is truly quantum, hence the shift of the
upper critical dimension to account for the imaginary-time
supplementary dimension.

A different value of the zero-temperature exponent, �
=0.41, has been obtained in Ref. 24 using the matrix product
state ansatz for the description of the ground state. Though

we cannot rule out the possibility that a crossover occurs at
temperatures even lower than T=0.01, we believe that �
=1 /2 down to T=0, in accordance with the mean-field nature
of the Bethe lattice, and that the different values reported in
Ref. 24 might be due to the truncation of the matrix product
state ansatz.

V. GENERIC REPLICA SYMMETRIC
QUANTUM CAVITY METHOD

In this final section we give a more generic description of
the replica symmetric quantum cavity method. As the main
ideas should have already been conveyed by the example of
the ferromagnet on the random regular graphs we shall
mainly emphasize the differences and complications that
arise in more general models.

Let us consider the class of Ising spin models whose clas-
sical energy E��� � can be decomposed into the sum of M
interaction terms a=1, . . . ,M, each of them depending on a
finite number of spins,

E��� � = 	
a=1

M

���� �a,Ja� . �45�

In this expression �a is the subset of spin indices the ath
interaction effectively depends on, �� �a= ��i : i��a� is a
shorthand for the configuration of those spins, and Ja denotes
coupling constants that might appear in the definition of the
ath interaction term. This decomposition is conveniently rep-
resented as a factor graph,44 i.e., a graph with two kinds of
vertices �see Fig. 14 for an illustration�: squares stand for the
interactions a=1, . . . ,M, while circles represent the variables
i=1, . . . ,N. An edge is drawn between an interaction a and a
variable i whenever a depends on i, in other words whenever
i��a. In this graphical representation �a is thus the set of
nodes adjacent to a. Similarly we shall denote �i the set of
neighbors of i, which is all the interactions that depend on �i.
The extended Ising model defined in Eq. �5� preserves the
topology of the interactions of the classical energy E��� �, the
latter being reproduced identically in the various imaginary-
time slices,

Ẽ��� = 	
a=1

M

�̃���a,Ja� ,
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FIG. 12. Finite size scaling analysis of the Monte Carlo data.
Top: rescaling of the longitudinal magnetization for random graphs
of different sizes �increasing from the top to the bottom� N
=64,128, . . . ,2048. Bottom: Binder parameter for the same sizes.
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FIG. 13. Finite size scaling analysis of the longitudinal magne-
tization at T=0.01 for sizes N=32,64, . . . ,2048.
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�̃���a,Ja� =
1

Ns
	
�=1

Ns

���� �a
� ,Ja� , �46�

while the transverse weights w��i� are local in the spin in-
dices i.

As we did on the ferromagnet example we first state the
solution of this extended model on a tree. The difference is
that we have now two kinds of messages from variables to
interactions and vice versa. Let us denote 	a→i��i� the prob-
ability law of �i in the model corresponding to the factor
graph where all interactions but a have been removed in the
neighborhood of i and similarly 	i→a��i� for the factor graph
with only a removed from �i. These quantities obey the fol-
lowing recursion equations,

	i→a��i� =
1

zi→a
w��i� �

b��i\a
	b→i��i� ,

	a→i��i� =
1

za→i
	

��j�j��a\i

e−��̃���a,Ja� �
j��a\i

	 j→a�� j� , �47�

on all edges of the factor graph, the various constants z being
normalization factors. The reader will easily verify that these
equations reduce to Eq. �23� in the ferromagnetic case with
���i ,� j�=−�i� j; in this case we could eliminate one type of
message �from interactions to variables� as the interactions
were only pairwise.

We shall now consider ensembles of random factor
graphs, denoting E�·� the expectation over the distribution of
the graphs and coupling constants. We assume all interaction
nodes to involve a fixed number k of variables �the ferromag-
net corresponded to k=2�, while the degree distribution of
the variables is specified by a probability law qd over the
positive integers �all random graphs verifying these con-
straints are equiprobable in the ensemble; the lack of a finite-
dimensional a priori structure is the origin of the mean-field
character of this family of models�. We shall denote �k
=	ddqd the average variable degree. Moreover the M =�N
coupling constants Ja are drawn in an identical independent
way for each of the interactions. Suppose the recursion �Eq.
�47�� is solved on a factor graph sampled at random from the
ensemble under consideration and that an edge from a vari-

able to an interaction, call it i→a, is chosen uniformly at
random. The probability law 	i→a it bears is itself a random
variable, denoted � in the following, due to the random
choices of the graph and of its coupling constants. This ran-
dom variable can be related to its neighboring equivalents by
the local relations �Eq. �47��. Suppose that i has d adjacent
interactions apart from a �see Fig. 15 for an illustration�.
Then one has, from Eq. �47�,

���� =
1

z
w��� 	

��a,i�a��1,d�
i��1,k−1�

�
a,i

�a,i��a,i��
�exp− �	

a=1

d

�̃��,�a,1, . . . ,�a,k−1,Ja�� , �48�

where the �a,i are the d�k−1� probability laws that determine
�. The hypothesis of the replica symmetric cavity method is
to assume that the above form is correct in spite of the graph
not being globally a tree and that the �a,i are independent
identically distributed copies of the random variable �,
which is written in formula as

�=
d

f��1,1, . . . ,�1,k−1, . . . ,�d,1, . . . ,�d,k−1,J1, . . . ,Jd� ,

�49�

the symbol =
d

denoting identity in distribution of random
variables and the function f being an abbreviation of the
right-hand side of Eq. �48�. Note that the connectivity ran-
dom variable d is not distributed according to qd but rather
q̃d= �d+1�qd+1 /�k: as one uniformly chose a random edge of
the graph and not a random site, this sampling favors larger
connectivity variables. For the ferromagnet on the random
regular graph one had qd=
d,l+1 while q̃d=
d,l.

The physical observables of the system can be computed
from the solution of this distributional equation. The thermo-
dynamic limit of the free-energy per site is found to be

FIG. 14. An example of a factor graph.

η

η1,k−1

ηd,k−1

ηd,1

η1,1

J1

Jd

FIG. 15. A pictorial representation of Eq. �48�.
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− �f = lim
N→�

1

N
E�ln Z�

= E�ln� 	
�,��a,i�a��1,d�

i��1,k−1�
��

a,i
�a,i��a,i��w���

�exp�− �	
a=1

d

�̃��,�a,1, . . . ,�a,k−1,Ja����
− ��k − 1�E�ln� 	

�1,. . .,�k
��

i

�i��i��e−��̃��1,. . .,�k,J��� ,

�50�

where the expectations of the left-hand side are over the
choice of the random factor graphs and for the right-hand
side over independent copies of the random variable � and
the coupling constants J, while in the first term d is drawn
from the law qd. This is a generalization of expression �30�
found for the ferromagnet. Similarly the average marginal of
law �5� for an arbitrary site reads

	��� = E� 1

z
w��� 	

��a,i�a��1,d�
i��1,k−1�

��
a,i

�a,i��a,i��
�exp�− �	

a=1

d

�̃��,�a,1, . . . ,�a,k−1,Ja��� �51�

with d drawn from qd, while the average marginal law of the
k variables in an arbitrary interaction is

	��1, . . . ,�k� = E�1

z �i

�i��i��e−��̃��1,. . .,�k,J�� , �52�

the factors 1 /z in these last two equations ensuring their
normalization �cf. Eq. �31� for the regular ferromagnet�.

Let us now discuss a method of resolution of the distribu-
tional equation �Eq. �49��, consisting in encoding the distri-
bution of � by a sample �or population� of a large number N
of representatives �i. From an arbitrarily initialized popula-
tion, one applies iteration steps according to Eq. �49�: one
draws an integer d from q̃d, d coupling constants J1 , . . . ,Jd,
and d�k−1� indices in �1,N�. The right-hand side of Eq. �49�
is then computed from the corresponding d�k−1� represen-
tants of � randomly chosen in the population, and the result-
ing � is used to replace one discarded element of the popu-
lation. The iteration of these steps brings the population close
to a fixed point of the distributional equation; then physical
observables such as the average free energy �see Eq. �50��
can be computed, evaluating the expectations over the ran-
dom variable � as a sampling from the approximate repre-
sentation provided by the finite population. Compared with
the classical replica symmetric cavity method the difficulty is
that each of the �i in this population is itself a probability
distribution over configurations of spin rings or in the con-
tinuous limit over spin trajectories. It is however possible to
apply the trick explained in the simpler case of the ferromag-
net and encode each of the �i as a sample of Ntraj spin tra-
jectories. Let us introduce some further notations in order to

give an explicit form of the updating procedure of the popu-
lation of �i’s.

The dependence of ��· ,J� on one of the Ising spins can
always be parametrized through two functions u and v as

���,�1, . . . ,�k−1,J� = − �u��1, . . . ,�k−1,J�

+ v��1, . . . ,�k−1,J� , �53�

u playing the role of an effective magnetic field acting on �.
For Ns-fold replicated variables we define

u��1, . . . ,�k−1,J�

= �u��1
1, . . . ,�k−1

1 ,J�, . . . ,u��1
Ns, . . . ,�k−1

Ns ,J�� , �54�

ṽ��1, . . . ,�k−1,J� =
1

Ns
	
�=1

Ns

v��1
�, . . . ,�k−1

� ,J� . �55�

Using the definitions in Eq. �32�, we can then rewrite Eq.
�48� as

���� = 	
��a,i�a��1,d�

i��1,k−1�
��

a,i
�a,i��a,i��p���h���a,i,Ja���

�
z���i,a,Ja��

z
,

h���a,i,Ja�� = 	
a=1

d

u��a,1, . . . ,�a,k−1,Ja� , �56�

z���a,i,Ja�� = Z�h���a,i,Ja���

�exp�− �	
a=1

d

ṽ��a,1, . . . ,�a,k−1,Ja�� .

We can thus apply the sampling procedure explained in Sec.
III B, the only change being the different definition of the
effective-field trajectory h and the inclusion of a contribution
arising from the function v in the weights of the generated
spin trajectories. Let us emphasize that at variance with the
classical cavity method, here we have to deal with a popula-
tion of population of spin trajectories �of total size N
�Ntraj� already at the replica symmetric level.

VI. CONCLUSIONS

The explicit procedure for the construction of continuous-
time spin trajectories presented in Sec. II B allowed us to
make progresses both on the analytical side, with an im-
provement over the discretized time cavity method in Ref. 21
and the static approximation in Ref. 23, and on the numerical
simulations side, with a generic quantum Monte Carlo pro-
cedure for spin-1/2 models in transverse field. The ferromag-
netic model we studied in this paper is only the simplest of a
large family that can be tackled, at the price of a heavier
computational cost, with the same methods. We believe that
its study was in any case worthwhile from a methodological
point of view: its simplicity permitted a complete resolution
of the quantum cavity equations, which �i� showed a perfect
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agreement with Monte Carlo simulations, hence giving credit
to the conjecture that the replica symmetric cavity method
leads to exact results in the thermodynamic limit for sparse
mean-field ferromagnetic systems, as was proved for classi-
cal models in Ref. 46 and �ii� allowed us to test quantita-
tively some approximate treatments �finite Ns and static ap-
proximation�.

The more interesting cases we plan to address in the fu-
ture by means of the cavity method will involve fluctuating
connectivities in order to study the role of these local fluc-
tuations on the critical behavior of the models, glassy phases
at low temperatures �a particularly motivating case will be
the regular multispin ferromagnet studied at the classical
level in Ref. 66�, and models related to quantum computing
issues as the random k-satisfiability model in a transverse
field.23 Note that already the replica symmetric treatment of
these models will involve a population of populations of spin
trajectories, as explained in Sec. V, which will make an exact
treatment of the one-step replica-symmetry-breaking version
of the cavity method extremely challenging. We hope how-
ever that the better control of the approximative treatments
we gained on the simple ferromagnet will help us to devise
appropriate approximate strategies to handle these cases.

At the same time, we proposed a heat-bath Monte Carlo
strategy that should be applicable to general spin-1/2 models.
The performance of this algorithm should be tested on frus-
trated models for which cluster algorithms are not easy to
implement, and we expect that in such cases the heat-bath
method could give interesting results.

The strategy developed above becomes inefficient at very
low temperatures because the spins jump many times along a
trajectory and the amount of information needed to encode
���� by a population of trajectories becomes very large.
Therefore the important directions of research would be to
look for possible simplifications of the formalism in the limit
�→�. Moreover, one could use the recursion equations �Eq.
�47�� on a given sample, thus constructing a quantum belief
propagation algorithm.67 Finally, it is worth noting that the
procedure described in Sec. II B, on which our results are
based, is in principle not restricted to spin-1/2 models. It
should be possible to generalize it to any model built on
discrete degrees of freedom,30 for instance, hard-core bosons
or higher spin models.
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APPENDIX A: QUANTUM CURIE-WEISS MODEL

This appendix is devoted to a study of the simplest quan-
tum mean-field ferromagnet, namely, the fully connected
Curie-Weiss quantum model.68–70 The model is defined by
the Hamiltonian

Ĥ = −
J

2N
	
i,j=1

N

�i
z� j

z − B	
i=1

N

�i
x − h	

i=1

N

�i
z, �A1�

where the scaling of the coupling constant is chosen appro-
priately to make the thermodynamic limit well defined. At
variance with the Bethe lattice model here each spin interacts
with all others. Applying the Suzuki-Trotter decomposition
described in Sec. II A leads for a finite number Ns of Suzuki-
Trotter slices to the following expression of the partition
function:

Z = 	
�
�

i=1

N

w��i�exp��h

Ns
	
�=1

Ns

�i
���

�exp� �J

2NNs
	
�=1

Ns

	
i,j=1

N

�i
�� j

�� . �A2�

We then perform Ns Hubbard-Stratanovitch transformations
to disentangle the quadratic terms and obtain

Z =  �JN

2�Ns
�Ns/2� �

�=1

Ns

dm� exp�− N
�J

2

1

Ns
	
�=1

Ns

�m��2

+ N ln Tr�
�

e��/Ns��h+Jm���z
e��/Ns�B�x�� . �A3�

Evaluating these integrals by the saddle-point method in the
thermodynamic limit and selecting the cyclically invariant
saddle point yield

lim
N→�

1

N
ln Z

= sup
m
�−

�J

2
m2 + ln Tr��e��/Ns��h+Jm��z

e��/Ns�B�x
�Ns�� .

�A4�

This can be further simplified if the Ns→� limit is per-
formed afterward and yields for the free-energy per site,

f = inf
m
� J

2
m2 −

1

�
ln�2 cosh����h + Jm�2 + B2��� . �A5�

Using the variational character of this expression the longi-
tudinal and transverse magnetizations �i.e., mz and mx� can be
obtained by taking the explicit derivatives with respect to h
and B, respectively,

mz � 
�i
z� =

h + Jm
��h + Jm�2 + B2

tanh����h + Jm�2 + B2� ,

�A6�

mx � 
�i
x� =

B
��h + Jm�2 + B2

tanh����h + Jm�2 + B2� ,

�A7�

where m is taken as the solution of the saddle-point equation.
The latter is easily found to imply that m=mz at the saddle
point. In the following we take J=1 to simplify the notations.
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In absence of the transverse field �B=0� one recovers the
classical Curie-Weiss model, with m=mcl�� ,h� solution of
the traditional equation m=tanh���m+h��. The ferromag-
netic transition is signaled by the appearance of a nontrivial
solution at h=0, which is possible for small enough tempera-
tures, i.e., for ���c�B=0�=1.

Consider now the solutions of the saddle-point equation
with B�0 and h=0. The paramagnetic solution m=0 exists
for all temperatures and transverse fields. For a strictly
positive solution m the saddle-point equation reduces
to �m2+B2=tanh���m2+B2�, that is, m�� ,B ,h=0�
=�mcl�� ,h=0�2−B2. This is possible only for small enough
temperatures and transverse fields, such that the argument of
the square root remains positive. The line of transition in the
�B ,T� plane is such that Bc���=mcl�� ,h=0� �see the top
panel of Fig. 16�. Note the vertical slope of the transition line
in the neighborhood of the quantum critical point in �B
=1, T=0�; in fact, one can perform an asymptotic expan-
sion in this region to show that

Bc�T� �
T→0

1 − 2e−2� �A8�

or equivalently

Tc�B� �
B→1

1

ln 1
�1 − B

� . �A9�

The bottom panel of Fig. 16 shows the evolution, as a func-
tion of the transverse field, of the longitudinal and transverse
magnetizations at a temperature smaller than the classical
critical temperature Tc�B=0�=1. The transverse magnetiza-
tion is continuous but its derivative has a finite jump at the
transition. One can indeed show from Eq. �A7� that mx=B in
the ferromagnetic phase, while mx=tanh��B� for the para-
magnetic one.

Another thermodynamic quantity easily computed for the
Curie-Weiss model is the ground-state energy per spin,
eGS�B�, obtained from Eq. �A5� in the limit �→�. One finds

eGS�B� = �−
1

2
�1 + B2� for B  Bc = 1

− B for B � Bc = 1,
� �A10�

which shows that eGS�B� and its first derivative are continu-
ous at the transition, while its second derivative has a finite
jump.

Let us finally argue about the scaling of the finite Ns cor-
rections, reconsidering the step we took between Eqs. �A4�
and �A5�. At the next-to-leading order one would have ob-
tained

Tr��e��/Ns��h+Jm��z
e��/Ns�B�x

�Ns�

= Trexp���h + Jm��z + �B�x

+
1

2Ns
�2B�h + Jm���z,�x���1 + O�Ns

−2��� .

�A11�

One can then check explicitly that the eigenvalues of the
matrix in the exponential are not modified at the order Ns

−1,
hence the finite Ns correction on the observables should be of
order Ns

−2, as we observed in the study of the Bethe lattice
ferromagnet.

APPENDIX B: AN IDENTITY IN THE
CONTINUOUS-TIME LIMIT

In this appendix we briefly justify the claim made in Sec.
III B of the equivalence in the continuous-time limit of the
definition of Z�h� given in Eq. �32� with the one of Eq. �20�.
Before taking the Ns→� limit, the former reads

Z�h� = 	
�

w���exp��� · h�

= 	
�1,. . .,�Ns

�
�=1

Ns


���e��/Ns�h
��z

e��/Ns�B�x
���+1� . �B1�

We shall denote Ns
�i�=Ns�

�i� /� the lengths of the constant
longitudinal field intervals �see Fig. 2�, expressed in number
of Suzuki-Trotter slices. Then

Z�h� = 	
��t�0��,. . .,��t�p��

�
i=1

p


��t�i����e��/Ns�h
�i��z

e��/Ns�B�x
�Ns

�i�

����t�i+1���, ��t�p+1�� = ��t�0��

= 	
��t�0��,. . .,��t�p��

�
i=0

p


��t�i���e��i��h�i��z+B�x����t�i+1��� .

�B2�

paramagnet

ferromagnet

B

T
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FIG. 16. �a� The phase diagram of the quantum Curie-Weiss model. �b� Longitudinal and transverse magnetizations as a function of the
transverse field for T=0.7.
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In the last step we have taken the Ns→� limit to obtain the
expression of Eq. �20�.

APPENDIX C: THE COMPUTATION OF ws(m)

In this appendix we derive expression �40� for the average
transverse weight in the static approximation. Rewriting the
sum over � of Eq. �39� as a sum over paths in the
continuous-time limit, one obtains

ws�m� = 	
�

	
n=0

�

B2n�
0

�

dt1�
t1

�

dt2 ¯ �
t2n−1

�

dt2n

�
m − �
2t1 − 2t2 + ¯ − 2tn + �

�
�

= 
�m − 1� + 
�m + 1� + 	
�

	
n=1

�

�B��2n�
0

1

dx1

��
x1

1

dx2 ¯ �
x2n−1

1

dx2n

�
�2x1 − 2x2 + ¯ − 2xn + 1 − m�� , �C1�

where in the second line we have isolated the contribution of
the constant trajectories and changed variables from ti to xi
= ti /�. Let us concentrate on the term corresponding to a
given value of n�0. We perform a further change in vari-
ables, setting yi=xi−xi−1 �with x0=0�, the intervals between
the reduced time of flips in the trajectory. The Jacobian of

this change in variables being 1, the integral over x1 , . . . ,x2n
can be rewritten as

�
0

1

dy1 ¯ dy2n1�y1 + y2 + ¯ + y2n  1�

�
�2y2 + 2y4 + ¯ + 2y2n − �1 − m���

=
1

2
�

0

1

dSodSe�n�So��n�Se�1�So + Se  1�

�
Se −
1 − m�

2
�

=
1

2
�n1 − m�

2
��

0

1+m�/2

dS�n�S� . �C2�

Here we have used 1�·� as the indicator function of an event,
So=y1+y3+ ¯ +y2n−1 and Se=y2+ ¯ +y2n the sum of the
odd or even yi’s, and �n�S� as the density of the distribution
of the sum of n independent random variables uniformly
distributed on �0,1�. It is easy to prove by recurrence that for
S� �0,1� one has �n�S�=Sn−1 / �n−1�!. Collecting these facts
together leads to

ws = 
�m − 1� + 
�m + 1� + 	
n=1

�
1

n ! �n − 1�!
��B�2n�1 − m2�n−1

22n−1 ,

�C3�

which is indeed equal to Eq. �40�, thanks to the series expan-
sion of the Bessel function.
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