PHYSICAL REVIEW E 67, 021602 (2003
Depinning of elastic manifolds
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We compute roughness exponents of eladtidimensional manifolds ind+ 1)-dimensional embedding
spaces at the depinning transition €br 1, . . . ,4. Our nurarical method is rigorously based on a Hamiltonian
formulation; it allows us to determine the critical manifold in finite samples for an arbitrary convex elastic
energy. For a harmonic elastic energy?(model), we find values of the roughness exponent between the
one-loop and two-loop functional renormalization group results, in good agreement with earlier cellular au-
tomaton simulations. We find that th&? model is unstable with respect both to slight stiffening and to
weakening of the elastic potential. Anharmonic corrections to the elastic energy allow us to obtain the critical
exponents of the quenched Kardar, Parisi, Zhang class.
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Elastic manifolds in random media are an important issue According to the framework provided by the functional
of current research in statistical physids?2]. In the zero- renormalization group, the manifold is flag£€0) for d
temperature motion of these manifolds, subject to a driving=d,.=4. Below this upper critical dimension, the roughness
forcef, the “depinning threshold’f, plays a central role: For exponent is expressed in anexpansion ine=4—d. The
forcesf>f., the elastic manifold moves with finite velocity, first-order (one-loop term [3,4] of the expansion giveg
while it is pinned forf<f.. Among the subjects studied at = €/3. Initially, this result was believed to be ex&4di for all
and aroundf. are the “creep” motion forf<f. at finite d=1,2,3. However, Chauvet al.[5] have obtained the two-
temperature, the scaling of the velocity for small fordes loop corrections and found them to be nonzero.
=f., and the statistical properties of the pinned critical In this work, we compute the roughness exponent of criti-
manifold atf., especially its roughness exponent cal manifolds in finite ¢+ 1)-dimensional samples fad

If one neglects velocity-dependent terms in the equations=1, . .. ,4. Ourapproach is rigorously based on a Hamil-
of motion of the manifold, which one assumes to be a singletonian formulation, as we study directly the dynamics of Eq.
valued functionh(x,t) (no overhangk its dynamics is gov- (1) for a general convex elastic energy: A powerful nu-
erned by a functionaE({h,x}) incorporating potential en- merical algorithm allows to solve this problem for a slightly
ergy due to the driving forcé and the disorder(x,h), as  modified version of Eq(1), with a discretized vectox (x
well as its internal elastic enerdy,, —1) and a continuous variablb. The short-range elastic

energy depends on the next-neighbor distarggsbetween

= lattice pointi and its & neighbors + §;, as shown in Fig. 1:

D

adh(x,t)=—

d
Note thatx is ad-dimensional vector, in an embedding space 2 2 Ee([hi—his 5])- 3

of dimensiond+1. Dimensional analysis suggests that the =1 g !

harmonic approximation foE,, provides the only relevant We introduce periodic boundary conditions ferand h
term for the interplay between disorder and elasticity. This(cf. Fig. 1) [6]. Continuous, periodic random potentials are
yields the quenched Edwards-Wilkins@BW) equation constructed fromM normally distributed random variables

N| -

ah(x,t)=f+ 7(x,h)+av2h(x). (2)

The model described by E@2) has been an important
testing ground for the concepts and techniques originally de-
veloped in the field of critical phenomena. Functional renor-
malization group techniquef3,4] were used to perturba-
tively compute critical exponents of the quenched EW
equation, which were believed to describe generic driven
manifolds at the depinning threshold.
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[7,8]. In such a system, the sample-dependent critical force 100000

f. is well defined: pinned configurations with=0 Vi do 0.65
(do nop exist for driving forces smalleflargen thanf,. Our -
algorithm [8] allows us to decide quickly whether pinned 10000 F .
configurations exist at a given driving force and then zooms

in on the critical force and the critical manifold. 10

1000

For the first time, we are thus able to unambiguously
compute the object of most direct theoretical interest in this
problem, namely, the critical manifold, in dimensions
=2,3,4. We comput§9] the roughness exponefittrom the 100 b
disorder-averaged mean-square deviations of the critical
manifoldsh®:

WAL)

10 100 1000
W2(L)={((h®—(h®))?)~L2¢ for L—c, (4 L

FIG. 2. Mean-square extensidh? vs system size for the (1

. . . ¢ +1)-dimensional elastic string. Upper curve: harmonic elastic en-
As the width of the manifold is of orderL*, we scale the ergy Eo(A)=A2/2: M~L5. Lower curve: elastic energg.(A)

i 4
lateral ex_tens!on .Of the ?amp'? at 'e"’.‘SM?L T =A*4; M=L. The inset shows the estimated valueofor all
Especially in higher dimensions, direct simulations of Eq. .. withL >L . as a function of. .., (A% model). The absence of

(2) are not viablg, because they violate a crucial no—passingystematiC trends leads us to conclude that=1.26+0.01, ¢
theorem[10], which we respect. ~0.635+ 0.005.

Because of the expected universality and the difficulties

of direct simulation, attempts to compute the critical expo-merical integrations of the equations of moti¢hd], in
nents of the quenched EW equation considered discrete syfonte Carlo simulation§9,20], and in the cellular automata
tems with non-Hamiltonian dynamic rules. These cellular auyf Ref, [15].

tomaton modeld11,12 are not clearly connected with an  Eigyre 2 also shows our results for thé model. We find

equation of motion in the continuum limt13] and have 1] 7,,=0.635-0.005. This exponent coincides with the

often given only rough estimates fgr _ value found in Ref.[16]. In lattice models, we already
Nevertheless, simulations using cellular automata illuSshowed that the roughness exponent does not change for the

trated that critical elastic manifolds in random media are Not6 odel and even in the presence of a metric constraint

gen_erally described by the quenched EW equation, _but MaYounded Al). In this sense, tha* model is only one rep-

fall into two broad classes: The automgBal4] summarized  osentative of systems with a stronger than harmonic elastic

in Ref.[15] yield critical exponents which are close to thoseenergy. The values obtained from Fig. 2 are much more pre-

obtained by analytical work on E@2); on the other hand, ise than the earlier ones.

the automatdl1,12 summarized in Ref.16] give very dif- In this problem, the study of rotational invariance of the

ferent values for the exponents, incompatible with the resu“%quations of motion has occupied a crucial role. In fact, Eq.
obtained by renormalization group results, but closer to €X(2)—and therefore the equation of motion of our

periment[12,17,18. There has been much confusion aboutAz model—is invariant under a tilt of the manifold

the actual values of these exponentsdorl. It is not clear

whether the upper critical dimension of this class is also

dye=4-. h(x,t)—h(x,t)+ 2 mx. (5
In our controlled Hamiltonian approach, we recover this

very rich behavior as a dependence of the roughness expg-yyas observed22] that the automata of Ref16] present a
nent.g on the f_uncUoan form of the elastic energy: We in- strong dependence of the velocity and of the valud.o6n
vestigate elastic energies of the folEge<|A|” and refer to  he parametersy;. In our A% model, rotational invariance is

2 - .
them asA” models. TheA” model studies directly Eq2). manifestly broken as an elastic energg*/12 generates a
Models with y+# 2 differ in their critical behavior from the piece

harmonic model. A special role is played by thé model,
which represents the first nonharmonic corrections of a gen- b V2h(Vh)2 (6)
eral elastic energf~aA?/2+bA%/12+ - - -.

We first discuss this important issue for an elastic stringp, the equation of motion. From dimensional analy4i®3,
(d=1) in a two-dimensional medium, which has been abunamong the orientation-dependent differential operators, the
dantly studied in the past. As shown in Fig. 2, we find for thek ardar, Parisi, Zhan@KPZ) term ~(Vh)? is more relevant
A% model a value of the roughness expongnt=1.26  than the term in Eq(6). The nonlinear KPZ term appears in
+0.01, which compares well with the two-loop calculation gomain-growth models without disorder, where it is coupled
of Chauve etal, while clearly excluding the one-loop to the velocity[24]. Adding it to Eq. (2) constitutes the
result {35 °®=1. A value in excess of one for the quenched KPZ equation. Its critical exponents have not been

(1+1)-dimensional roughness has been found in direct nueomputed within the functional renormalization group, and it
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TABLE |. Roughness exponents as a function of dimension
for the (d+1)-dimensional driven manifold problem, both for the
A? model (harmonic elastic energyand theA* model.

Analytic
d One-loop  Two-loop a2 ps
1 1 1.44 1.26:0.01 0.635-0.005
2 2/3 0.86 0.7530.002 0.45-0.01
3 1/3 0.38 0.35%0.01 0.25-0.02

that {,1.8>1. This implies that the surface breaks.

We also studied elastic energies\1+A? in the (2
+1)-dimensional problem. In one dimension, this functional
form corresponds to the length of the string, and the
A? model is often understood as the first term from an ex-
pansion of the length in powers df. The square root is
softer than its first expansion coefficient; we again find val-
ues of{ 773z in excess of 1 for large system sizes.

As in 1+1 dimensions, we also find for the
(2+1)-dimensional A2 model indications of a(much
is not even clear how this term is generated in the absence gfowe divergence of the mean local extension, as shown in
a finite velocity, at depinning4]. Fig. 3. For theA2 model, it seems to diverge logarithmically,

100
L

10 1000
FIG. 3. Mean-square extensioi? vs system size for the (2
+1)-dimensional elastic manifold for energi€s,(A)=(1/y)A”
for y=1.8 (upper, circles y=2 (middle, squares and y=4
(lower, triangleg anharmonic energyM =L. The inset shows the
mean local elongatiof|A|) for y=2 andy=4. Fory=1.8,(|A|)

clearly divergegnot shown. Error bars are smaller than the symbol
sizes.

Kardar and co-worker§1,23] have suggested the force
anisotropy due to the disorder as a possible generati

an anisotropy. However, in their construction rules, a metri
constraint is hidden. This implements a strong elastic pote

n
mechanism, but none of the automaton models present suﬁg{

whereas for the\* model it saturates already for very small
stems. Again it appears that only th model has a
oper thermodynamic limit for the critical manifold.

We also performed extensive computations i B and

r1A_f+1 dimensions, where we have reached sample sizes of
X M=64°x64 andL*xM=32'x32, respectively. For

the harmonic model in 31 dimensions, we obtaif 2
=0.355+0.01, again in good agreement with the numerical
results of Ref[14], while our result{,4=0.25+0.02 for the

stand why the (% 1)-dimensionalA2 model is unstable to A* model is in contradiction to Ref16], which suggested
higher-order corrections: A roughness 1 implies[26] that ~ an exponent{~0.38 larger than for the harmonic case. We
the mean local elongatiofjA|) grows with the system size checked very carefully that our estimate fois independent
at least ag ‘! and thus diverges in the thermodynamic limit of the parametera andb. (See Table | for a summaiy.
L,M—oo. Higher-order terms in the elastic energy are thus
trivially relevant in one dimensiof9].

In 2+ 1 dimensions, we have studied samples up to size
L2xM=512x512. For theA? model (shown in Fig. 3,
we find excellent scaling for a roughnes$2=0.753
+0.002, which again falls between the results of the one-
loop and two-loop renormalization group calculations. Our
result improves by an order of magnitude the precision of the
previous estimatgl5]. Note that our algorithm allows us to
know, without invoking universality arguments, that the ex-
ponent,2~0.753 is that of the two-dimensional quenched
EW model.

In Fig. 3, we also show our results for taé model. We
find a different value for: namely, {,4=0.45+0.01. This
last value is significantly smaller thaf-0.48 found in Ref.
[16] using a cellular automaton.

The two-dimensionaA? model is not only unstable with FIG. 4. Mean-square extensiai? vs system sizeNi=L) for
respect to stronger elastic potentials, but also to any weakefie (3+1)-dimensional elastic manifold for energieSq(A)
ones. We have studied tle” model, forvy slightly below 2:  =(1/4y)A” for y=2 (harmonic energy, upper curvand y=4
Already for y=1.8 (cf. Fig. 3, we find that the roughness (lower curve. The inset showg,2 and 2+ vs d. The lines are the
exponent changes drastically, as we obtain clear indicationsne-loop and two-loop results for th€? model.

tial and naturally generates terms like E@). In our opinion,
the main unresolved theoretical issue is to understand ho
this term reduces to the KPZ term under coarse graifihg
[25]).

As discussed in Ref9], there is an easy way to under-
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At last, our algorithm is able to investigater4 dimen-  no additional hypothesis, as we compute well-defined critical
sions. We have computed manifolds of sites8,16,32 ( manifolds in finite systems. Even for the harmonic case,
=M). Even though we have only three points, we find forthough, we would like to understand the divergence of the
the A? model an inconsistent fit to a functional form local scale, for which we find evidence even @h=2:

WA(L)~L? for sizesL where it was already good in81  slightly subharmonic potentials lead to a breakup of the criti-
dimensions. At the upper critical dimension, one would ex-ca| surface.

pect logarithmic behavior fo®?(L). The most natural ex-  For the first time we have presented a Hamiltonian model
planation of our findings in 41 dimensions is that the hich reproduces the results of the quenched KPZ class. The
A® model's upper critical dimension &,.=4. Thiswill still  ¢onnection between our” model and the equations of mo-

have to be confirmed for larger sample sizes.

For theA* model, we also do not find a good fit fér but
the deviations from the functional forl?(L) ~L?¢ are less
striking than for theA? model. It is unclear to us whether the
roughness exponent of the* modelcan be higher than for

tion in the continuum limit is transparent. The analysis of the
A* model gives a very precise estimate for the valu¢ ab

a function of dimensiord. It would be very interesting to
understand how the local differential operators, such as
V2h(Vh)?2, which correspond to elastic Hamiltonians, renor-

2
the A” model. _ malize into more relevant terms, such as the KPZ term.

In conclusion, we have directly computed roughness ex-
ponents for d-dimensional manifolds in a d+1)- We thank P. Le Doussal for very helpful discussions all
dimensional embedding space fb+1, ... ,4.Some of our along this work and also acknowledge stimulating discus-

findings nicely fit into the existing theoretical framework. sions with D.S. Fisher and K.J. Wiese. Our computations
For example, the upper critical dimensiolj,=4, conjec- were performed on clusters of workstations at Ecole Normale
tured on the basis of dimensional power counting, is consisSupeieure, the Institut fu Theoretische Physik of the Uni-
tent with our data for the\? model. versitd Magdeburg(Germany, and at the Paderborn Center

In the harmonic case, agreement with the two-loop calcufor Parallel ComputingGermany. A.K.H. was financially
lation is fair, and the exactness of the one-loop result can bsupported by the DFGDeutsche Forschungsgemeinschaft
excluded(cf. inset of Fig. 4. Our numerical work relies on under Grant No. Ha 3169/1-1.
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