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Depinning of elastic manifolds
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We compute roughness exponents of elasticd-dimensional manifolds in (d11)-dimensional embedding
spaces at the depinning transition ford51, . . . ,4. Our numerical method is rigorously based on a Hamiltonian
formulation; it allows us to determine the critical manifold in finite samples for an arbitrary convex elastic
energy. For a harmonic elastic energy (D2 model), we find values of the roughness exponent between the
one-loop and two-loop functional renormalization group results, in good agreement with earlier cellular au-
tomaton simulations. We find that theD2 model is unstable with respect both to slight stiffening and to
weakening of the elastic potential. Anharmonic corrections to the elastic energy allow us to obtain the critical
exponents of the quenched Kardar, Parisi, Zhang class.
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Elastic manifolds in random media are an important is
of current research in statistical physics@1,2#. In the zero-
temperature motion of these manifolds, subject to a driv
force f, the ‘‘depinning threshold’’f c plays a central role: Fo
forcesf . f c , the elastic manifold moves with finite velocity
while it is pinned forf < f c . Among the subjects studied a
and aroundf c are the ‘‘creep’’ motion for f , f c at finite
temperature, the scaling of the velocity for small forcesf
* f c , and the statistical properties of the pinned critic
manifold at f c , especially its roughness exponentz.

If one neglects velocity-dependent terms in the equati
of motion of the manifold, which one assumes to be a sing
valued functionh(x,t) ~no overhangs!, its dynamics is gov-
erned by a functionalE($h,x%) incorporating potential en
ergy due to the driving forcef and the disorderh(x,h), as
well as its internal elastic energyEel ,

] th~x,t !52
]E

]h~x!
5 f 1h~x,h!2

]Eel

]h~x!
. ~1!

Note thatx is ad-dimensional vector, in an embedding spa
of dimensiond11. Dimensional analysis suggests that t
harmonic approximation forEel provides the only relevan
term for the interplay between disorder and elasticity. T
yields the quenched Edwards-Wilkinson~EW! equation

] th~x,t !5 f 1h~x,h!1a¹2h~x!. ~2!

The model described by Eq.~2! has been an importan
testing ground for the concepts and techniques originally
veloped in the field of critical phenomena. Functional ren
malization group techniques@3,4# were used to perturba
tively compute critical exponents of the quenched E
equation, which were believed to describe generic driv
manifolds at the depinning threshold.
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According to the framework provided by the function
renormalization group, the manifold is flat (z50) for d
>duc54. Below this upper critical dimension, the roughne
exponent is expressed in ane expansion ine542d. The
first-order ~one-loop! term @3,4# of the expansion givesz
5e/3. Initially, this result was believed to be exact@4# for all
d51,2,3. However, Chauveet al. @5# have obtained the two
loop corrections and found them to be nonzero.

In this work, we compute the roughness exponent of cr
cal manifolds in finite (d11)-dimensional samples ford
51, . . . ,4. Ourapproach is rigorously based on a Ham
tonian formulation, as we study directly the dynamics of E
~1! for a general convex elastic energyEel : A powerful nu-
merical algorithm allows to solve this problem for a slight
modified version of Eq.~1!, with a discretized vectorx (x
→ i) and a continuous variableh. The short-range elastic
energy depends on the next-neighbor distancesD i,d between
lattice pointi and its 2d neighborsi6dj , as shown in Fig. 1:

1

2 (
j 51

d

(
6dj

Eel~ uhi2hi1dj
u!. ~3!

We introduce periodic boundary conditions forx and h
~cf. Fig. 1! @6#. Continuous, periodic random potentials a
constructed fromM normally distributed random variable

FIG. 1. Schematic description of a (d52)-dimensional mani-
fold, driven by a force densityf. The (d11)-dimensional embed-
ding space is periodic in the manifold’s dimensionsi 1 , . . . ,i d , but
also in the variableh.
©2003 The American Physical Society02-1
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@7,8#. In such a system, the sample-dependent critical fo
f c is well defined: pinned configurations withv i50 ; i do
~do not! exist for driving forces smaller~larger! than f c . Our
algorithm @8# allows us to decide quickly whether pinne
configurations exist at a given driving force and then zoo
in on the critical force and the critical manifold.

For the first time, we are thus able to unambiguou
compute the object of most direct theoretical interest in t
problem, namely, the critical manifold, in dimensionsd
52,3,4. We compute@9# the roughness exponentz from the
disorder-averaged mean-square deviations of the cri
manifoldshc:

W2~L !5^~hc2^hc&!2&;L2z for L→`. ~4!

As the width of the manifold is of order;Lz, we scale the
lateral extension of the sample at least asM;Lz.

Especially in higher dimensions, direct simulations of E
~2! are not viable, because they violate a crucial no-pass
theorem@10#, which we respect.

Because of the expected universality and the difficult
of direct simulation, attempts to compute the critical exp
nents of the quenched EW equation considered discrete
tems with non-Hamiltonian dynamic rules. These cellular
tomaton models@11,12# are not clearly connected with a
equation of motion in the continuum limit@13# and have
often given only rough estimates forz.

Nevertheless, simulations using cellular automata ill
trated that critical elastic manifolds in random media are
generally described by the quenched EW equation, but m
fall into two broad classes: The automata@3,14# summarized
in Ref. @15# yield critical exponents which are close to tho
obtained by analytical work on Eq.~2!; on the other hand
the automata@11,12# summarized in Ref.@16# give very dif-
ferent values for the exponents, incompatible with the res
obtained by renormalization group results, but closer to
periment@12,17,18#. There has been much confusion abo
the actual values of these exponents ford.1. It is not clear
whether the upper critical dimension of this class is a
duc54.

In our controlled Hamiltonian approach, we recover th
very rich behavior as a dependence of the roughness e
nent z on the functional form of the elastic energy: We i
vestigate elastic energies of the formEel}uDug and refer to
them asDg models. TheD2 model studies directly Eq.~2!.
Models with gÞ2 differ in their critical behavior from the
harmonic model. A special role is played by theD4 model,
which represents the first nonharmonic corrections of a g
eral elastic energyEel;aD2/21bD4/121•••.

We first discuss this important issue for an elastic str
(d51) in a two-dimensional medium, which has been ab
dantly studied in the past. As shown in Fig. 2, we find for t
D2 model a value of the roughness exponentzD251.26
60.01, which compares well with the two-loop calculatio
of Chauve et al., while clearly excluding the one-loop
result zD2

one loop
51. A value in excess of one for th

(111)-dimensional roughness has been found in direct
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merical integrations of the equations of motion@19#, in
Monte Carlo simulations@9,20#, and in the cellular automata
of Ref. @15#.

Figure 2 also shows our results for theD4 model. We find
@21# zD450.63560.005. This exponent coincides with th
value found in Ref.@16#. In lattice models, we already
showed that the roughness exponent does not change fo
D6 model and even in the presence of a metric constr
~boundeduDu). In this sense, theD4 model is only one rep-
resentative of systems with a stronger than harmonic ela
energy. The values obtained from Fig. 2 are much more p
cise than the earlier ones.

In this problem, the study of rotational invariance of th
equations of motion has occupied a crucial role. In fact, E
~2!—and therefore the equation of motion of o
D2 model—is invariant under a tilt of the manifold

h~x,t !→h~x,t !1( mixi . ~5!

It was observed@22# that the automata of Ref.@16# present a
strong dependence of the velocity and of the value off c on
the parametersmi . In our D4 model, rotational invariance is
manifestly broken as an elastic energybD4/12 generates a
piece

b ¹2h~¹h!2 ~6!

in the equation of motion. From dimensional analysis@1,23#,
among the orientation-dependent differential operators,
Kardar, Parisi, Zhang~KPZ! term ;(¹h)2 is more relevant
than the term in Eq.~6!. The nonlinear KPZ term appears i
domain-growth models without disorder, where it is coupl
to the velocity @24#. Adding it to Eq. ~2! constitutes the
quenched KPZ equation. Its critical exponents have not b
computed within the functional renormalization group, and

FIG. 2. Mean-square extensionW2 vs system size for the (1
11)-dimensional elastic string. Upper curve: harmonic elastic
ergy Eel(D)5D2/2; M;L1.5. Lower curve: elastic energyEel(D)
5D4/4; M5L. The inset shows the estimated value ofz for all
data withL.Lmin as a function ofLmin (D4 model). The absence o
systematic trends leads us to conclude thatzD251.2660.01, zD4

50.63560.005.
2-2
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is not even clear how this term is generated in the absenc
a finite velocity, at depinning@4#.

Kardar and co-workers@1,23# have suggested the forc
anisotropy due to the disorder as a possible genera
mechanism, but none of the automaton models present
an anisotropy. However, in their construction rules, a me
constraint is hidden. This implements a strong elastic po
tial and naturally generates terms like Eq.~6!. In our opinion,
the main unresolved theoretical issue is to understand
this term reduces to the KPZ term under coarse graining~cf.
@25#!.

As discussed in Ref.@9#, there is an easy way to unde
stand why the (111)-dimensionalD2 model is unstable to
higher-order corrections: A roughnessz.1 implies@26# that
the mean local elongation̂uDu& grows with the system size
at least asLz21 and thus diverges in the thermodynamic lim
L,M→`. Higher-order terms in the elastic energy are th
trivially relevant in one dimension@9#.

In 211 dimensions, we have studied samples up to s
L23M551223512. For theD2 model ~shown in Fig. 3!,
we find excellent scaling for a roughnesszD250.753
60.002, which again falls between the results of the o
loop and two-loop renormalization group calculations. O
result improves by an order of magnitude the precision of
previous estimate@15#. Note that our algorithm allows us t
know, without invoking universality arguments, that the e
ponentzD2;0.753 is that of the two-dimensional quench
EW model.

In Fig. 3, we also show our results for theD4 model. We
find a different value forz: namely,zD450.4560.01. This
last value is significantly smaller thanz;0.48 found in Ref.
@16# using a cellular automaton.

The two-dimensionalD2 model is not only unstable with
respect to stronger elastic potentials, but also to any we
ones. We have studied theDg model, forg slightly below 2:
Already for g51.8 ~cf. Fig. 3!, we find that the roughnes
exponent changes drastically, as we obtain clear indicat

FIG. 3. Mean-square extensionW2 vs system size for the (2
11)-dimensional elastic manifold for energiesEel(D)5(1/g)Dg

for g51.8 ~upper, circles!, g52 ~middle, squares!, and g54
~lower, triangles! anharmonic energy;M5L. The inset shows the
mean local elongation̂uDu& for g52 andg54. Forg51.8, ^uDu&
clearly diverges~not shown!. Error bars are smaller than the symb
sizes.
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that zD1.8.1. This implies that the surface breaks.
We also studied elastic energies;A11D2 in the (2

11)-dimensional problem. In one dimension, this function
form corresponds to the length of the string, and t
D2 model is often understood as the first term from an
pansion of the length in powers ofD. The square root is
softer than its first expansion coefficient; we again find v
ues ofzA11D2 in excess of 1 for large system sizes.

As in 111 dimensions, we also find for th
(211)-dimensional D2 model indications of a ~much
slower! divergence of the mean local extension, as shown
Fig. 3. For theD2 model, it seems to diverge logarithmicall
whereas for theD4 model it saturates already for very sma
systems. Again it appears that only theD4 model has a
proper thermodynamic limit for the critical manifold.

We also performed extensive computations in 311 and
411 dimensions, where we have reached sample size
L33M5643364 and L43M5324332, respectively. For
the harmonic model in 311 dimensions, we obtainzD2

50.35560.01, again in good agreement with the numeri
results of Ref.@14#, while our resultzD450.2560.02 for the
D4 model is in contradiction to Ref.@16#, which suggested
an exponentz;0.38 larger than for the harmonic case. W
checked very carefully that our estimate forz is independent
of the parametersa andb. ~See Table I for a summary.!

TABLE I. Roughness exponents as a function of dimensiond
for the (d11)-dimensional driven manifold problem, both for th
D2 model ~harmonic elastic energy! and theD4 model.

Analytic
d One-loop Two-loop zD2 zD4

1 1 1.44 1.2660.01 0.63560.005
2 2/3 0.86 0.75360.002 0.4560.01
3 1/3 0.38 0.35560.01 0.2560.02

FIG. 4. Mean-square extensionW2 vs system size (M5L) for
the (311)-dimensional elastic manifold for energiesEel(D)
5(1/4g)Dg for g52 ~harmonic energy, upper curve! and g54
~lower curve!. The inset showszD2 andzD4 vs d. The lines are the
one-loop and two-loop results for theD2 model.
2-3
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At last, our algorithm is able to investigate 411 dimen-
sions. We have computed manifolds of sizesL58,16,32 (L
5M ). Even though we have only three points, we find
the D2 model an inconsistent fit to a functional form
W2(L);L2z for sizesL where it was already good in 311
dimensions. At the upper critical dimension, one would e
pect logarithmic behavior forW2(L). The most natural ex-
planation of our findings in 411 dimensions is that the
D2 model’s upper critical dimension isduc54. This will still
have to be confirmed for larger sample sizes.

For theD4 model, we also do not find a good fit forz, but
the deviations from the functional formW2(L);L2z are less
striking than for theD2 model. It is unclear to us whether th
roughness exponent of theD4 modelcan be higher than for
the D2 model.

In conclusion, we have directly computed roughness
ponents for d-dimensional manifolds in a (d11)-
dimensional embedding space ford51, . . . ,4.Some of our
findings nicely fit into the existing theoretical framewor
For example, the upper critical dimensionduc54, conjec-
tured on the basis of dimensional power counting, is con
tent with our data for theD2 model.

In the harmonic case, agreement with the two-loop cal
lation is fair, and the exactness of the one-loop result can
excluded~cf. inset of Fig. 4!. Our numerical work relies on
d
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no additional hypothesis, as we compute well-defined criti
manifolds in finite systems. Even for the harmonic ca
though, we would like to understand the divergence of
local scale, for which we find evidence even ind52:
slightly subharmonic potentials lead to a breakup of the cr
cal surface.

For the first time we have presented a Hamiltonian mo
which reproduces the results of the quenched KPZ class.
connection between ourDg model and the equations of mo
tion in the continuum limit is transparent. The analysis of t
D4 model gives a very precise estimate for the value ofz as
a function of dimensiond. It would be very interesting to
understand how the local differential operators, such
¹2h(¹h)2, which correspond to elastic Hamiltonians, reno
malize into more relevant terms, such as the KPZ term.
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sions with D.S. Fisher and K.J. Wiese. Our computatio
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versität Magdeburg~Germany!, and at the Paderborn Cente
for Parallel Computing~Germany!. A.K.H. was financially
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under Grant No. Ha 3169/1-1.
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