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Universal interface width distributions at the depinning threshold
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We compute the probability distribution of the interface width at the depinning threshold, using recent
powerful algorithms. It confirms the universality classes found previously. In all cases, the distribution is
surprisingly well approximated by a generalized Gaussian theory of independent modes which decay with a
characteristic propagat@(q) =1/q°*2¢; ¢, the roughness exponent, is computed independently. A functional
renormalization analysis explains this result and allows one to compute the small deviations, i.e., a universal
kurtosis ratio, in agreement with numerics. We stress the importance of the Gaussian theory to interpret
numerical data and experiments.
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The scaling properties of driven elastic interfaces in ranabove the upper critical dimensiah,.. This has motivated
dom media play an important role in a wide variety of physi-attempts to determind, for, e.g., the KPZ equatiofi3].
cal situations, ranging from stochastic surface growth to doprobability distributions of order parameters have received
main walls in disordered magnetic materials, the spreadinghuch attention for magnetic systerfis4] and for related
of fluids on rough substrates, and the dynamics of crackgodels such as polymers, spin glasses, and random diffusion
[1,2]. These problems share many features with critical phef15). The quantity we study her@®(w?), is the distribution
nomena and provide a challenge for theoretical approaches the lowest order observable which tests the whole function
to disordered systems and nonequilibrium phenoni@r®@].  h(x) for 0<x<L. It appears as a fundamental quantity in
Here we study interfaces described by a scalar heighyisordered systems.
functionh(x), wherex is thed-dimensional internal coordi- The aim of this paper is to compute the width distribution
nate. We measure the deviation from the mean position agvD) ®(z) for elastic interfaces driven in random media,
u(x)=h(x) —(h), where(- - -) stands for the spatial average exactly at the depinning threshold, numerically and from
over allx of a given interfacdcf. Fig. 1. The mean square field theory. As in the linear problems treated earlier, we
width of asingleinterfacew*({u(x)})=(u?), can be used to confirm the existence of universal properties in various di-
characterize its roughness, and explore universal propertiefiensionsd and with several functional forms of the elastic-
After averaging over the ensemble of interface$, grows ity. The surprising finding is that in all cas@{w?) (i.e., its

with the lateral extensioh of the system as shape is extremely wellapproximated by a simple general-
_ ized Gaussian approximatidiGA), without any fit param-
w2 L?¢ for L—os, (1)  eter, and depends only afi which is determined indepen-
dently. This suggests that the complicated morphology of
where({ is the roughness exponent. interfaces(cracks, domain walls, efcmay be modeled by a

An interesting property is that for positive w? fluctu-  simple ansatz of independent modes with a characteristic de-
ates even in the thermodynamic limi@—11]. This means cay. This may have important consequences for the analysis
that the long-range geometric features of the interface are n@f numerical and experimental data. Our numerical results
characterized by the roughness exponent alone, but requisge then placed in the context of a functional renormalization
the complete probability distributioR(w?). P(w?) has been  group calculation, detailed in a companion pafis].
computed for several linear stochastic growth equations We consider the zero temperature equation of motion of
without disorder as the Edwards-Wilkinson model, thean interface given by
Mullins-Herring model, and the one-dimensional Kardar-
Parisi-Zhang(KPZ) model [10,11]. In these models, the
probability distributionP(w?) can be rescaled into a form
independent of system size and of microscopic details

<h>

P(w?)=(1w?)d(w?/w?) for L—o. 2)
Althoughw? may contain a nonuniversal scale, the function . 1
®(z) is universal. It has been argued that the shape(ef?) 0 X L
can thus be used as a sensitive tool, distinct fignto dis-

tinguish between different universality clas§€s-12]. Fur- FIG. 1. Example of a + 1-dimensional periodic interfade(x)
thermore,®(z) is expected to converge to & function  (random walk with mean valugh) andu(x) =h(x)—¢h).
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The standard Gaussian probability measure associated with

where the functionaE({h,x}) represents the total energy U i.e., Plulocexd — Lt au(x)/ax?] gives
y 1.Gy 2J0

comprising potential energy due to the driving foricehe

short-range correlated disorder forgg€x,h), as well as its = ()2

internal convex elastic enerdy, . Equation(3) is nonlinear P[u]ocexp{ - > ———(a2+b?)|. (6)
and has not been solved exactly. We are interested in the -1 L

depinning limit (f=f.) where the velocity of the elastic e

manifold goes to zero. We use periodic boundary conditiond N€ Probability distribution

and recall that the W (z), although independent of small

scale details, does depend on the boundary condition at large P(w?)= f Dlu]d(w?—(u?))Plu] 7)
scale.

For our numerical study we use very efficient algorithms
[17,18 which directly determine critical forcefs, as well as
the critical interfaceh.(x) for a wide range of models. In

is obtained from the generating function of its moments

particular we calculate the WD for interfaces of dimensions W(N) = f:sz P(w2e MW, ®)
ity of ®(z) in d=1, by means of a directed polymer model

[19]. As expected®d(z) is always size independent and the

monic models, in fact, have an exponght1.2, and thus W(\)= Z(\)

renormalization group methd&RG) originally developed to  For the random walk Ed6), P(w?) can be obtained exactly
cently a renormalized field theory was constructed to 2-loop P(W2) = 41 2 n?(— 1)n+1e72wz(ﬂ-n)2/L_ (10)
dynamics, and accounts for the large values of the roughneﬁsingw—zz — dWId\ |, _o=L/12, Eq.(10) can be written in
yields the GA as a lowest order approximationeis 4—d

These ratios provide a more sensitive analysis of the details =3 2 n2(—1)"*lg=(7*)zn” (12)

d=1 andd=2, where the elastic energy has the harmonic
form E¢({h,x})~(Vh)2. We have also tested the universal- Writing Eq. (8) as an integral ovea, andb,,, we obtain
with an anharmonic quartic elasticity and for a lattice model * s o s b,
with hard local constraint, which have the sarie 0.63 zon=11 fdandbn g~ Ll(mm“/Ll(ay+bp) g = (M2)(@p +by)
n=1
WD associated to nonharmonic models can be distinguished ©)
from the one resulting from a harmonic elasticity. The har- o oL\
- 1+ ——| .
belong to a different universality class. Z(0) n=1 ( 2 (wn)z)
For our field theory calculation we use the functional

one loop to describe the model with harmonic elasticity anddy inverse Laplace transform of E(Q):
correct the predictions of dimensional reducti@gh5]. Re- )
order [7] which overcomes the deficiencies of the 1-loop L >0
analysis; notably, it distinguishes between statics and driven
exponent measured, e.g., in Refill8—-2Q in contrast to an a scaling form
earlier conjecturd5] {=(4—d)/3. We find that the FRG g

—\\2 2 — 2 /\n2
and allows one to compute universal ratios which probe high P(@)=wP(W), z=ww
cumulants ofP(w?) as well as deviations from the GA. 2
of the universality class. The simplest of them is the gener-
alized kurtosis

The size dependence thus appears only through the average

width w?. We can generalize E@6), where each moda,,
f [u(x)2u(y)?] " b, has a weight<n?, to an arbitrary function of independent
_Ixy @ Fourier modes:

R= ,
zfxyy[u(x)U(y)] Pgausgu]ocexr{—% zo (a%+ bﬁ)G—1<2|_in”, (12)

where the superscrit indicates the connected expectation Which, in real space, corresponds to
value.R is found to be small but nonzero. This proves that

the correct description of interfaces must go beyond the _Ef"f"d d G-1 13

independent-mode picture. Poausku]<exg = 5 Pt )Gy uly) | (139
To introduce the Gaussian approximation in the most el-

ementary way, we first recdl®] the simple periodic random The functionG,,=u(x)u(y) is the exact disorder-averaged

walk of sizeL, with a Fourier expansion 2-point function and can be computed from numerical data.
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FIG. 2. Scaling functionb(z) (pointg and® g,,s(2) (lines) for: FIG. 3. Difference between the integrated distribution functions

(1+1)—dimensional harmonic LE=256, 2x10° samples, ¢ of @ anddy,,¢s(With {=1.25) obtained from % 10° independent

=1.25), left; (1+1)—dimensional anharmonid.& 256, 2x10° interfaces al. =256 (continuum ling and L =64 (dashed ling in

samplesZ=0.63), middle, and (2 1)—dimensional harmonicL(  thed=1 harmonic model.

=32, 10 samples,{=0.75), right. The scatter in the numerical

data is mostly due to binning. Notice that, fde=1, the typical  tained fromN=2x 10° independent samples. The absence of

value ofzis much smaller than its average-1. systematic finite-size effects shows that the asymptotic re-
gime of large interfaces has been reached and leads us to

Thus one is able to obtaiRy, sseven for a finite system. In  conclude that the exact distribution for large systems is not

the thermodynamic limitPy,,sfu] is obtained from the be- Gaussian. In fact, statistical fluctuations in this quantity are

havior of G,,=G,_, for large [x—y| (small q), where of order 1A/N and the signal would be drowned in the noise

G(q)~C/q®"%. This means that a single observaljlele-  if the number of samples was an order of magnitude smaller.

terminesPgy,,sku] on large scales. We now discuss the field theoretical calculation. To low-
We again determine the generating function for the mo-est order in perturbation theory, we show that the generalized

ments, but this time for arbitrary andd: Gaussian approximation appears naturally. This is instructive

since it identifies the diagrams which are obtained by assum-

B ~ 1 ing the theory to be Gaussian, albeit nontrivial, since it in-
W(M_ql;lo (1+2)G(q)) (14 yolves a nontrivial roughness exponeghtUsing dynamical
field theoretic methods7], one starts again from the Laplace
transformW(\) and expands in powers of the correlator of
the pinning forceA(u). To lowest order one findgl6] that
InW(\) is the sum of all connected 1-loop diagrams. The
loop with N disorder vertices antl insertions ofw? is

where X\=\/L, q=2mn/L, neZ%. Due to the symmetry
g —q, no fractional power appears in Ed4), just like in
Eq. (9), where the exponent 1 stems from the double sum
over hea, andb, . An explicit sum over poles allows one to
obtain®,,s{z) for all { andd with excellent precision. All
GA interfaces{u(x)} can be directly sampled by Monte 1
Carlo methods. For details, including the extension to open 5N 2
boundary conditions, see Refd.2,21] q
In Fig. 2 we compare the exact scaling functid{z) to
D gausf2) for different models, usings(n)=C/n%"2¢. The  where the sums ovey thus run over a-dimensional lattice
roughness exponerit was previously obtained using both with spacing 2r/L, and the zero mode is excluded, as ap-
field theory[7] and numerical method48]. The agreement propriate for periodic boundary conditions. Resumming Eg.
betweend and ® 4,sis clearly spectacular. The scatter of (16) overq would give Eq.(14) with G(q)~1/g*, i.e., the
the data, visible in Fig. 2, is mostly due to the finite width of dimensional reductiofiLarkin) result. In fact, the FRG tells
histogram bins. us that the calculation should be performed with the running
Tiny, yet significant, differences betwednand® 4, ssare disorderA(O)—>A|(0)=e(ffzf)'Z*(0), WhereZ*(O) is the
best resolved in the integrated probability diStribUtiOﬂS,(nonuniversal value of the fixed poinf7]. For the present
which need no discretization. The difference between the incase of periodic boundary conditions and momentum infra-

—2xA0)\ "
@ 1o

tegrated distributions ob and ® g, ssis red cutoff, one can replade-In(1/q), and finally obtain Eq.
(14) with G(q)=C/q®"?¢. This calculation is valid to domi-

AH(Z): fzdt[q)gausgt)_q)(t)]r (15) nan.t order in€=4—d, i.e., neard=4 When the same class

0 of diagrams are resummed in adyt leads to the GA, as we

now illustrate considering, e.g., the second connected cumu-
where H(z) = [§dtd(t) is the fraction of samples with a lant of the WD. This cumulant isot connecteavith respect
renormalized width belove. In Fig. 3, we showAH(z) ob-  to h, and thus there is an exact relation:
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5 but definitely different from zero. Direct information on the
Gy (17 non-Gaussian effects can also be obtained from the Fourier
i transforms of the interfacag x) in Eq. (5). In Fourier space,
The first term results from Wick’s theorem and would be thefor d=1, the expression dR is
full result if the measure were Gaussian. Analogous formulas

W2 = (W2 (WD) =2(1+R) f

X

exist for higher cumulants, and if the measuréha$ purely 7 72 7. ¢

Gaussian can be resummed into Et@). Even though the n?ﬁz (an1+bn1)(anz+bnz)

GA is not exact, the deviations, given by the last term in Eq. R= . (18
(17) are expected to be small; indeed they are of owdfer 22 (@100

Thus the GA is already exact to theo lowest leading or- = R

derse? and €3, which explains why it is so accurate even in

Iovx_/rﬂimer;siolni_ f the deviati ing the field th - We remark thatR detects correlations in the disorder-
e calculation of the deviations using the fie eory 'Saveraged fourth momenﬂm—(ql)|2|u(q2)|2, which cannot

delicate[16]. The kurtosisR in Eq. (4), which characterizes simply be expressed through the second momr(ts) 2.

the importance of non-Gaussian effects is found toRse . r
~0.13¢ to lowest order for smak=4—d. It is easy to see To summarize, we have computed both numerically and
that. this strongly overestimate® in low aimensions An- within field theory the width distribution of critical configu-

) rations at depinning, with consistent results. The shapes of

other method is to work in fixed dimension and to truncate to S )
one loop, yieldingR=—0.036 d=3), R=—0.048 ( the distributions are strongly dominated by the value of the

—2), R=—0.01 @=1). In view of the numerical results roughness exponegt On the other hand, it will be difficult

given below, this seems to underestim@ta@he small values to distinguish different universality classes from the forms of

obtained in low dimensions arise from kinematic constraintsq)(z) if th?.'r roughness exponents are §|mllar. Other univer-
al quantities, such as the kurtosis defined here, directly in-

in the diagrams, presumably a genuine effect indicating Iargé : e . .
corrections from higher orders into the aboveD(e?) even volve the non-Gaussian part of the distribution. Their precise

in d=3. Note that thesign of the result indicates a distribu- determination still requires more work, both numerically and

tion more peaked than a Gaussian and is in agreement wit ithin ﬂel.d theory. AI;so, since the .V.VD Is so tightly Iinked_ tp
the only other known exact restiz2] for the (random field ) finite-size e_ffects in both quantities are con_nected. Finite-
statics ind=0. R= — 0.08086 . . size effects ywll need to be well un_derstood in order to re-
We have cémputed from E@4) the generalized kurtosis solvg open |§sue§6,20,23 concernlngduc fqr the aniso-
function, in a model-independent way. We have checked oHOp.'C depmnmg class. It would be mte_restlng to carry ouF
the one-dimensional harmonic model that ikéz), Ris not S|m|_lar calculations on other pure and disordered models, in
affected by finite-size effects and using®Eamples we find: particular for the equivalent static system.
R=—0.054+0.002 (1D harmonic L=256); R=—0.067 We thank Z. Raz for stimulating discussions. K.J.W. was
+0.002 (1D anharmonicL=64); R=—0.053t0.002 (2D  supported by Deutsche Forschungsgemeinschaft under Grant
harmonicL =32). As proven by FRG calculationR,is small  No. Wi 1932/1-1.
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