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We propose to model the stochastic dynamics of a polymer passing through a pore (translocation) by

means of a fractional Brownian motion and study its behavior in the presence of an absorbing boundary.

Based on scaling arguments and numerical simulations, we present a conjecture that provides a link

between the persistence exponent � and the Hurst exponent H of the process, thus shedding light on the

spatial and temporal features of translocation. Furthermore, we show that this conjecture applies more

generally to a broad class of self-affine processes undergoing anomalous diffusion in bounded domains,

and we discuss some significant examples.
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The dynamics of a polymer chain composed of N mono-
mers passing through a pore (translocation) has been in-
tensively investigated in recent years, by virtue of its
central role in understanding, e.g., viral injection of DNA
into a host or RNA transport through nanopores, and
mastering such applications as fast DNA or RNA sequenc-
ing through engineered channels [1–4]. The translocation
coordinate sðtÞ, namely, the label of the monomer crossing
the pore at time t, is key to quantitatively describing the
translocation process [5–7], which begins when s ¼ 1 and
ends when s ¼ N, i.e., when the first and the last monomer
of the chain enter the pore, respectively (see Fig. 1).

Various dynamical regimes of sðtÞ have been identified:
In the absence of driving forces and hydrodynamic effects
(free polymer), fluctuations dominate and sðtÞ can be re-
garded as a stochastic process, whose features vary with
the polymer length N [6,8,9]. Understanding the dynamics
of sðtÞ represents a challenging problem. A free polymer is
characterized by two natural time scales. First is the intrin-
sic equilibration time teq required by the center of mass of

the polymer Rcm to travel a distance of the order of the
typical size of the chain. This size is given by the radius of
gyration Rg, which scales as Rg � N� in the large N limit.

In a good solvent, � ¼ 3=4 in 2d and � ’ 0:59 in 3d when
excluded-volume effects for the monomers are considered;
� ¼ 1=2 for an ideal (‘‘phantom’’) polymer [10]. The
center of mass diffuses with a diffusion coefficient

�1=N. Then, Rcm � ffiffiffiffiffiffiffiffi
t=N

p
. Hence,

ffiffiffiffiffiffiffiffiffiffiffiffi
teq=N

q
� Rg and teq �

N2�þ1 for large N. On the other hand, the translocation
time T (much longer than teq) is the time required by the

polymer to go through the pore, so that sðTÞ ¼ N (Fig. 1).
Under the hypothesis that the translocation is a self-affine
process, i.e., sðtÞ � tH, with Hurst exponent H, it follows

that T � N1=H.
For short polymers, excluded-volume effects are negli-

gible, sðtÞ undergoes diffusion, and T � N2 [6]. However,
as N increases, the excluded-volume interactions become

relevant, and sðtÞ undergoes subdiffusion 0<H < 1=2 [8].
Numerical simulations (mostly 2d) support the following
conclusions: (i) T and teq have the same scaling, up to a

large prefactor, i.e., T � teq. Hence, H ¼ 1=ð1þ 2�Þ [8].
[Note that for phantom polymers sðtÞ always diffuses, even
for large N.] (ii) The probability Pðs; tÞ of finding the
monomer s in the pore at time t for an infinite chain (i.e.,
in the absence of boundaries) is Gaussian [11]. (iii) For a
finite chain yet to have completed translocation, sðtÞ
evolves in the presence of two absorbing boundaries at s ¼
0 and s ¼ N (see Fig. 1), and the distribution of sðtÞ
converges to a non-Gaussian form at long times. In par-
ticular, this distribution vanishes nonlinearly as s� and
ðN � sÞ� at the two boundaries s ¼ 0 and s ¼ N, respec-
tively, with � ’ 1:44 in 2d [11]. Computing analytically
the exponent � is a nontrivial problem and is the main
objective of this Letter.
Upon gathering these hints from simulations, we pro-

pose as a natural candidate for sðtÞ the fractional Brownian
motion (fBm), a self-affine Gaussian process (0<H < 1).
A Gaussian process is completely defined by its autocor-
relation function hsðt1Þsðt2Þi: For fBm [12],
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FIG. 1. Left: Translocation of a polymer chain through a pore.
Right: The translocation coordinate sðtÞ denotes the number of
the monomer that is crossing the pore at time t.
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hsðt1Þsðt2Þi / t2H1 þ t2H2 � jt1 � t2j2H: (1)

Brackets refer to an ensemble average over many realiza-
tions. Equation (1) implies that the incremental correlation
function of fBm is stationary:

h½sðt1Þ � sðt2Þ�2i / jt1 � t2j2H: (2)

Note that Brownian motion (BM) is fBm with H ¼ 1=2.
When H ¼ 1=ð1þ 2�Þ, fBm satisfies conditions (i) and
(ii). Concerning (iii), the central result of our Letter is to
show that the probability distribution of a fBm confined in
the positive half-axis vanishes as s�, with

� ¼ 1�H

H
; (3)

close to the absorbing boundary s ¼ 0, in the long time
limit. For 2d polymers with excluded-volume effects, us-
ing � ¼ 3=4, one gets H ¼ 2=5 and � ¼ 3=2, which is in
good agreement with the numerical value� ’ 1:44 [11]. In
3d, using � ’ 0:59, we predict H ’ 0:46 and � ’ 1:18.

More generally, we will show that, actually, for a broad
class of self-affine processes with Hurst exponent H, the
exponent � is related to the persistence exponent � of the
process via the relation � ¼ �=H. The persistence of a
stochastic process is simply the probability of no return to
its initial value up to time t, and for a wide class of
processes the persistence decays algebraically �t�� at
late times with a nontrivial persistence exponent � [13].
For fBm, in particular, � ¼ 1�H is known exactly [14],
leading to the result� ¼ ð1�HÞ=H. This general relation
of � to persistence exponent � sheds light on the spatial
and temporal features of anomalous diffusion in the pres-
ence of absorbing boundaries, which is ubiquitous in na-
ture and arises in such diverse fields as contaminant
migration in heterogeneous materials [15] and charge
transport in amorphous semiconductors, to name only a
couple [16].

Let us begin by introducing the class of stochastic
processes in which we are interested. A generic unbiased
stochastic walk xðtÞ can be represented as a sum of jumps
(increments) �ðt0Þ:

xðtÞ ¼ Xt
t0¼1

�ðt0Þ; (4)

where the jump length �ðt0Þ has a symmetric marginal
distribution �t0 ð�Þ. The central limit theorem guarantees
that, if xðtÞ undergoes anomalous diffusion, one of the
following statements must be violated: (a) The jumps are
identically distributed; i.e.,�t0 ð�Þ does not depend on time:
xðtÞ has stationary increments; (b) the variables � are
independent: xðtÞ is Markovian; (c) �t0 ð�Þ has finite vari-
ance. For instance, fBm, which is the only self-affine
Gaussian process with stationary increments, is anomalous
and violates (b) (except forH ¼ 1=2). In the following, we
present a general scaling argument for self-affine processes
satisfying property (a), i.e., having stationary increments,
but not restricted to satisfy either (b) or (c).

For such processes started in x0 > 0 and killed upon
leaving the positive half-axis, we define Pþðx; x0; tÞ as
the probability of finding the walker in x at time t. We
define px0ðx; tÞ as the conditional probability density of

finding the walker, given that it has not been absorbed at
any previous time:

px0ðx; tÞ ¼
Pþðx; x0; tÞR1

0 dxPþðx; x0; tÞ : (5)

At long times, the small-x behavior of this distribution
gives access to the exponent �. The quantity Sðx0; tÞ ¼R1
0 dxPþðx; x0; tÞ defines the survival probability that the

walker has not left the positive half-axis up to t.
As a useful guide, let us first recall the results for regular

BM, i.e., fBm with H ¼ 1=2. The method of images gives
the scaling form [17]

Pþðx; x0; tÞ ¼ 1ffiffi
t

p F

�
xffiffi
t

p ;
x0ffiffi
t

p
�
; (6)

where Fðy; y0Þ ¼ ½e�ðy�y0Þ2=2 � e�ðyþy0Þ2=2�= ffiffiffiffiffiffiffi
2�

p
. The

long time behavior of the conditional probability, for any
x0, is obtained by taking the x0 ! 0 limit:

p0ðx; tÞ ¼ xffiffi
t

p e�x2=2t: (7)

Observe that in this limit the process is not reminiscent of
the initial condition. For large x, the particles do not feel
the presence of the boundary, and p0ðx; tÞ behaves as the
Gaussian probability of an unconstrained BM. On the other
hand, p0ðx; tÞ vanishes linearly close to the boundary,
which implies that � ¼ 1 for BM.
Inspired by the special case of BM, we anticipate a

similar scaling for a generic self-affine process:

Pþðx; x0; tÞ ¼ 1

tH
0 F

�
x

tH
;
x0
tH

�
; (8)

where H0 has to be determined. Integrating over x, we get

Sðx0; tÞ ¼ tH�H0
Gðx0=tHÞ, whereGðyÞ ¼

R1
0 Fðx; yÞdx is a

scaling function of a single variable. For any x0 > 0, we
know that Sðx0; 0Þ ¼ 1. Therefore, the only acceptable
choice is H0 ¼ H, which implies

Sðx0; tÞ ¼ G

�
x0
tH

�
; (9)

with Gðþ1Þ ¼ 1. This scaling form allows the asymptotic
behavior of Sðx0; tÞ to be fully characterized. In particular,
since the survival probability is expected to decay as

Sðx0; tÞ � t�� for large t, GðyÞ must behave as GðyÞ �
y�=H for small y, so that

Sðx0; tÞ / t��x�=H0 : (10)

Consider now the scaled variables y ¼ x=tH and y0 ¼
x0=t

H. By combining Eq. (9) with Eqs. (8) and (5), we get

Fðy; y0Þ ¼ Sðy0Þpy0ðyÞ; (11)
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where py0ðyÞ is the conditional probability density ex-

pressed in terms of the rescaled variables. In the long
time limit, y0 ! 0 and Fðy; y0Þ can be factorized as

Fðy; y0Þ / y�=H0 p0ðyÞ: (12)

Let us now consider the limit y ! 0 and suppose that
p0ðyÞ � y�. The process is time reversible since its incre-
ments are stationary; i.e., a path from x0 to x forward in
time plays the same role of a path from x to x0 backward in
time. As a consequence, the two limits x0 ! 0 and x ! 0
can be interchanged in Pþðx; x0; tÞ, implying that y0 and y
must appear in an identical fashion in the limiting behavior
of Fðy; y0Þ in Eq. (12), and thus follows our proposed
scaling relation � ¼ �=H. This conjecture represents our
central result.

In support of this conjecture, we proceed next to nu-
merically confirm its validity for fBm. In order to generate
a fBm path of Lþ 1 steps, fx0; x1; . . . ; xi; . . . ; xLg, we need
to draw L Gaussian numbers correlated through Eq. (1).
This is, in general, a time-consuming procedure, as it
requires computing the square root of the autocorrelation
matrix. Better results can be obtained by making use of the
stationarity of the increments �i ¼ xi � xi�1, with a
Toeplitz matrix correlator h�i�iþki / jk� 1j2H þ jkþ
1j2H � 2jkj2H. In particular, the Levinson algorithm allows
first passage problems to be efficiently tackled, by recur-
sively generating xiþ1 given xi; . . . ; x0 [18].

In Fig. 2, we test the scaling of Sðx0; tÞ proposed in
Eq. (10). The survival probability is shown as a function
of the rescaled variable y0, for different times. Particles
start at x0 > 0, and a single absorbing boundary is set in
x ¼ 0. All curves collapse, in agreement with the self-
affinity of the process. The collapse does not work in the
region where x0 is of the same order of magnitude as the

typical increment of the (discrete) process. This effect
disappears as time (and thus path length) increases, ap-
proaching the continuum limit. Good agreement is found
between the proposed scaling and the numerical results. In
the superdiffusive regime, tH grows faster, and shorter
times are required to attain the long time limit.
We proceed then to verify that the same scaling expo-

nent � characterizes also the behavior of the conditional
probability close to the absorbing boundary. This is done in
Fig. 3, where p0ðyÞ is plotted as a function of y for some
exponents H. For all curves, the rescaled variable y0 varies
in the range 0.1–0.4, which a posteriori is verified to satisfy
the long time limit. Good agreement with the proposed
conjecture is found. Again, convergence to the expected
scaling is faster in the superdiffusive case. Far from the
boundary, p0ðyÞ has a Gaussian decay, i.e., behaves as the
free propagator, as observed above.
Now we briefly review some stochastic transport pro-

cesses where the proposed conjecture is shown to work.
Lévy flights are Markovian superdiffusive processes

whose jumps obey a Lévy stable (symmetric) law of index
0<� � 2 [19,20]. Since �ð�Þ � ��1��, property (c) is
violated. The Hurst exponent isH ¼ 1=�. By virtue of the
Sparre Andersen theorem [21], the persistence exponent is
� ¼ 1=2, independent of�. It has been shown that far from
the origin p0ðyÞ behaves as a Lévy stable law, whereas the
conditional distribution close to the origin scales as

p0ðyÞ � y1=2H [22], and hence the exponent � ¼ 1=2H ¼
�=H.
Within the framework of the so-called continuous time

random walk model, a class of subdiffusive walks is intro-
duced by assuming that the waiting times between con-
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FIG. 2 (color online). Survival probability as a function of the
rescaled variable y0, for H ¼ 4=7 (top) and H ¼ 4=9 (bottom),
at various times t in a semi-infinite domain. Numerical simula-
tions are compared with the proposed scaling ð1�HÞ=H ¼ 3=4
and ð1�HÞ=H ¼ 5=4, respectively.
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FIG. 3 (color online). Semi-infinite domain. Conditional
probability p0ðyÞ as a function of the rescaled variable y ¼
x=ctH for different Hurst exponents H. The constant c is chosen
so that y has unit mean. From top to bottom, symbols are H ¼
2=3 (L ¼ 4� 103), H ¼ 4=7 (L ¼ 1:2� 104), and H ¼ 4=9
(L ¼ 2� 104). Dashed lines correspond to the predicted slopes
of Eq. (3). The dotted line corresponds to H ¼ 1=2, where
p0ðyÞ ¼ 2y=� expð��y2=4Þ.
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secutive (Gaussian and symmetrical) jumps have a power-
law decay of the kind t�1��, with 0<�< 1 [23]. This
process can be described by Eq. (4), provided that t is
interpreted as the step number [24]. With respect to the
actual time t, the Hurst exponent is H ¼ �=2. In the
presence of an absorbing boundary, it has been shown

that the survival probability behaves as Sðx0; tÞ � x0=t
�=2

for large times [25]; hence, the persistence exponent reads
� ¼ H. Moreover, p0ðyÞ vanishes linearly close to the
boundary [25], so that � ¼ 1 ¼ �=H.

So far, we have focused on a semi-infinite region; sev-
eral processes (including translocation) involve, however,
finite-size domains [8,26]. Asymptotically, for large N and
close to the origin, the conditional probability in a bounded
box must be independent of t and x0, i.e., px0ðx; tÞ ¼ pðxÞ,
and one would expect pðxÞ � x�, where � is the same
exponent as the semi-infinite case: The particle feels the
presence of the other boundary at N only when sufficiently
close to it. The case of BM ðH ¼ 1=2Þ in a bounded box
can be analytically solved by addressing the associated
Laplacian eigenvalue problem; it turns out that, for long
times � ¼ 1, the conditional probability close to the
boundaries of the box has the same scaling as in a semi-
infinite domain. A numerical test for fBmwith other values
of H is provided in Fig. 4, which again reveals good
agreement between simulation results and the proposed
conjecture. The same holds true also for the other pro-
cesses considered above.

Finally, one can also interpret our results via a simple
heuristic argument. Subdiffusive processes tend to explore

space more thoroughly than regular diffusion, so that close
to the boundary their probability of being absorbed is
larger. We therefore expect � � 1 for subdiffusion. As
an example, excluded-volume effects make the transloca-
tion coordinate subdiffusive, and the untranslocated poly-
mers are more easily found far from the boundary at any
given time. Analogous arguments lead to the conclusion
that � � 1 for superdiffusion.
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FIG. 4 (color online). Bounded box of unit size. Conditional
probability pðxÞ as a function of x for different Hurst exponents
H. From top to bottom, symbols are H ¼ 2=3 (L ¼ 4� 103),
H ¼ 4=7 (L ¼ 1:2� 104), and H ¼ 4=9 (L ¼ 2� 104).
Dashed lines correspond to the predicted slopes of Eq. (3).
The dotted line corresponds to H ¼ 1=2, where pðxÞ ¼
� sinð�xÞ=2.
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