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We present the universal features of the hitting probability Qðx; LÞ, the probability that a generic

stochastic process starting at x and evolving in a box [0, L] hits the upper boundary L before hitting the

lower boundary at 0. For a generic self-affine process, we show that Qðx; LÞ ¼ Qðz ¼ x=LÞ has a scaling
QðzÞ � z� as z ! 0, where � ¼ �=H, H, and � being the Hurst and persistence exponent of the process,

respectively. This result is verified in several exact calculations, including when the process represents the

position of a particle diffusing in a disordered potential. We also provide numerical support for our

analytical results.
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The transfer of DNA, RNA, and proteins through cell
membranes is key to understanding several biological pro-
cesses [1]. A fundamental question concerns whether a
polymer, once penetrated into the pore, will eventually
complete its transit. The answer is naturally formulated
in terms of the translocation coordinate XðtÞ, namely, the
length of the translocated portion of the polymer at time t
[2–4]. In absence of driving forces, the polymer dynamics
is governed by thermal fluctuations. In this case, the trans-
location coordinate can be expressed as a stochastic pro-
cess XðtÞ that evolves in a box of size L (L being the
polymer length), starting from some initial value Xð0Þ ¼
x, 0< x< L, and terminated upon touching either bound-
ary for the first time (Fig. 1 left). It has been shown that
excluded volume effects hinder the polymer dynamics, and
the process XðtÞ actually undergoes subdiffusion [3,5]. We
define the hitting probability Qðx; LÞ as the probability of
exiting the domain through the boundary at L, which
corresponds to the polymer completing the translocation.

More generally, the hitting probability Qðx; LÞ of a
particle undergoing anomalous (i.e., non-Brownian) diffu-
sion allows addressing a variety of phenomena, such as the
classical gambler’s ruin problem in risk management [6,7],
charge carriers transport in presence of disordered impuri-
ties [8], and the breakthrough of chemical species in site
remediation [9], only to name a few. For Brownian diffu-
sion, the hitting probability Qðx; LÞ ¼ x=L is easy to com-
pute [6,7]. The goal of this Letter is to study Qðx; LÞ for
generic self-affine processes, beyond the Brownian world.

The sole length scale in the problem being L, Qðx; LÞ
depends only on the scaled variable x=L: Qðx; LÞ ¼
Qðx=L ¼ zÞ. For a Brownian motion, QðzÞ ¼ z is linear.
For a generic XðtÞ, QðzÞ is nontrivial (see, for example,
Fig. 1 right). The central aim of this Letter is to determine

the universal features associated with QðzÞ in these two
cases: symmetric self-affine processes having a power-law
scaling XðtÞ � tH, with Hurst exponentH > 0; and a single
particle diffusing in a disordered potential VðXÞ. The trans-
location process belongs to the former, whereas transport
in quenched disorder to the latter.
We summarize here our main results, which are three-

fold: (i) For self-affine processes, we show that generically
QðzÞ � z� for small z, where � ¼ �=H, and � is the so-
called persistence exponent [10] of the same process in a
semi-infinite geometry; (ii) for a particle diffusing in a
disordered potential VðXÞ, we provide an exact formula
for Qðx; LÞ valid for arbitrary VðXÞ, which incidentally
allows computing the persistence exponent of particle
dynamics for self-affine VðXÞ; (iii) the function QðzÞ is
explicitly known for some anomalous diffusion processes.
Amazingly, we find that these apparently different-looking
formulae can be cast in the same superuniversal form,
when expressed in terms of the exponent �. This naturally

FIG. 1 (color online). Left. The evolution of a stochastic
process initiated at Xð0Þ ¼ x and terminated upon exiting from
the box of size L. Right. The function QðzÞ as given by Eq. (8)
for different values of the exponent �.
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raises the question: how generic is this superuniversality?
We provide numerical evidences that in some cases, super-
universality is violated, and we discuss its limit of validity.

Self-affine processes.—To compute Qðx; LÞ in a box
geometry, it is useful to relate it to another quantity asso-
ciated with the same process XðtÞ in a semi-infinite geome-
try [0, 1]. Consider a process XðtÞ in [0, 1], starting at x
and absorbed at the origin for the first time at tf. Let m

denote the maximum of this process till tf (see Fig. 2 left).

Then, 1�Qðx; LÞ, the probability that the particle exits the
box through the origin (and not through L), is precisely
equal to the probability that the maximumm of the process
in [0, 1] till tf stays below L, i.e., the cumulative distri-

bution of m, Prob½m � Ljx�, in the semi-infinite geometry.
The distribution of m is, in turn, related to the distribution
of the first-passage time tf. Let qðx; TÞ ¼ Prob½tf � Tjx�
denote the cumulative probability of tf, which is also the

survival probability of the particle starting at x in the semi-
infinite geometry. For generic self-affine processes,
qðx; TÞ ¼ qðx=THÞ. For large T, qðx; TÞ � T��, where �
is the persistence exponent of the process [10]. This im-

plies the scaling function qðyÞ � y�=H for small y [5]. Since
m� tHf for self-affine processes, then Qðx; LÞ ¼ 1�
Prob½m � Ljx� ¼ Prob½m � Ljx� � Prob½tf � L1=Hjx� ¼
q½x=L�. This proves the scaling behavior anticipated be-
fore, namely, Qðx; LÞ ¼ Qðx=LÞ, where QðzÞ ¼ qðzÞ.
Moreover, since qðyÞ � y�=H for small y, we get QðzÞ �
z� for small z, with � ¼ �=H. For Brownian motion, e.g.,
H ¼ 1=2 and � ¼ 1=2; hence, � ¼ 1, in accordance with
the exact result QðzÞ ¼ z. For the subclass of self-affine
processes with stationary increments, the same exponent�
happens to describe the vanishing of the probability density
close to an absorbing boundary [5].

Our general prediction QðzÞ � z� for small z is explic-
itly verified for some self-affine processes where QðzÞ can
be computed exactly, as discussed later. Moreover, we have
numerically verified that this conjecture holds also for the
fractional Brownian motion (fBm), i.e., a self-affine
Gaussian process defined by the following autocorrelation

function

hXðt1ÞXðt2Þi ¼ 1

2
ðt2H1 þ t2H2 � jt1 � t2j2HÞ; (1)

with 0<H < 1 [11]. In [5], we have proposed fBm as a
natural candidate for describing the dynamics of the trans-
location coordinate. The persistence exponent of fBm is
known, � ¼ 1�H [11], so that � ¼ ð1�HÞ=H. An ex-
pedient algorithm for generating fBm paths is provided in
[12]. The probabilityQðzÞ can be numerically computed as
follows. Given a realization of the process starting from the
origin, we record its minimum and maximum values for
increasing time; the process is halted when Xmax � Xmin �
L. If the last updated quantity is Xmin, the contribution to
Qðx; LÞ is 0 for x 2 ð0; L� XmaxÞ and 1 for x 2
ðL� Xmax; LÞ. In the opposite case, the contribution is 0
for x 2 ð0;�XminÞ and 1 otherwise. All simulations are
performed by averaging over 106 samples. Figure 3 shows
the agreement between numerical simulations and pre-
dicted scaling of QðzÞ for different values of H.
Disordered potential.—We next consider the stochastic

motion of a single particle diffusing in a potential VðXÞ,
starting at x. The dynamics is governed by the Langevin
equation _XðtÞ ¼ f½XðtÞ� þ �ðtÞ, where Xð0Þ ¼ x and
fðXÞ ¼ �dVðXÞ=dX is the force and �ðtÞ is a Gaussian
white noise with h�ðtÞi ¼ 0 and h�ðtÞ�ðt0Þi ¼ �ðt� t0Þ. To
compute Qðx; LÞ, we first write a differential equation
satisfied by Qðx; LÞ, taking x as a variable and keeping L
as fixed. During the small time interval [0, �t] at the
beginning of the process, the particle moves from x to a
new position xþ�x at time �t, where �x ¼ fðxÞ�tþ
�ð0Þ�t, �ð0Þ being the noise that kicks in at time 0. Since
the process is Markovian, the subsequent evolution does
not know about the interval [0, �t]; hence,

Qðx; LÞ ¼ hQ½xþ fðxÞ�tþ �ð0Þ�t; L�i; (2)

FIG. 2. Left. A stochastic process starting at x leaves the
positive half axis for the first time at tf; m denotes its maximum

till tf. Right. A self-affine disordered potential with maximum at

xm: when L is large, the diffusing particle, starting at 0< x< L,
exits the box through 0 for x < xm and through L for x > xm.

FIG. 3 (color online). Behavior of QðzÞ close to z ¼ 0 for fBm
processes. For H ¼ 2=3 (� ¼ 1=2), the size of the box is L ¼
50, 200; for H ¼ 3=4 (� ¼ 1=3), the size of the box is L ¼ 100,
300. The continuum limit is reached when L ! 1. The expected
slopes are reported as solid lines. Data have been shifted to make
visualization easier.
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where hi denotes the average over the initial noise �ð0Þ.
Expanding the right-hand side of Eq. (2) as a Taylor series
in powers of �t, using h�ð0Þi ¼ 0 and h�2ð0Þi ¼ 1=�t
(delta correlated noise), yields 1

2Q
00ðxÞ þ fðxÞQ0ðxÞ ¼ 0.

Solving with boundary conditions Qð0; LÞ ¼ 0 and
QðL; LÞ ¼ 1 gives the exact result

Qðx; LÞ ¼
R
x
0 e

2Vðx0Þdx0R
L
0 e

2Vðx0Þdx0
; (3)

valid for arbitrary potential VðXÞ. For a potential-free
particle, i.e., VðXÞ ¼ 0, we recover the Brownian result,
Qðx; LÞ ¼ x=L.

Taking derivative with respect to x gives

peqðx; LÞ ¼ @

@x
Qðx; LÞ ¼ e2VðxÞR

L
0 e

2Vðx0Þdx0
; (4)

which can be interpreted as the equilibrium probability
density of the particle to be at x in the presence of a
potential �VðXÞ. When VðXÞ is a realization of a disor-

dered potential, it is natural to introduce Qðx; LÞ, the
disorder-averaged hitting probability. An example where

we can explicitly determine Qðx; LÞ is the classical Sinai
model, i.e., when the potential VðXÞ is a trajectory of a

Brownian motion in space, VðXÞ � X1=2 [13]. For this

model, peqðx; LÞ can be computed exactly [14,15]

peqðx; LÞ ¼ 1

�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðL� xÞp : (5)

Thus, Qðx; LÞ ¼ Qðz ¼ x=LÞ again satisfies the generic
scaling, with

QðzÞ ¼ 2

�
arcsinð ffiffiffi

z
p Þ: (6)

Close to the origin, QðzÞ � z� with � ¼ 1=2. On the other
hand, in the Sinai potential, the particle evolves very
slowly with time, X � ln2ðtÞ (showing a self-affine scaling
in the variable T ¼ logt, with H ¼ 2), and the survival
probability decays as 1= logt, i.e., T��, with � ¼ 1 [16,17].
Thus, �=H ¼ 1=2 ¼ �, in accordance with our general
scaling prediction.

We consider next a generic self-affine potential, VðXÞ �
XHV [with Vð0Þ ¼ 0], the Sinai model being a special case

withHV ¼ 1=2. We show that peqðx; LÞ for such a potential
is related to the probability density of the location xm of the
maximum of the potential VðXÞ over X 2 ½0; L�. We re-

write Eq. (4) as peqðx; LÞ ¼ ½RL
0 e

2½Vðx0Þ�VðxÞ�dx0��1, rescale

variables x0 ! x0L and x ! xL, and use the self-affine

property VðxLÞ ¼ LHVVðxÞ to obtain peqðx; LÞ ¼
½R1

0 e
2LHV ½Vðx0Þ�VðxÞ�dx0��1. For large L, using a steepest

decent method, we see that, for each realization of the
potential VðXÞ, peqðx; LÞ ’ �ðx� xmÞ, where xm denotes

the location where VðXÞ is maximum. It follows that:
(i) Integrating over x, we get, for each realization,

Qðx; LÞ ’ �ðx� xmÞ. Then, for any given realization, if x
is to the left (right) of xm, Qðx; LÞ ’ 0 [respectively,
Qðx; LÞ ! 1], and the particle exits the box through 0
(through L), as depicted in Fig. 2 (right). (ii) By averaging
over the disorder, we get

peqðx; LÞ ’ pmðx; LÞ (7)

where pmðx; LÞ is the probability density that the maximum
of the potential VðXÞ over [0, L] is located at x. For the
Sinai model, e.g., the Lévy’s arcsine law [6] implies

pmðx; LÞ ¼ 1=�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðL� xÞp

. Thus, in this case, the rela-
tion (7) is verified by the exact result (5). However, the
relation (7) holds for arbitrary self-affine potentials.
Physically, Eq. (7) stems from L ! 1 being equivalent
to the zero temperature T ! 0 limit in a self-affine poten-
tial�VðXÞ where the particle is at equilibrium, forcing the
particle to the minimum of the potential �VðxÞ, or equiv-
alently to the maximum xm of VðxÞ.
Equation (7) relates the persistence or the survival

probability of a particle in a disordered self-affine potential
to the properties of the potential VðXÞ itself. The disor-
dered potential VðXÞ � XHV [we assume Vð0Þ ¼ 0] can be
regarded as a stochastic process, the space coordinate X
playing the role of ‘‘time.’’ So, the probability that VðXÞ
stays below (or above) the level X ¼ 0 up to a distance L
decays, for large L, as L��V , where �V is the spatial
persistence exponent [18] of VðXÞ. For the Sinai potential,
e.g., �V ¼ 1=2. The exponents (HV , �V) associated with
VðXÞ can be related to the corresponding exponents asso-
ciated with the particle dynamics in the same potential. By
Arrhenius’ law for the activated dynamics, the time re-
quired for particles diffusing in VðXÞ to overcome an

energy barrier scales as t� eVðXÞ. Using VðXÞ � XHV ,

then X � T1=HV , where T ¼ logðtÞ. Thus, the particle mo-
tionXðTÞ � TH is a self-affine process as a function of T ¼
logðtÞ, with Hurst exponent H ¼ 1=HV . Next, note that
pmðx; LÞ, the probability that the maximum of VðXÞ occurs
at x, coincides, when x ! 0, with the probability that
VðXÞ< 0 up to a distance L; hence, pmðx ! 0; LÞ /
L��V . On the other hand, based on our general argument,

we expect Qðx; LÞ � ðx=LÞ� when x ! 0, where � ¼
�=H. Then, peqðx; LÞ / x��1=L�. Here, � is the persis-

tence exponent associated with the particle dynamics; i.e.,
the survival probability of the particle up to time T ¼
logðtÞ decays as �T��. Matching powers of L from both
sides of (7) provides the desired relation between temporal
and spatial exponents � ¼ �VH ¼ �V=HV . In the Sinai
model, e.g., using �V ¼ 1=2 and HV ¼ 1=2, we get � ¼
1, in agreement with the exact result [16,17]. A potential
satisfying V00ðXÞ ¼ �ðXÞ, �ðXÞ being a white noise in
space, is self-affine with HV ¼ 3=2. The exponent �V ¼
1=4 is known exactly [19]. Thus, we predict that for this
potential, the survival probability up to time t decays as
�ðlogtÞ��, with � ¼ 1=6.
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Superuniversality of QðzÞ.—For some non-Brownian
stochastic self-affine processes, the full function QðzÞ is
known. For instance, Lévy Flights are Markovian super-
diffusive processes whose increments obey a Lévy stable
law of index 0<� � 2. The Hurst exponent is H ¼ 1=�.
By virtue of the Sparre Andersen theorem [20], the persis-
tence exponent is � ¼ 1=2, independent of �. Hence, � ¼
�=H ¼ �=2 (see also [21]). The full function QðzÞ for
Lévy Flights has been computed [22] and can be recast
in an elegant form

QðzÞ ¼ Izð�;�Þ ¼ �ð2�Þ
�2ð�Þ

Z z

0
½uð1� uÞ���1du; (8)

i.e., a regularized incomplete Beta function with a single
parameter � ¼ �=2. Clearly, QðzÞ � z� as z ! 0, in
agreement with our prediction. The formulae for
Brownian motion (with � ¼ 1) QðzÞ ¼ z and for the
Sinai model (� ¼ 1=2) in (6) can also be expressed as
(8). Moreover, the distribution of the maxima for a sym-
metric Lévy Flight is given by (5), by virtue of the Sparre
Andersen theorem [20]. Hence, we expect the hitting
probability (8) to apply also to particles diffusing in a
Lévy Flight disordered potential, with � ¼ 1=2. Finally,
QðzÞ is known also for the Random Acceleration model, a
non-Markovian process that is defined by d2X=dt2 ¼ �ðtÞ,
with �ðtÞ as before. The motion starts at Xð0Þ ¼ x, with

initial velocity vð0Þ ¼ 0, and is superdiffusive, with X �
t3=2, i.e., H ¼ 3=2. Its first-passage properties have been
widely studied [19]. The persistence exponent is � ¼ 1=4
so that � ¼ �=H ¼ 1=6. The full exit probability Qðx; LÞ

is computed in [23]. This formula can again be recast in the
same superuniversal form (8), with � ¼ 1=6.
Based on these special cases, we might conjecture that

the full function QðzÞ for arbitrary anomalous doffusion
processes has the superuniversal form (8), which depends
only on �. However, this turns out not to be the case, and
we can show notable counterexamples. In Fig. 4, we com-
pute QðzÞ for fBm self-affine processes and for particles
diffusing in fBm disordered potentials, and display the
numerical difference with respect to formula (8), with the
appropriate exponent �. We find that in neither case can
QðzÞ be described by the superuniversal form (8).
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FIG. 4 (color online). The difference between Eq. (8) and
simulated QðzÞ. For fBm processes: H ¼ 2=3 (� ¼ 1=2) with
box size L ¼ 200, and H ¼ 3=4 (� ¼ 1=3), with box size L ¼
300. For fBm disordered potentials: HV ¼ 2=3 (� ¼ 1=3), with
box size L ¼ 104. For comparison, we display also the Sinai
model HV ¼ 1=2 (� ¼ 1=2), with box size L ¼ 104.
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