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Creep Motion of an Elastic String in a Random Potential
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We study the creep motion of an elastic string in a two-dimensional pinning landscape by means of
Langevin dynamics simulations. We find that the velocity-force characteristics are well described by the
creep formula predicted from phenomenological scaling arguments. We analyze the creep exponent w and
the roughness exponent {. Two regimes are identified: when the temperature is larger than the strength of
the disorder, we find u = 1/4 and { = 2/3, in agreement with the quasi-equilibrium-nucleation picture of
creep motion; on the contrary, when lowering the temperature enough, the values of w and { increase,

showing a strong violation of the latter picture.
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Understanding the physical properties of disordered
elastic systems is a challenging question relevant to a
host of experimental situations. Indeed, such a situation
is realized in many different systems, ranging from peri-
odic ones, such as vortex lattices [1-3], charge density
waves [4], and Wigner crystals [5], to interfaces, such as
magnetic [6—8] or ferroelectric [9] domain walls, fluid
invasion in porous media [10], contact lines of liquid
menisci on a rough substrate [11], and domain growth
[12]. The competition between disorder and elasticity in
these systems leads to unique physical properties and, in
particular, to glassy behavior. One particularly important
question is how the system responds to an external force
(magnetic or electric field for domain walls, current for
vortices, etc.). At zero temperature, because of disorder the
system is pinned and the velocity of the elastic structure
remains zero up to a critical force F . At finite temperature,
however, the barriers to motion due to pinning can always
be passed by thermal activation, and one expects, thus, a
finite response at finite force. Although it was initially
believed that the response was linear [13], it was subse-
quently proposed [14,15] that, because of the glassy nature
of the disordered system, no linear response would exist.
The slow dynamics of the system for F < F, so-called
creep, is expected to be controlled by thermally activated
jumps of correlated regions over the pinning energy bar-
riers separating different metastable states. By adding
some strong assumptions on this physical picture of the
motion, elegant scaling arguments were used [16,17] to
infer the small F response, leading to the ‘““‘creep formula™

V(F) ~ exp[—%(%)ﬂ} (1

where U, is an energy scale, and u is a characteristic
exponent that can be obtained from the relation

D-2+2¢
2-¢

where D is the dimensionality of the elastic system, and the

m= (2
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exponent { is the equilibrium roughness exponent of the
static system. The above formulas are, indeed, derived
under the assumption that the movement is so slow that
static properties can be used. Relation (2) is remarkable
since it links the statics with the nonlinear transport of a
disordered elastic system.

Going beyond the simple scaling arguments or checking
for such a law has proved to be very challenging. Although
a sublinear response was clearly seen in various systems [1]
with good agreement with (1), a precise determination of
the exponent was clearly more difficult. Relation (2) has
been confirmed experimentally only for magnetic domain
walls [6] (see also [18] for vortices). On the theoretical side
the phenomenological predictions of (1) and (2) have been
derived by a functional renormalization group (FRG) cal-
culation [19,20], starting directly from the equation of
motion, and are valid in an € = 4 — D expansion. This
calculation confirmed the phenomenological hypothesis
made in the scaling derivation and the validity of (2) up
to the lowest order in €. Although the velocity found in the
FRG calculation was identical to the one of the scaling
derivation, important differences were also found, notably
on the characteristic sizes involved in the motion.

In spite of these results, the physical picture of creep
motion is still very phenomenological, and many important
questions remain open. A systematic study of the tempera-
ture (or disorder strength) dependence of the creep re-
sponse is particularly lacking, both from experiments and
theory. Moreover, from the theoretical point of view, the
experimentally very relevant case of low dimensional in-
terfaces (where thermal effects are expected to be very
important), like elastic lines describing domain walls in
thin films, possesses a difficult problem to tackle analyti-
cally, since the FRG [20,21] can hardly be used in D = 1.
Such studies are quite crucial given the recent experimental
results on creep in magnetic [6—8] and ferroelectric [9]
systems. Numerical simulations are a valuable alternative
theoretical tool to address this open issue. In this respect,
creep simulations of elastic strings (D = 1) have been
done in the past [22,23], but given the limited range of
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velocities available, they were neither systematic nor con-
clusive about the validity of (1) and (2).

In this work we used a Langevin dynamics method to
study the velocity-force (VF) characteristics and the dy-
namic roughness ¢ of an elastic string in a random poten-
tial. The range of velocities we can explore allows a precise
check of the creep law. Although we find that the creep law
does describe well the data, we also find that the equilib-
rium hypothesis for ¢ is not verified. This leads at low
temperatures or strong disorder to creep and roughness
exponents that become larger than the predicted values
m = 1/4 and ¢ = 2/3, respectively.

We study the creep motion of an elastic string in two
dimensions driven through a random potential. The string
is described by a single valued function u(z, t), which
measures its transverse displacement u# from the z axis at
a given time f. We therefore exclude overhangs and
pinched-off loops that eventually could be produced in
the motion of domain walls. Assuming a linear short-range
elasticity and a purely relaxational dynamics, the phe-
nomenological Langevin equation describing the motion
(per unit length) is given by

you(z, 1) = cd?ulz, 1) + F,(u,2) + F+ 9(z, 1), (3)

where 7 is the friction coefficient, c is the elastic constant,
F is the driving force, and F,(u, z) = —9,U(u, z) is the
pinning force derived from the disordered potential
U(u, 7). The stochastic force 7(z, f) ensures a proper ther-
mal equilibration (at F = 0) and satisfies (n(z, 1)) = 0,
(n(z, t)n(Z, 1)) = 2yT8(z — 2)6(t — 1), with {---) de-
noting thermal average. The sample to sample fluctuations
of the random potential are given by

(U, 2) —UW, )P =8(z—2)R*(u—1u'), @)

where the overline denotes the average over disorder real-
izations. In this work we consider a random-bond type of
disorder, characterized by a short-ranged correlator R(u),
of range r, and strength R(0). A physical realization of this
kind of disorder is, for instance, the random anisotropy for
magnetic domain walls [6].

To solve numerically Eq. (3) we discretize the string
along the z direction, z — j =0, ..., L — 1, keeping u;(1)
as a continuous variable. A second order stochastic Runge-
Kutta method [24] is used to integrate the resulting equa-
tions. To model a continuous random potential satisfying
(4), we generate, for each j, a cubic spline U(u;, j) passing
through M regularly spaced uncorrelated Gaussian random
points, with zero mean and variance R(0)? [25]. Moreover,
the random potential satisfies periodic boundary condi-
tions,

Ulu; + M, j) = Ulu;, i + L) = Uu,, j), )

which defines a finite sample of size (M, L).
We are interested in the VF characteristics and the
dynamic roughness exponent ¢ in the creep regime for

different values of T and disorder strength R(0). The center
of mass X(r) moves with the average velocity,

V(t) = <% X(t)>. (6)

In the long time limit the string achieves a stationary state
with V(¢) = V(F). The roughness exponent ¢ is then ob-
tained from the average structure factor,

2

>, )

where ¢ = 27n/L, with n = 1,..., L — 1. From dimen-
sional analysis we know that for small ¢, S(g) ~ ¢~ 1729,
Fitting our numerical data with this function we get {.

We simulate systems of sizes L = 64, 128, ..., 1024 and
M = 2L, with ¢ = r; = y = 1. In this Letter we show the
results for L = 512, where finite-size effects are negli-
gible. We take R(0) = 0.12, 0.30 and temperatures ranging
from T = 0.8R(0) to 3.5R(0). We start each simulation
with a flat initial configuration (# = 0) at the force F =
F./10, and then decrease slowly F in steps of AF =
0.01F, up to F/F,. = 0.01. F, is calculated to high preci-
sion for each disorder realization using a fast-convergent
algorithm [25]. The properties of interest have to be calcu-
lated when the stationary state is achieved. In practice we
let the string complete two turns around the system for the
initial force and one turn for the following forces. After this
equilibration we estimate numerically (6) and (7) approxi-
mating the average over disorder and thermal realizations
by a single time average over one turn. In the inset of Fig. 1
we demonstrate that this criterion ensures the relaxation of
V(1).
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FIG. 1. VF characteristics for R(0) = 0.30. Curves correspond

to T = 0.24,0.26, ..., 0.42 from bottom to top. Solid lines are
fits of the creep law (1) with U, and w as fitting parameters.
Contrary to the naive creep prediction, the optimal fit parameter
o is temperature dependent. The inset shows the relaxation of
V(¢) to its stationary value V, corresponding to the @ symbol in
the main figure.
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Typical VF characteristics obtained in the simulations
are shown in Fig. 1. In the whole range of temperature and
pinning strength analyzed we find that the VF curve can be
well fitted by the creep formula (1) with U, and w as fitting
parameters. We thus confirm the predicted stretched ex-
ponential behavior, and rule out the original proposal of
Ref. [13]. However, contrary to the naive creep relation (2),
we find that both fitting parameters, and not only U, as
predicted in [21,26], can depend on temperature. Note that
although (1) provides an excellent fit, our data can also be
fitted with a power law. This behavior for V(F) was pro-
posed supposing either high temperatures [27] or logarith-
mic growth of the energy barriers [28]. However, even if a
power law fit of our data is in principle possible, it leads to
strong temperature dependent exponents in severe contra-
diction with the predicted value [29]. We conclude that a
power law fit is not an adequate fit of the data.

Analysis of various values of disorder and temperature
shows essentially two different regimes of creep motion.
To investigate further these regimes, we show in Fig. 2(a)
the VF characteristics for two values of disorder and
temperature representative of each regime. For the small
disorder case we get the exponent x = 0.26 = 0.01 which
is compatible with the predicted theoretical value u =
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FIG. 2. (a) VF characteristics: (i) R(0) = 0.12, T = 0.24 (*);
(ii) R(0) = 0.30, T = 0.30 (O). Solid lines are the fitting curves
using (1). The inset shows log(1/V) vs BU.(F./F)* for all T,
R(0), using their respective fitting parameters w(7) and U.(T).
(b) [(c)] Structure factor S(q) at F/F. = 0.02, for (i) [(ii)]. Solid
lines are fitting curves for small gs. We extract = 0.67 = 0.05
for (b) and ¢ = 0.9 = 0.05 for (c). Dashed (dotted) lines corre-
spond to the reference value ¢ = 2/3 ({7 = 1/2). The vertical
lines indicate the approximate location of the crossover from the
thermal to the random manifold scaling.

1/4, obtained from (2) using the equilibrium roughening
exponent {q = 2 /3 [30,31]. The situation is quite different
for the strong disorder case, where although the fit with the
creep formula (1) is still excellent, the value of the expo-
nent u = 0.36 = 0.01 is now clearly in excess with respect
to the predicted theoretical value.

To understand in more detail the nature of the two
regimes, we calculate the roughness exponent { using the
structure factor (7). Quite generally, one can predict that
the short distance behavior of an elastic string is dominated
by thermal fluctuations ({7 = 1/2). On the other hand,
because of the finite velocity, the quenched disorder acts
effectively as a thermal noise at the largest length scale.
Thus, in this case, the expected exponent is also ¢y = 1/2
[32]. Finally, at intermediate length scales, the physics is
determined by the competition between disorder and elas-
ticity. In particular, in our simulations we verified that the
Larkin length [33] is negligible. Therefore, a random
manifold scaling, characterized by a nontrivial roughness
exponent, takes place. In Figs. 2(b) and 2(c) we show the
structure factor for the two cases analyzed in Fig. 2(a). As
predicted, we get { ~ {7 = 1/2 for large g. At a certain
scale we observe a crossover between the thermal and the
random manifold scaling. The location of this crossover
decreases as T (R(0)) is increased (decreased). We can also
observe that the second velocity-controlled crossover is not
achieved in our finite-size simulation due to the very slow
dynamics. Interestingly, for the small disorder case, the
random manifold scaling gives { = 0.67 £ 0.05, in excel-
lent agreement with the equilibrium value £, = 2/3, while
a much higher roughness exponent ¢ = 0.9 £ 0.05 is
found for the strong disorder case. These results are con-
sistent with the previous ones for the creep exponent .
This conclusion holds for the whole range of temperature
and disorder strength analyzed, as we can see in Fig. 3(a).
We find that the relevant parameter to define the two
regimes is T/R(0). Moreover, we notice that, although
the values of ¢ and u depart from the equilibrium values,
relation (2) still seems to hold, within the error bars for the
two exponents. This is highly nontrivial since Eq. (2) is
derived from a calculation of the barriers in an equilibrium
situation.

We finally discuss the behavior of the barriers U.(T),
shown in Fig. 3(b). The observed linear dependence agrees
with the phenomenological prediction for the so-called
high temperature regime [21,26]. This regime corresponds
to T/R(0) > 1 where most (but not all) of our data lie.
Note, however, that [21,26] predict also a strong tempera-
ture renormalization of the critical force F,, which is
replaced by F.f(T) in (1). We find that the resulting
effective barrier f(T)*U.(T) is completely inconsistent
with our data using the predicted f(T), so the physics of
this regime clearly still need to be explained theoretically.
We note that [22] also finds a renormalization of f(T)
much weaker than the predicted in [21,26]. We finally
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FIG. 3. (a) Roughness exponent, {(T), and creep exponent,
u(T), vs T. {(T) (*) and u(T) (O) correspond to R(0) = 0.30
and £(T) (A), and w(T) (O) correspond to R(0) = 0.12. The
dashed line gives the equilibrium roughness exponent {oq = 2 /3,
and the dotted line the purely thermal roughness ¢ = 1/2. In
the inset we show a finite-size analysis of u for the @ symbol.
(b) Effective energy barriers U,.(T) vs T for R(0) = 0.30 (<) and
R(0) = 0.12 (O0).

note that the observed strong temperature dependence is
peculiar to low dimensional walls (d = 1, 2), where ther-
mal fluctuations lead to unbounded displacements, con-
trary to what happens in higher dimensions.

In conclusion, we have found two regimes of creep
motion. The first one occurs when the temperature is larger
than the strength of the disorder, giving w ~ 1/4 and { ~
2/3 as predicted by assuming a quasiequilibrium nuclea-
tion picture of the creep motion. This implies that the
domain wall has time to reequilibrate between hops, being
the underlying assumption behind (2) essentially satisfied.
The second regime occurs for temperatures smaller than
the strength of the disorder, and is characterized by anom-
alously large values of both exponents. This clearly shows
that in this regime the domain wall stays out of equilib-
rium, and that the naive creep hypothesis does not apply.
Note that the measured roughness exponent is intermediate
between the equilibrium value and the depinning value
Saep = 1.26 = 0.01 [25]. The fact that the thermal nuclea-
tion, which is the limiting process in the creep velocity, is
followed by depinning like avalanches was noted in the
FRG study of the creep [20]. Whether such avalanches and
the time it would take them to relax to equilibrium is at the
root of the observed increase of the exponent is clearly an
interesting but quite complicated open question.
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