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Abstract Motivated by the general problem of studying sample-to-sample fluctuations in
disorder-generated multifractal patterns we attempt to investigate analytically as well as nu-
merically the statistics of high values of the simplest model—the ideal periodic 1/f Gaus-
sian noise. Our main object of interest is the number of points NM(x) above a level x

2 Vm,
with Vm = 2 lnM standing for the leading-order typical value of the absolute maximum for
the sample of M points. By employing the thermodynamic formalism we predict the char-
acteristic scale and the precise scaling form of the distribution of NM(x) for 0 < x < 2.
We demonstrate that the powerlaw forward tail of the probability density, with exponent
controlled by the level x, results in an important difference between the mean and the typ-
ical values of NM(x). This can be further used to determine the typical threshold xm of
extreme values in the pattern which turns out to be given by x

(typ)
m = 2 − c ln lnM/ lnM

with c = 3
2 . Such observation provides a rather compelling explanation of the mecha-

nism behind universality of c. Revealed mechanisms are conjectured to retain their qual-
itative validity for a broad class of disorder-generated multifractal fields. In particular,
we predict that the typical value of the maximum pmax of intensity is to be given by
− lnpmax = α− lnM + 3

2f ′(α−)
ln lnM + O(1), where f (α) is the corresponding singular-

ity spectrum positive in the interval α ∈ (α−, α+) and vanishing at α = α− > 0. For the
1/f noise case we further study asymptotic values of the prefactors in scaling laws for the
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moments of the counting function. Our numerics shows however that one needs prohibitively
large sample sizes to reach such asymptotics even with a moderate precision. This motivates
us to derive exact as well as well-controlled approximate formulas for the mean and the
variance of the counting function without recourse to the thermodynamic formalism.

Keywords Multifractals · 1/f noise · Extreme values · Random Energy Model ·
Logarithmically correlated random fields

1 Introduction

Investigations of multifractal structures of diverse origin is for several decades a very active
field of research in various branches of applied mathematical sciences like chaos theory,
geophysics and oceanology [1, 2] as well as climate studies [3], mathematical finance [4, 5],
and in such areas of physics as turbulence [6, 7], growth processes [8], and theory of quan-
tum disordered systems [9]. The main characteristics of a multifractal pattern of data is to
possess high variability over a wide range of space or time scales, associated with huge
fluctuations in intensity which can be visually detected.

To set the notations, consider a certain (e.g. hypercubic) lattice of linear extent L and lat-
tice spacing a in d-dimensional space, with M ∼ (L/a)d � 1 standing for the total number
of sites in the lattice. The multifractal patterns are then usually associated with a set of non-
negative “heights” hi ≥ 0 attributed to every lattice site i = 1,2, . . . ,M such that the heights
scale in the limit M → ∞ differently at different sites: hi ∼ Mxi ,1 with exponents xi form-
ing a dense set. To characterize such a pattern of heights quantitatively it is natural to count
the sites with the same scaling behavior. Then a multifractal measure is characterized by a
(usually, concave) single-maximum singularity spectrum function f (x). Denoting the posi-
tion of its maximum as x = x0, such function describes the (large-deviation) scaling of the
number of points in the pattern whose local exponents xi belong to some interval around x0.
More precisely, defining the density of exponents by ρM(x) = ∑M

i=1 δ(
lnhi

lnM
− x) a nontrivial

multifractality implies that such density should behave in the large-M limit as [10]

ρM(x) ≈ cM(x)
√

lnMMf (x) (1)

with a prefactor cM(x) of the order of unity which may still depend on x. We will refer
below to the above form as the multifractal ansatz. The major effort in the last decades was
directed towards determining the shape and properties of f (x). In contrast, our main object
of interest will be the behavior of the prefactor cM(x) which is much less studied, to the
best of our knowledge. In particular, if the multifractal pattern is randomly generated like
e.g. those considered in [9] the ansatz (1) is expected to be valid in every realization of the
disorder. One may then be interested in understanding the sample-to-sample fluctuations of
the prefactor cM(x).

To that end we find it convenient to introduce the counting functions

N>(x) =
∫ ∞

x

ρM(y)dy, N<(x) =
∫ x

−∞
ρM(y)dy (2)

1Usually one defines the exponents γi via the relation hi ∼ Lγi i.e. by the reference to linear scale L instead

of the total number of sites M ∼ (L/a)d , and similarly for the density of exponents ρ(γ ) ∼ Lf (γ ) . We
however find it more convenient to use instead the exponents xi = γi/d and the singularity spectrum f (x) =
1
d
f (γ ).
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for the total number N>(x) of sites of the lattice where heights satisfy hi > Mx (re-
spectively, hi < Mx ). Substituting the multifractal form of the density into (2) and per-
forming at lnM � 1 the resulting integral for x > x0 by the Laplace method we find
N>(x) ≈ cM(x)Mf (x)/|f ′(x)|√lnM and a similar expression for N<(x) for x < x0, relating
the singularity spectrum f (x) to the counting functions. As both N>(x) and N<(x) can not
be smaller than unity we necessarily have f (x) ≥ 0 for all x, and the condition f (x) = 0
defines generically the maximal x+ and the minimal x− threshold values of the exponents
which can be observed in a given height pattern.

The singularity spectrum f (x) is not a quantity which is easily calculated analytically or
even numerically for a given multifractal pattern of heights [10]. An alternative procedure of
analyzing the multifractality is frequently referred to in the literature as the thermodynamic
formalism [1, 2]. In that approach one characterizes the multifractal pattern by the set of
exponents ζq describing the large-M scaling behavior of the so-called partition functions
Zq as

Zq =
M∑

i=1

h
q

i ∼ Mζq , lnM � 1 (3)

To relate ζq to the singularity spectrum f (x) discussed above one rewrites (3) in terms
of the density as Zq = ∫ ∞

−∞ MqxρM(x)dx, and again employs the multifractal ansatz (1)
for ρM(x). Evaluating the integral in the lnM � 1 limit by the steepest descent (Laplace)
method gives

Zq ∼ cM(x∗)
(

2π

|f ′′(x∗)|
)1/2

Mζq where f ′(x∗) = −q and ζq = f (x∗) + qx∗ (4)

where we have assumed that x− < x∗ < x+ for simplicity. This shows that the relation be-
tween ζq and f (x) is given essentially by the Legendre transform. We thus see that formally
the original definition of multifractality based on the density (or, equivalently, the counting
functions N>,<(x)) and the thermodynamic formalism approach (3)–(4) should have exactly
the same content for lnM → ∞, provided the singularity spectrum is concave.2 Note also
the normalization identity Z0 = ∫ ∞

−∞ ρM(y)dy ≡ M implying ζ0 = 1. It also shows that at
the point of maximum x = x0 we must necessarily have f (x0) = 1 and that cM(x0) is indeed
of the order of unity.

The formalism described above is valid for general multifractal patterns, and is insensi-
tive to spatial organization of intensity in the pattern. In the present paper we will be mostly
interested in disorder-generated multifractal fields whose common feature is presence of cer-
tain long-ranged powerlaw-type correlations in data values [12]. In practice, to extract sin-
gularity spectra from a given multifractal pattern obtained in real or computer experiments,
one frequently employs the so-called box counting procedure which can be briefly described
as follows. Subdivide the sample into Ml = (L/l)d non-overlapping hypercubic boxes Ωk

of linear dimension l. Associate with each box the mean height Hk(l) = (l/a)−d
∑

i∈Ωk
hi ,

and define the scale-dependent partition functions

Zq(l,L) = 1

Ml

Ml∑

k=1

[
Hk(l)

]q
(5)

2Examples of non-concave multifractality spectrum and the associated thermodynamic formalism are dis-
cussed in [11].
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Note that for l = a obviously Ma = M = (L/a)d and Zq(a,L) coincides with the parti-
tion function Zq featuring in the thermodynamic formalism. One may however observe that
in the range a 
 l 
 L the scale-dependent partition functions are sensitive to the spatial
correlations in the heights at different lattice points. In particular, a simple consideration
shows that when the heights are powerlaw-correlated in space as is actually the case for
many systems of interest, see [12] and also below, the scaling behavior of Zq(l,L) de-
pends non-trivially on both l/a and L/a. At the same time the behavior of the combination
Iq(l,L) = Zq(l,L)/[Z1(l,L)]q turns out to be a function only on the scaling ratio L/l and
is given by

Iq(l,L) = Zq(l,L)

[Z1(l,L)]q ∼
(

L

l

)−τq

, where τq = d(qζ1 − ζq) (6)

which allows to get reliable numerical values of the scaling exponents τq by varying the
ratio L/l over a big range. Further noticing that for q = 1 the l-dependence of the par-
tition function disappears due to linearity: Z1(l,L) = (l/a)−d(L/l)−d

∑M

1 hi ∼ (L/a)ζ1−d

we also can reliably extract ζ1 from the same data, hence relate the set of exponents τq to ζq

for q �= 1.
The quantities Iq = Iq(a,L) have interpretation of the inverse participation ratio’s

(IPR’s) and are very popular in the theory of the Anderson localization [9] and related
studies. Passing from the partition functions Zq of the thermodynamic formalism to the
IPR’s is equivalent to focusing on the properties of the normalized probability measure
0 < pi = hi/Z1 < 1,

∑
i pi = 1 rather than on the original height pattern hi itself. In fact

in such a setting it is more natural to introduce the scaling of those weights in the form
pi ∼ M−αi , αi ≥ 0 and consider the corresponding singularity spectrum f (α) related di-
rectly to the Legendre transform of the exponents τq . Working with the exponents τq has
some advantages, as one can show they must be monotonically increasing convex function

of q: dτq

dq
> 0, d2τq

dq2 ≤ 0. In many situations, as e.g. the diffusion-limited aggregation [8] or
indeed the Anderson localization the multifractal probability measures arise very naturally.
In other contexts, e.g. in turbulence or in financial data analysis, the normalization condition
seems superfluous. In the main part of the present paper we are mainly interested in the
pattern of heights and are therefore concentrating on partition functions. We will discuss the
normalized multifractal probability measures and associated IPR’s briefly in the end.

The major features of the picture outlined above is of general validity for a given sin-
gle multifractal pattern of any nature, not necessarily random. In recent years considerable
efforts were directed towards understanding disorder-generated multifractality, see e.g. [9,
13–15] for a comprehensive discussion in the context of Anderson localization transitions
and various associated random matrix models, [16, 17] in the context of harmonic measure
generated by conformally invariant two-dimensional random curves and [18–20] for exam-
ples related to Statistical Mechanics in disordered media. We just briefly mention here that
one of the specific features of multifractality in the presence of disorder is a possibility of ex-
istence of two sets of exponents, τq versus τ̃q , governing the scaling behavior of the typical
IPR denoted I (t)

q ∼ M−τq versus disorder averaged (“annealed”) IPR, Iq ∼ M−τ̃q . Here and
henceforth the overline stands for the averaging over different realizations of the disorder.
Namely, it was found that for large enough q > qc the two exponents will have in general
different values: τq �= τ̃q . The possibility of “annealed” average to produce results differ-
ent from typical is related to a possibility of disorder-averaged moments to be dominated by
exponentially rare configurations. As a result, the part of the “annealed” multifractality spec-
trum recovered via the Legendre transform from τ̃q for q > qc will be negative [9, 21, 22]:
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f̃ (x) < 0 for x < x−, and similarly for x > x+. Further detail can be found in the cited
papers and in the lectures [23].

Another important aspect of random multifractals revealed originally by Mirlin and Ev-
ers [14] in the context of the Anderson localization transition is the fact that IPR’s Iq for
disorder-induced multifractal probability measures are generically power-law distributed:
P(Iq/I

(t)
q ) ∼ (Iq/I

(t)
q )−1−ωq [9, 14]. Such behavior suggests that the actual values of the

counting functions N>(x),N<(x) should also show substantial sample-to-sample fluctua-
tions, even in the range x− < x < x+ where the singularity spectrum f (x) is self-averaging
and the same multifractal scalings N>(x) ∼ Mf (x) is to be observed in every realization
of the pattern. Though the presence of such fluctuations was already mentioned in [18], a
detailed quantitative analysis seems to be not available yet. The main goal of our paper is
to achieve a better understanding of statistics of the counting functions N>(x), N<(x) by
performing a detailed analytical as well as numerical study of arguably the simplest, yet
important class of multifractal disordered patterns—those generated by one-dimensional
Gaussian processes with logarithmic correlations, the so-called 1/f noises.

The structure of the paper is as follows. In the next section we will introduce the 1/f

noise signals and discuss their properties already known from the previous works. Then
we will use that knowledge to show that the probability density of the counting function
N>(x) for such a model is characterized by a limiting scaling law with a powerlaw forward
tail, with the power governing the decay changing with the level x. We will then demonstrate
that such powerlaw decay has nontrivial implications for the position of the maxima (or, with
due modifications, minima) of such processes, and derive the expression for the threshold of
extreme values. Finally, using 1/f noises as guiding example we will attempt to reinterpret
the results of the theory developed in [14] to get a rather general prediction for the position of
extreme value threshold for a broad class of disorder-generated multifractal patterns whose
intensity is characterized by power-law correlations. We conclude with briefly discussing a
few open questions.

2 1/f Noise: Mathematical Model and Previous Results

An ideal 1/f (or “pink”) noise is a random signal such that spectral power (defined via
the Fourier transform of the autocorrelation function of the signal) associated with a given
Fourier harmonic is inversely proportional to the frequency ω = 2πf . Signals of similar
sort are known for about eighty years and believed to be ubiquitous in Nature, see [24] for a
discussion and further references. Rather accurate 1/f dependences may extend for several
decades in frequency in some instances, as e.g. in voltage fluctuations in thin-film resis-
tors [25] or resistance fluctuations in single-layer graphene films [26], in non-equilibrium
phase transitions [27], and in spontaneous brain activity [28]. Still, the physical mechanisms
behind such a behavior are not yet fully known, and are a matter of active research and de-
bate. It was noticed quite long ago (see e.g. [29]) that a generic feature of all such signals
is that the two-point correlations (covariances) depend logarithmically on the time separa-
tion. During the last decade it became clear that random functions of such type appear in
many interesting problems of quite different nature, featuring in physics of disordered sys-
tems [18, 30–33], quantum chaos [34], mathematical finance [35, 36], turbulence [37–39]
and related models [40–42], as well as in mathematical studies of random conformal curves
[43, 44], Gaussian Free Field [45, 46] and related models inspired by applications is sta-
tistical mechanics [47] and quantum gravity [48], and the most recently in the value distri-
bution of the characteristic polynomials of random matrices and the Riemann zeta-function
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along the critical axis [49]. Let us note that a simple argument outlined in [23] and re-
peated in Sect. 5 of the present paper shows that by taking the logarithm of any spatially
homogeneous powerlaw-correlated multifractal random field we necessarily obtain a field
logarithmically correlated in space. A somewhat similar in spirit suggestion to refocus the
attention from the multifractal (“intermittent”) signals and fields to their logarithms was also
put forward in [38]. All this makes logarithmically-correlated Gaussian processes an ideal
laboratory for studying disorder-induced multifractality, though investigating the effects of
non-Gaussianity remains a challenging outstanding issue.

Despite the fact of being of intrinsic interest and fundamental importance, a coherent and
comprehensive description of statistical characteristics of ideal 1/f noises seems not to be
yet available, and relatively few properties are firmly established even for the simplest case
of a Gaussian 1/f noise. Among the works which deserve mentioning in such a context is
the paper [50] which provided an explicit distribution of the “width” (or “roughness”) for
such a signal, as well as the work [51] describing a curious property of spectral invariance
with respect to amplitude truncation. In recent papers [31, 32] and [47] the statistics of
the extreme (minimal or maximal) values of various versions of the ideal 1/f signals was
thoroughly addressed. From that angle the subject of the present paper is to provide a fairly
detailed picture of statistics of the number of points in such signals which lie above a given
threshold set at some high value. The latter can be rather naturally defined as being at finite
ratio to the typical value of the absolute maximum.

In this paper we are going to consider only Gaussian ideal 1/f noises, 2π -periodic ver-
sion of which is naturally defined via a random Fourier series of the form

V (t) =
∞∑

n=1

1√
n

[
vne

int + v∗
ne

−int
]

(7)

where vn is a set of i.i.d. complex Gaussian variables with zero mean and the variance
|vn|2 = 1, with the asterisk standing for the complex conjugation, and the bar for the statis-
tical averaging. It implies the following covariance structure of the random signal

V (t1)V (t2) = −2 ln

∣
∣
∣
∣2 sin

t1 − t2

2

∣
∣
∣
∣, t1 �= t2 ∈ [0,2π) (8)

Mathematically such series represents the periodic version of the fractional Brownian mo-
tion with the Hurst index H = 0. The corresponding definition is formal, as the series in (7)
does not converge pointwise, the fact reflected, in particular, in the logarithmic divergence
of the covariance in (8).3 Although it is possible to provide several bona fide mathematically
correct definitions of the ideal 1/f noise as a random generalized function (based, for exam-
ple, on sampling 2d Gaussian free field along the specified curves, e.g. the unit circle for the
periodic noise, see [43, 44], or the constructions proposed in [40] or [47]), for all practical
purposes the 1/f noises should be understood after a proper regularization. In what follows
we will use explicitly the regularization proposed by Fyodorov and Bouchaud [31], though
we expect the main results must hold, mutatis mutandis, for any other regularization.

In the model proposed in [31] one subdivides the interval t ∈ (0,2π] by finite number M

of observation points tk = 2π
M

k where k = 1, . . . ,M < ∞, and replaces the function V (t),

3One can also define other, in general non-periodic versions of similar log-correlated random processes on
finite intervals using different basis of orthogonal functions, or even exploit the appropriate random Fourier
integral to define the process on the half-line 0 < t < ∞. The corresponding models arise very naturally in
the context of Random Matrix Theory and will be discussed in a separate publication [52].
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Fig. 1 A sample of the
regularized periodic 1/f noise
for M = 4096 observation points.
The upper broken line marks the
typical value of the maximum
Vm = 2 lnM − 3

2 ln lnM and
black dots mark a few
exceedances of that level. The
lower solid line is at the level

1√
2
Vm and the blue dots at the

bottom mark points i supporting
Vi > 1√

2
Vm. The set looks like a

fractal (Color figure online)

t ∈ [0,2π) with a sequence of M random mean-zero Gaussian variables Vk correlated ac-
cording to the M × M covariance matrix Ckm = VkVm such that the off-diagonal entries are
given by

Ck �=m = −2 ln

∣
∣
∣
∣2 sin

π

M
(k − m)

∣
∣
∣
∣ (9)

To have a well-defined set of the Gaussian-distributed random variables one has to ensure
the positive definiteness of the covariance matrix by choosing the appropriate diagonal en-
tries Ckk . A simple calculation [31] shows that as long as we choose

Ckk = V 2
k > 2 lnM, ∀k = 1, . . . ,M (10)

the model is well defined, and we will actually take the minimal possible value: Ckk =
2 lnM + ε, ∀k with a small positive ε 
 1. We expect that the statistical properties of the
sequence Vk generated in this way reflect correctly the universal features of the 1/f noise.
An example of the signal generated for M = 4096 according to the prescription above via
the Fast Fourier Transform (FFT) method as explained in detail in [32] is given in Fig. 1.

Using the model (9)–(10) the authors of [31] defined the associated random energy model
via the partition function Z(β) = ∑M

i=1 e−βVi , with the temperature T = β−1 ≥ 0 and suc-
ceeded in determining the distribution of Z(β) in the range β < 1. To reinterpret those
findings in the context of multifractality we introduce the height variables hi = eVi > 0
and rename β → −q , converting Z(β) of the random energy model to Zq of the “thermo-
dynamic formalism”, Eq. (3). Note that due to the statistical equivalence of Vi and −Vi

in the model all results may depend only on |q|. Then the findings of [31] can be sum-
marized as follows. The probability density of the random variable Z|q|<1 consists of two
pieces, the body and the far tail. The body of the distribution has a pronounced maximum
at Z ∼ Ze(q) = M1+q2

/Γ (1 − q2) 
 M2, and a powerlaw decay when Ze 
 Z 
 M2.
Introducing z = Zq/Ze(q) the probability density of such a variable is given explicitly by

Pq(z) = 1

q2

(
1

z

)1+ 1
q2

e−( 1
z )

1
q2

, z 
 M1−q2
, |q| < 1 (11)

For z � M1−q2
the above expression is replaced by a lognormal tail [31]. Note that the

probability density (11) is characterized by the moments

zs
M�1 ≈ Γ

(
1 − sq2

)
, Re s < q−2 (12)
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Fig. 2 Convergence of the
relative variance to the
asymptotic value. Red dots
correspond to q = 1/3 and blue
dots correspond to q = 1/2. The
asymptotic behavior is reached
for M ∼ 211. When q increases
the convergence slows down
(Color figure online)

where Γ (z) is the Euler Gamma-function. It is worth noting that although the particular form
of the density (11) is specific for the chosen model of 1/f noise, the power-law forward tail

Pq(Z) ∝ Z
−1− 1

q2 is expected to be universal [32] and so the divergence of moments of the
partition function for Re s > q−2. A closely related fact which can be also traced back to the
existence of the universal forward tail is that the typical partition function scale Ze(q) in all
1/f models is expected to behave for q → 1 as Ze(q)/M1+q2 ∼ (1 − q) → 0. This property
will have important consequences at the level of the counting function.

To get some understanding of how the above asymptotic results agree with the direct
numerical simulations of the model (9)–(10) for large, but finite M it is useful to provide the
exact finite-M expression for the second moment of the partition function, see [31]:

Z2
q = M1+4q2 + M2(1+q2) S

(M)

2

(
q2

)
, S

(M)

2

(
q2

) = 1

M

M−1∑

l=1

[

4 sin2

(
π

M
l

)]−q2

(13)

Second term here is dominant in the large-M limit and gives precisely the result (12) as
asymptotically we can replace the sum by the integral convergent for q2 < 1/2 and get

lim
M→∞

S
(M)

2

(
q2

) = 2

π

∫ π/2

0

[
4 sin2 θ

]−q2

dθ = Γ (1 − 2q2)

Γ 2(1 − q2)
(14)

The main correction to this asymptotic result is given by the first term in (13), whose relative
contribution is small as M1−2q2

for q2 < 1/2. In Fig. 2 we show the exact evaluation for the

relative variance δz(q,M) = z2

(z)2 − 1 with z = Zq/Ze(q) given explicitly by

δz(q,M) = S
(M)

2

(
q2

) + M2q2−1 − 1 (15)

We see that δz(q,M) clearly approaches the asymptotic value δz(q,∞) = Γ (1−2q2)

[Γ (1−q2)]2 − 1 for

M ∼ 211.

3 Thermodynamic Formalism for the Counting Function of the 1/f Noise Sequence
and the Threshold of Extreme Values

The statistics of Zq for the model under consideration suggest that it reflects the correspond-
ing strong sample-to-sample fluctuations in the counting function of pattern of heights. Our
goal is to quantify statistics of those fluctuations by considering the total number N>(x),
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Fig. 3 From top to bottom the
probability density equation (19)
for x = 1, x = 1.4, x = 1.7.
Arrows indicate the position of
the mean, the typical value
corresponds always to 1 in the
chosen scaling (Color figure
online)

which in the present context will be denoted as NM(x), of the x-high points in the (regular-
ized) 1/f sequence V1, . . . , VM . Those points are defined as such that Vi > x lnM which is
equivalent to hi = eVi > Mx .

We then relate the number NM(x) to the partition function Zq by the thermodynamic
formalism:

NM(x) = lnM

∫ ∞

x

ρ̃M(y) dy, Zq = lnM

∫ ∞

−∞
Mqyρ̃M(y) dy (16)

where now the density ρ̃M(y) = ρM(y)

lnM
= ∑M

k=1 δ(Vk − y lnM) is anticipated to be given in
the large-M limit by the multifractal ansatz of the particular “improved” form:

ρ̃M(y) ≈ cM(y)
M1−y2/4

√
lnM

, cM(y) = nM(y)

2
√

πΓ (1 − y2/4)
, |y| < 2 (17)

Here nM(y) is assumed to be a random coefficient of order of unity which strongly fluctuates
from one realization of the sequence Vi to the other in such a way that its probability density
is given by the formula (11) with q value chosen to be q = y/2. Indeed, substituting the
density (17) to Zq in (16) and performing the integrals in the limit lnM � 1 by the Laplace
method we arrive at the asymptotic behavior Zq ≈ nM(2q)Ze(q), q < 1, with the value

Ze(q) = M1+q2

Γ (1−q2)
precisely as we have found from the exact solution (11). On the other hand,

substituting the same ansatz to the counting function in (16) yields by the same method
NM�1(x) ≈ nM(x)Nt (x) where the typical value Nt (x) is given by

Nt (x) = M1−x2/4

x
√

π lnM

1

Γ (1 − x2/4)
, 0 < x < 2 (18)

Thus, our main conclusion is that two random variables n = NM(x)/Nt (x) and z =
Zq/2/Ze(q/2) must be distributed in the large-M limit according to the same probability law,
which after invoking (11) yields the asymptotic probability density for the scaled counting
function in the form

Px(n) = 4

x2

1

n
1+ 4

x2

e−( 1
n )

4
x2

, 0 < x < 2 (19)

The shape of the distribution for a few values of x is presented in Fig. 3.
The following qualification is needed here. For large but finite M such form of the density

stops to hold true for extremely large n → ∞ as in any realization obviously NM(x) < M at
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the very least. Therefore there must exist an upper cut-off value Nc(x) such that for n > nc =
Nc(x)/Nt (x) the scaling form of the probability density (19) loses its validity. The cutoff
nc should diverge as long as M → ∞. Similarly, another restriction on the validity of (19)
should exist in the region of extremely small n → 0 due to implicit condition NM(x) � 1.
Precise value of the cutoffs can not be extracted in the framework of the thermodynamic
formalism, and its determination remains an open issue.

The important scale Nt (x) defined explicitly in (18) describes typical values of the count-
ing function NM(x) for a given observation level x. In particular, it can be used to define
one of the objects of central interest in the present paper, the threshold of extreme values.
The latter stands for such a level above which typically we can find for lnM � 1 only a few,
i.e. of the order of one points of our random sequence. The scaling behavior Nt (x) ∼ Mf (x),
f (x) = 1 − x2/4 is the hallmark of the multifractality. A very similar parabolic singularity
spectrum characterizes the high value pattern of the two-dimensional Gaussian free field
as revealed in [18] and proved in a mathematically rigorous way in [46]. The above re-
sult for f (x) is the simple one-dimensional analogue of that fact, see e.g. [47] where it is
rigorously shown that limM→∞ ln NM(x)

lnM
= 1 − x2/4 in our notations. Note that as the singu-

larity spectrum f (x) vanishes at x = 2 the typical position of the absolute maximum of the
random sequence of Vi ’s is given by Vmax = 2 lnM at the leading order. The correspond-
ing subleading term was conjectured in the work by Carpentier and Le Doussal [30] to be
Vm = 2 lnM − c ln lnM + O(1), with c = 3/2. That conclusion was based upon an analysis
of the travelling wave-type equation [53] appearing in the course of one-loop renormaliza-
tion group calculation, and the value c = 3/2 was conjectured to be universally shared by
all systems with logarithmic correlation. Such a result is markedly different from c = 1/2
typical for short-ranged correlated random signals, so the value of c may be used as a sensi-
tive indicator of the universality class. Indeed, in a recent numerical studies of the behavior
of the logarithm of the modulus of the Riemann zeta-function along the critical line [49]
the value 3/2 was used to confirm the consistency of describing that function as a rep-
resentative of logarithmically correlated processes. Despite its importance, no transparent
qualitative argument explaining c = 3/2 vs. c = 1/2 values was ever provided, to the best
of our knowledge, though for the case of the 2D Gaussian free field the value 3/2 was very
recently rigorously proved by Bramson and Zeitouni [54] by exploiting elaborate proba-
bilistic arguments. Below we suggest a very general and transparent argument showing that
the change from c = 1/2 to c = 3/2 is a direct consequence of the strong fluctuations in
the counting function reflected in the power-law decay of the probability density (19). That
observation not only allows one to explain the origin of c = 3/2 for the Gaussian case, but
has also a predictive power in a more general situation as will be demonstrated in Sect. 5.

To begin with presenting the essence of our argument we first observe that (19) implies
that n = Γ (1 − x2

4 ), 0 < x < 2 so that the mean value of the counting function is given
asymptotically by

NM(x) ≈ M1−x2/4

x
√

π lnM
(20)

We shall see in the next section that the above expression is asymptotically exact for any real
x > 0 without restriction to 0 < x < 2. Notice however that the mean value (20) and the char-
acteristic scale Nt(x) in (18) differ from each other by the factor 1

Γ (1−x2/4)
tending to zero as

x → 2. Such a difference, origin of which can be again traced back to the specific power-law
tail of the probability density (19), see Fig. 3, is one of the hallmarks of the random signals
with logarithmic correlations. Indeed, consider for comparison the case of uncorrelated i.i.d.
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Gaussian sequence sharing the same variance V 2
i = 2 lnM with the logarithmically corre-

lated noise (by historical reasons it is natural to refer to such model as the Random Energy
Model, or REM [55]). A straightforward calculation shows that we still would have precisely
the same mean value (20) of the counting function as in the logarithmically-correlated case,
but unlike the latter it will be simultaneously the typical value of that random variable as no
powerlaw tail is present in that case (see Fig. 4 and discussion in the next section).

Such a difference between the two cases has important implications for the location of the
threshold x = xm which corresponds to the region of extreme value statistics of multifractal
heights. Indeed, by approximating the singularity spectrum f (x) close to its right zero x+ =
2 as f (x) ≈ (2 − x), and similarly writing Γ (1 − x2

4 ) ∝ (2 − x)−1 we observe that the
condition Nt (xm) ∼ 1 is equivalent to the equation:

(2 − xm) lnM − 1

2
ln lnM + ln(2 − xm) = 0 (21)

solving which for lnM � 1 to the first non-trivial order gives precisely xm = 2 − c ln lnM
lnM

with c = 3/2. Had we replaced in the above condition the typical value Nt (xm) with the
mean NM(xm) we would arrive to the same expression for xm but with the value c = 1/2
replacing c = 3/2. This perfectly agrees with such xm being the extreme value threshold
for short-ranged correlated random sequences. The suggested explanation of the transmu-
tation of the coefficient c based on the “typical versus mean” argument seems to us very
transparent and supports the conjectured universality of the result. Indeed, the thermody-
namic formalism combined with the results of [32] suggests that the power-law forward

tail Px(N ) ∝ 1
N ( Ne

N )
4
x2 should be universal for one-dimensional Gaussian processes with

logarithmic correlations. It also should show up, mutatis mutandis, in higher-dimensional
versions of the model like e.g. the Gaussian Free Field on the lattice. Such a tail will en-
sure the difference between the typical and the mean of the counting function by a factor
which vanishes linearly on approaching the extreme value threshold value x = xm. This fac-
tor then will lead to the value c = 3/2 by the mechanism illustrated above for our particular
explicit example. The case of non-Gaussian signals with logarithmic correlations is relevant
for general disorder-generated multifractals and is discussed in Sect. 5 of the paper.

Finally it is worth mentioning that for x > 2 the mean value of the counting function (20)
is exponentially small. This fact reflects the need to generate exponentially large number
of samples to have for lnM � 1 at least a single event with Vi > 2x lnM when x > 2.
Indeed, such values of Vi will not show up in a typical realization (cf. earlier discussion
about “annealed” vs. “quenched” singularity spectra).

4 Exact Results Versus Asymptotics

The above results for the counting function obtained in the framework of the thermodynamic
formalism are expected to be valid as long as lnM � 1. To get a feeling of how big in
practice should be M to ensure the validity of our asymptotic formulae it is natural again
to try to perform the direct numerical simulations of the regularized version of the ideal
1/f noise. We start with checking directly the distribution of the scaled counting function,
Eq. (19), for a particular value x = 1. The results are presented in Fig. 4. They show that
although the main qualitative features of the distribution (in particular, the well-developed
powerlaw tail) are clearly in agreement with the theoretical predictions, the curve is still
rather far from its predicted asymptotic shape for M = 218, and the convergence is too slow
to claim a quantitative agreement.
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Fig. 4 Probability density for the scaled counting function, Px(n) with x = 1. Black solid line corresponds
to the analytical prediction Eq. 19. Red lines correspond to numerical simulation of the regularized 1/f

Gaussian signal generated via the Fast Fourier Transform (FFT) method (lower red curve M = 214, higher
M = 218, data collected from 105 samples). The blue line corresponds to the REM model: M = 218 i.i.d.
zero mean Gaussian variables with variance 2 lnM ; in that case the density for n = NM(x)/NM(x) is clearly
converging to the delta peak and does not show any power-law tails, see discussion in the text (Color figure
online)

To get a better understanding of the mechanism of such disagreement at a quantitative
level, and to check the results obtained in the framework of the thermodynamic formalism
we choose to consider in much greater detail the first two moments of the counting function.
The asymptotic formula (19) yields for the mean of the counting function the expression
(20) and for the variance

[NM(x)]2 − [NM(x)]2

[NM(x)]2
≈ Γ (1 − x2/2)

Γ 2(1 − x2/4)
− 1, 0 < x <

√
2 (22)

At the same time it is possible to derive a closed form exact finite M expression for the first
two moments of the counting function NM(x) = ∑M

i=1 θ(Vi − x lnM) without any recourse
to the thermodynamic formalism. Here we have used the Heaviside step function θ(u) = 1
for u > 0 and θ(u) = 0 otherwise. The mean value can be immediately computed as

NM(x) = M

2
√

π lnM

∫ ∞

x lnM

exp

(

− v2

4 lnM

)

dv = M

2
Erfc

(
x

2

√
lnM

)

(23)

and is independent of the correlations. The problem of deriving a closed-form expression
for the variance which is amenable to accurate numerical evaluation for very big lnM � 1
is less trivial and may have an independent interest. Before presenting the results we find it
most convenient to define the following object

�M(x) = NM(x)
(
NM(x) − 1

) − M − 1

M

[
NM(x)

]2
(24)

in terms of which the relative variance is expressed as

[NM(x)]2 − [NM(x)]2

[NM(x)]2
= 1

M
+ 1

NM(x)
+ δn(x;M), δn(x;M) = �M(x)

(NM(x))2
(25)

�M(x) is a convenient measure of correlation-induced fluctuations. Using the definition of
the counting function we explicitly get:

�M(x) =
∑

i �=j

[
θ(Vi − x lnM)θ(Vj − x lnM) − θ(Vi − x lnM) · θ(Vj − x lnM)

]
(26)
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Fig. 5 Numerical simulations
(red bars) compared to the
theoretical prediction (27) (black
line) for M = 64 (top) and
M = 4096 (bottom). The 1/f

signals are generated via the Fast
Fourier Transform (FFT) method
(Color figure online)

from which is evident that �M(x) vanishes for any i.i.d. sequence. In the latter case the
relative variance tends to zero in the large-M limit assuming NM(x) → ∞ for M → ∞.
This simply means that in the i.i.d. case the variable NM(x)/NM(x) is self-averaging, i.e. its
limiting density approaches the Dirac delta-function, see Fig. 4. On the other hand, �M(x)

is formally different from zero for correlated variables. Nevertheless, using the general for-
malism exposed in Appendix A one can satisfy oneself that for all stationary Gaussian se-
quences with correlations decaying fast enough to zero at big separations (e.g. as a power of
the distance) the quantity δn(x;M) still tends to zero as M → ∞. In contrast, we will see
below that in the logarithmically correlated case δn(x;M) tends to a finite positive number
for M → ∞, and thus coincides with the leading behavior of the variance of the counting
function.

In Appendix A we have derived the exact expression for �M(x) for a general correlated
Gaussian sequence. For the periodic 1/f noise sequence using (9) the result reads

�M(x) = 1

π
M1−x2/4

M−1∑

n=1

∫ 1

hn

dτ

1 + τ 2
e− lnMx2τ2/4, hn =

√
lnM + ln |2 sin( πn

M
)|

lnM − ln |2 sin( πn
M

)| (27)

In Fig. 5 we test its validity by comparing the results obtained for moderate value of M

by direct numerical simulations of the log-correlated sequences with the predictions of (27).
The expressions above are suitable for developing a well-controlled approximation to the

exact expression (27) in the large-M limit assuming lnM � 1. First of all, it is clear that in
the large-M limit we may replace the discrete sum in (27) by the integral treating πn

M
as a
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continuous variable θ . Using the symmetry θ → π − θ we then arrive to an approximation
to the ratio δn(x;M) = �M(x)

(NM(x))2 given by

δn(x;M) ≈ 8M−x2/4

π2 Erfc2 ( 1
2x

√
lnM)

∫ π
2

π
M

dθ

∫ 1

hθ

dτ

1 + τ 2
e− lnMx2τ2/4, (28)

where the lower limit of integration over τ is given by

hθ =
√

lnM + ln |2 sin θ |
lnM − ln |2 sin θ | . (29)

At the next step we assume that the θ -integral is dominated by the finite values 0 < θ < π/2.
This allows to replace the lower limit of integrations over θ by zero and also to ex-
pand hθ ≈ 1 + ln |2 sin θ |/ lnM for lnM → ∞. Changing then the integration variable
τ = (1 +u/ lnM)1/2 and keeping only the leading order terms the u-integral is easily calcu-
lated and the emerging θ -integral takes the form

∫ π

0 (4 sin2 θ)−x2/4 dθ . The latter is conver-
gent as long as x <

√
2 where it can be reduced to the Euler beta-function, see (14). As a

result, we arrive to the following expression:

lim
M→∞

δn(x;M) = Γ (1 − x2/2)

Γ 2(1 − x2/4)
− 1, 0 < x <

√
2 (30)

which is fully equivalent to the variance result (22) we have anticipated on the basis of the
thermodynamic formalism. For x >

√
2 the θ -integral diverges at the lower limit θ → 0

rendering our large-M procedure invalid. This case will be separately treated in the end of
the section.

Now we are in a position to check numerically the range of applicability of the approx-
imations derived. First we attempt to compare the results of exact numerical evaluation of
the discrete sum in (27) to the integral (28). Actually, the direct evaluation of the sum in
Mathematica is affordable up to M = 50000. To go up to the higher values of M we use the
identity

M−1∑

n=1

∫ 1

hn

f (τ ) dτ =
M
2 −1∑

n=1

2R(n)

∫ hn+1

hn

f (τ ) dτ (31)

where R(n) = n for n < M/6 and R(n) = n − M/3 + 1
2 for n ≥ M/6. Since for large lnM

the difference |hn − hn+1| is very small, the integral in the above expression can be very
accurately approximated by the trapezoidal rule

2
∫ hn+1

hn

f (τ ) dτ ≈ (hn+1 − hn)
(
f (hn+1) − f (hn)

)
.

This trick allows us to evaluate the sum in (27) numerically up to M ∼ 109.
The results are presented Figs. 5 and 6 for x = 1. In Fig. 5 we compare the fast conver-

gence of δz(q = 0.5,M) against the very slow convergence of δn(x = 1;M). For M ∼ 215

δz(q = 0.5,M) is already very close to the asymptotic value whereas δn(x = 1,M) shows
a curious non-monotonicity and even for M ∼ 230 we are still very far from the asymptotic
value predicted by (30) which is δ(n)∞ (x = 1) = 0.180341. We observe that for M larger than
217 the continuum approximation of Eq. (28) matches perfectly the numerical integration
involving the identity (31) and the trapezoidal rule. The latter matches perfectly the exact
discrete sum (27) even for moderate M . As we now are confident in the accuracy of the
continuum approximation formula (28) given by a double integral with lnM entering as a
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Fig. 6 Comparison of the convergence to the asymptotic values. The partition function variance (blue cir-
cles, δz(q = 0.5,M)) reaches the asymptotic value δz(q = 0.5,∞) = 0.180341 for M ∼ 216. The relative
variance δn(x = 1,M) for the counting function is presented as evaluated by three different methods: Filled
squares stand for the result of precise integration of the discrete sum (27) up to M = 50000. Empty squares
stand for a numerical integration involving the identity (31) and the trapezoidal rule. Diamonds describe
the continuum approximation equation (28). The asymptotic value predicted by (30) for M → ∞ is again
δn(x = 1;∞) = 0.180341, and is nowhere close to the finite-M results. The agreement even seems to worsen
with growing M . See the next figure

Fig. 7 δn(x = 1,M) given by
the continuum approximation
formula (28). The non-monotonic
region seen in the previous figure
is reflected in a tiny dip confined
to a region close to the origin.
The asymptotic value predicted
by (30) is δn(x = 1;∞) =
0.180341

simple parameter we can use it to check what values of lnM actually ensure the validity
of the asymptotic (30). The results are presented in Fig. 6 and Fig. 7 and show that one
needs astronomically big values of M even to achieve a rather modest agreement with the
asymptotic value.

These facts explains our failure to confirm the infinite-M asymptotic by direct simulation
of the variance of the counting function predicted for the periodic 1/f noise in the frame-
work of the thermodynamic formalism. In any realistic signal analysis of such variance one
must therefore rely upon the exact formula (27) or its analogues instead of the asymptotic
value (30). The conclusion should be of significant practical importance, in particular in
view of the growing interest in numerical investigations of statistical properties of high val-
ues of the modulus of the Riemann zeta-function and of the characteristic polynomials of
large random matrices.

Having verified by the independent approach the asymptotic of the second moment of
the counting function for x <

√
2 we can now apply a similar methods beyond that range.

The formal divergence of the right-hand side in (30) for x → √
2 simply means that the

second moment of the counting function is not proportional to the squared typical scale
Ne , but is parametrically larger. An accurate analysis of the second moment in the range



High Values and Extremes of Multifractal Patterns 913

√
2 < x < 2

√
2 performed in Appendix B shows that the leading asymptotic behavior of

δn(x;M) is given by

δn(x;M) ≈ x2

√ √
2π lnM

[2 − x/
√

2]M
( x√

2
−1)2

,
√

2 < x < 2
√

2 (32)

As is easy to see δn(x;M) � (NM(x))−1 in the above domain, and is therefore the dominant
term in the relative variance (25).

5 The Position of Threshold of Extreme Values in Generic Disorder-Generated
Multifractal Patterns

Results obtained so far in the paper suggest a natural question about statistics of high values
and positions of extremes of more general power-law correlated multifractal random field
with a generic non-parabolic singularity spectrum. Most obvious examples include the vari-
ety of the Anderson transitions [14], but in fact many more random critical systems should
be of that sort, see e.g. [12, 16, 17, 19]. A straightforward calculation outlined in [23] shows
that behind each pattern of such type lurks a certain logarithmically correlated field, though
in general of a non-Gaussian nature. Below we sketch that simple argument for the sake of
completeness. Consider a d-dimensional sample of linear size L, and assume following [12]
that the multifractal patterns of intensities p(r) is self-similar

pq(r1)ps(r2) ∝ L−yq,s |r1 − r2|−zq,s , q, s ≥ 0, a 
 |r1 − r2| 
 L (33)

and spatially homogeneous

pq(r1) = 1

Ld
Iq, where Iq =

∫

|r|<L

pq(r) dr ∝ L−τq (34)

The consistency of the above two conditions for |r1 − r2| ∼ a and |r1 − r2| ∼ L implies:

yq,s = d + τq+s , zq,s = d + τq + τs − τq+s (35)

If we now introduce the field V (r) = lnp(r) − lnp(r) and combine the identity d
ds

ps |s=0 =
lnp with the fact that τ0 = −d we straightforwardly arrive at the relation

V (r1)V (r2) = −g2 ln
|r1 − r2|

L
, g2 = ∂2

∂s∂q
τq+s |s=q=0 (36)

Thus we conclude that the logarithm of any multifractal intensity is a log-correlated random
field. The above argument does not say anything about higher cumulants of the field V (r),
but it is easily checked that had those fields be always Gaussian the resulting singularity
spectrum f (α) obtained from τq via the Legendre transform would be invariably parabolic.
Therefore, any non-parabolicity of the singularity spectra necessarily implies non-Gaussian
nature of the underlying log-correlated fields. Nevertheless, combining our previous insights
with properties of disorder-generated multifractal patterns revealed in [14] suggests the way
in which our results on Gaussian 1/f noise can be generalized to statistics of high values
and positions of extremes of more general non-Gaussian logarithmically correlated random
processes and fields.

As was already mentioned in the introduction, in the case of the Anderson transition the
probability density of the inverse participation ratios Iq was shown to be dependent only on
the scaling ratio z = Iq/I

(t)
q , with I (t)

q standing for the typical value. Moreover, that ratio
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is expected to be power-law distributed: Pq(z) ∼ z−1−ωq [9, 14]. We may try to combine
that fact with the theory developed in the present paper to conjecture the typical position of
the extreme values (maxima or minima) in a pattern of normalized multifractal probability
weights pi ∼ M−αi for i = 1, . . .M ∼ Ld such that

∑
i pi = 1. A brief account of such a

procedure is as follows. Suppose the mean participation ratios are given by Iq = B(q)M−τq ,
with a coefficient B(q) of order of unity, and concentrate on those q for which typical and
annealed exponents coincide. From it we recover in the usual way the singularity spectrum
f (α) by the corresponding Legendre transform: f (α) ≥ 0 for α ∈ [α−, α+] and further as-
sume α− > 0 to avoid complications related to the so-called “multifractality freezing” [9,
13, 20] which would require a special care. Define α(q) to be a solution of the equation
q = f ′(α) and denote the mean of the scaling ratio z = Iq/I

(t)
q as zq = ∫ ∞

0 Pq(z)z dz. Fur-
ther given any function φq of the variable q define a “Lagrange conjugate” function φ∗(α),
by the relation φ∗(α(q)) = φq . Then, by naturally generalizing our earlier consideration of
the 1/f noise we suggest that the density of exponents defined as ρM(α) = ∑M

i=1 δ(
lnpi

lnM
−α)

should be given asymptotically, in every realization, by the following “improved multifractal
Ansatz”, cf. (17):

ρM(α) = n∗(α)

z∗(α)
B∗(α)

√
lnM|f ′′(α)|

2π
Mf (α) (37)

Here n = n∗(α) is assumed to be a random coefficient of the order of unity distributed
for a given α according to a probability density P ∗

α(n) defined in terms of the density for
the IPR scaling ratio Pq(z) via the rule P ∗

α(q)(n) = Pq(n). Indeed, substituting the Ansatz
(37) into the definition Iq = ∫ ∞

0 M−qαρM(α)dα and performing the integral by the Laplace
method for lnM � 1 gives Iq ≈ n∗(α(q))[Iq/zq], where the random variable z = n∗(α(q))

is distributed according to the probability density Pq(z). This is precisely what is required,
provided we identify I (t)

q = Iq/zq . Now we can substitute the same Ansatz to the definition
of the counting function N<(α) = ∫ α

−∞ ρM(α̃) dα̃ choosing the value of α to the left of the
maximum of f (α). This gives asymptotically N<(α) = n∗(α)Nt(α) where the scale Nt(α)

is now given by

Nt(α) = B∗(α)

z∗(α)f ′(α)

√ |f ′′(α)|
2π lnM

Mf (α), α− < α < α0 (38)

and defines the typical value of the counting function for a given α. Then, in a typical real-
ization of the multifractal pattern a few “extreme” values among the probability weights pi ’s
will be of the order of pm = M−αm , where αm is determined from the condition Nt(αm) ∼ 1.
Clearly, at the leading order αm = α− given by the left root of f (α) = 0, and the goal is
to extract the subleading term. For doing this properly a crucial observation taken from
[14] is that for q → qc = f ′(α−) the tail exponent ωq characterizing the IPR probability
density Pq(z) ∼ z−1−ωq should tend to ωqc = 1. As the derivative d

dq
ωq |q=qc is generically

neither zero nor infinity the mean value zq = ∫ ∞
0 Pq(z)z dz will diverge close to q = qc

as zq ∼ (qc − q)−1. In turn, as z∗(α) is the Lagrange conjugate of zq the divergence of
the latter implies similar behavior z∗(α) ∼ (α − α−)−1 in the vicinity of α−. At the same
time generically f ′(α), f ′′(α) neither vanish nor diverge at α = α−, and we do not see
any reasons to expect that B∗(α) vanishes or diverges at this point either. Approximating
f (αm) ≈ f ′(α−)(αm −α−) we arrive at the following equation for the extreme value thresh-
old αm:

f ′(α−)(αm − α−) lnM − 1

2
ln lnM + ln(αm − α−) = 0 (39)
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Solving it for lnM � 1 to the first non-trivial order beyond αm = α− gives

αm ≈ α− + 3

2

1

f ′(α−)

ln lnM

lnM
⇒ − lnpm

(typ) ≈ α− lnM + 3

2

1

f ′(α−)
ln lnM (40)

which constitutes our main prediction for the typical position of the threshold of extreme
values in disorder-induced multifractals. In particular, the value of the absolute maximum
pmax will be such that y = lnpmax − lnp

(typ)
m is a random variable of the order of unity.

6 Discussion and Conclusion

In conclusion, we have studied, both analytically and numerically, the strongly fluctuating
multifractal pattern associated with high values of the periodic ideal 1/f noise. In particular,
we concentrated on the signal level comparable with the typical maximum value of the 1/f

noise. The exploitation of the thermodynamic formalism allowed us to translate the distribu-
tion of the partition function found in the previous studies [31, 32] to a similar distribution
for the counting functions of exceedances of such a high level. The power-law forward tail
of the latter distribution was shown to give rise to a parametric difference between the mean
and the typical value of the counting function when the position of the high level approaches
threshold xm of extreme values. Such a mechanism which can be traced back to the loga-
rithmic correlations inherent in the 1/f noise allowed us to explain the universal coefficient
in front of the subleading term in the position of the threshold xm.

We have also performed a direct numerical simulations of the 1/f signal and calculated
numerically the lowest two moments of the partition function. This served to demonstrate
that for the samples of M ∼ 106 points the numerics follows M = ∞ results rather faith-
fully. Performing the same check for the counting function moments however showed that
truly asymptotic results can be never achieved even with very moderate accuracy due to
prohibitively slow convergence. Instead, even for M as big as M ∼ 109 one has still to use a
more elaborate finite-M formulas which we derived in the present paper for that goal. This
lesson may prove important in view of the growing interest in numerical simulations of re-
lated systems arising in the framework of the Random Matrix Theory and the Riemann zeta
function along the critical line [49].

Finally, by comparing the results obtained for 1/f noises in our paper with those known
to hold for multifractal patterns of wave-function intensity at the points of Anderson tran-
sitions [9, 14] we propose a quite general formula (40) for the position of extreme values
in generic disorder-generated multifractal patterns with non-parabolic singularity spectra.
We hope that such prediction can be checked against the accurate numerical data in random
multifractals of various origin, and will generate further interest in statistics of high and
extreme values in such multifractal patterns. We leave this issue as well as a related, but
much more difficult question about actual statistics of the counting function in the region
of extreme states for future investigations. For 1/f noise the latter should involve under-
standing of how the so-called “freezing phenomena” known to have profound influence on
the behavior of the partition function Zq with |q| > 1 are reflected in the thermodynamic
formalism correspondence between Zq and the counting function. Note that the freezing
mechanism suggested in [30–32] predicts for |q| > 1 the tail behavior for the distribution of

Z = Zq to be P|q|>1(Z) ∼ Z
−(1+ 1

|q| ) lnZ. It is based on considering properties of the gener-
ating function gq(y) = exp{−e−qyZq/Ze(q)} which in the limit M → ∞ is conjectured to
stay q-independent (i.e. “frozen”) to the value g|q|=1(y) for all |q| > qc = 1. The factor lnZ

in P|q|>1(Z) plays a prominent role and is believed to be a universal feature within the class
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of Gaussian logarithmically correlated fields. Note that such factor will be precisely absent
for i.i.d. case of the standard REM model. To that end let us mention that in the context
of the Anderson Localization a certain use of the thermodynamic formalism for the IPR’s
combined with a clever heuristic power counting [9, 14] lead to predicting the probability

density for I = Iq with q > qc = f ′(α−) of the form Pq>qc (I ) ∼ I
−(1+ qc

q ). It is most nat-
ural to suspect that the logarithmic factor ln I should be present in the above formula for
Pq>qc (I ) as well, and the accuracy of the power counting procedure used in [9, 14] was
simply not enough to account for it. Closely related questions are whether the generating

function g̃q(y) = exp{−e−qyIq/I
(t)
q } will be actually q-independent for q > qc = f ′(α−) for

general non-parabolic multifractals and whether the probability density of the logarithm of
the (appropriately shifted) absolute maximum y = lnp

(typ)
m − lnpmax, with p

(typ)
m given by

(40), will show a characteristic non-Gumbel tail |y|e−|y|, y → −∞ [30–32] as our extended
analogy would suggest. All these intriguing issues certainly deserve further investigation,
both numerically and analytically.
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Appendix A: Variance of the Counting Function for Gaussian Sequences

Suppose we have a sequence of M correlated Gaussian-distributed variables V1, . . . , VM

characterized by the common variances V 2
i = c0 and covariances ViVj = cij , i �= j . Define

�M(a) =
∑

i �=j

[
θ(Vi − a)θ(Vj − a) − θ(Vi − a) · θ(Vj − a)

]
(A.1)

Our goal is to show the validity of the following expression

�M(a) = 1

π
exp

(

− a2

2c0

) M∑

i �=j

∫ 1

hij

dτ

1 + τ 2
e

− a2
2c0

τ2

, hij =
√

c0 − cij

c0 + cij

(A.2)

For proving it we need the following

Proposition Suppose V1, V2 are two Gaussian-distributed variables characterized by the
common variances V 2

1 = V 2
1 = c0 and the covariance V1V2 = c. Then for any two functions

f1(V ) and f2(V ) with finite means f1,2(V ) holds the identity

∂

∂c

[
f1(V1)f2(V2)

] = f ′
1(V1)f

′
2(V2) (A.3)

where f ′ ≡ df

dV
.

To verify the proposition we introduce the vector v = (
V1
V2

)
, denote Ĉ = ( c0 c

c c0

)
and write

the joint probability density of V1 and V2 as

P(v) = e−vT Ĉ−1v

2π
√

det Ĉ
=

∫ ∞

−∞

∫ ∞

−∞
e− 1

2 φT Ĉφ+i(V1φ1+V2φ2) dφ1dφ2

2π
(A.4)
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from which it is immediately clear that

∂

∂c
P(v) = ∂2

∂V1∂V2
P(v) (A.5)

This implies:

∂

∂c

[
f1(V )f2(V )

] =
∫ ∞

−∞

∫ ∞

−∞
f1(V1)f2(V2)

∂2

∂V1∂V2
P(v) dV1 dV2 = f ′

1(V )f ′
2(V )

(A.6)

where the last equality follows after integration by parts.
Now applying the proposition to the particular case f1(V ) = f2(V ) = θ(V − a) gives in

view of ∂
∂V

θ(V − a) = δ(V − a) the relation

∂

∂c

[
θ(V1 − a)θ(V2 − a)

] = P(V1 = a,V2 = a) = 1

2π

√
c2

0 − c2
e

− a2
c0+c (A.7)

and since θ(V1 − a) = θ(V2 − a) is independent of c the integration shows that

D12 = θ(V1 − a)θ(V2 − a) − θ(V1 − a) · θ(V2 − a) = 2

π

∫ c

0

du
√

c2
0 − u2

e
− a2

c0+u (A.8)

Finally, introducing the variable τ =
√

c0−u

c0+u
we convert the above expression to the form

D12 = 4

π
exp

(

− a2

2c0

)∫ 1

h

dτ

1 + τ 2
e

− a2
2c0

τ2

, h =
√

c0 − c

c0 + c
(A.9)

which after applying to each pair of Vi , Vj in (A.1) immediately implies (A.2).

Appendix B: Large-M Asymptotic of the δ
(n)
M (x) for

√
2 < x < 2

Our goal is to extract the large-M asymptotic behavior of the integral featuring in (B.1), that
is:

JM(x) =
∫ π

2

π
M

dθ

∫ 1

hθ

dτ

1 + τ 2
e− lnMx2τ2/4, hθ =

√
lnM + ln |2 sin θ |
lnM − ln |2 sin θ | (B.1)

For x >
√

2 we anticipate that the main contribution for M → ∞ comes from θ → 0 and
rescale the integration variable as θ = πM−u, u ∈ (0,1). Such a rescaling allows us to

replace h(θ) → h(u) =
√

1−u
1+u

so that we have

JM�1(x) ≈ −π

∫ 1

0
d
(
e− lnMu

)
∫ 1

h(u)

dτ

1 + τ 2
e− lnMx2τ2/4

= πM−1
∫ 1

0

dτ

1 + τ 2
e− lnMx2τ2/4

− π

2

∫ 1

0
duh′(u)(1 + u)e− lnM(u+ x2

4
1−u
1+u

) (B.2)
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For lnM � 1 the first integral is dominated by the lower limit and yields the lead-

ing order contribution J
(I)

M�1(x) ≈ π
Mx

√
2π

lnM
. Second integral is dominated by the vicin-

ity of the minimum of the function L(u) = u + x2

4
1−u
1+u

achieved at u∗ = x√
2

− 1. For√
2 < x < 2

√
2 we have u∗ ∈ (0,1) so we can apply the standard Laplace method. Using

L(u∗) = −1 + √
2x − x2/4 and d2

du2 L(u = u∗) = 2
√

2/x we find the leading order contribu-
tion given by:

J
(II)
M�1(x) ≈

√
π3

2
√

2 lnM(2
√

2 − x)
M1−√

2x+ x2
4 (B.3)

Finally, using asymptotic formula Erfc( x
2

√
lnM) ≈ 2M

− x2
4

x
√

π lnM
we arrive at the expres-

sion (32).
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