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Tuning spreading and avalanche-size exponents in directed percolation with
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We consider the directed percolation process as a prototype of systems displaying a nonequilibrium phase
transition into an absorbing state. The model is in a critical state when the activation probability is adjusted at
some precise value pc. Criticality is lost as soon as the probability to activate sites at the first attempt, p1, is
changed. We show here that criticality can be restored by “compensating” the change in p1 by an appropriate
change of the second time activation probability p2 in the opposite direction. At compensation, we observe that
the bulk exponents of the process coincide with those of the normal directed percolation process. However, the
spreading exponents are changed and take values that depend continuously on the pair (p1,p2). We interpret this
situation by acknowledging that the model with modified initial probabilities has an infinite number of absorbing
states.
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I. INTRODUCTION

There are many systems in nature that, upon a continuous
input of energy, react by sudden releases of the accumulated
energy in the form of discrete events, which we call avalanches
in general. Examples are the dynamics of sand piles, magnetic
domain inversions in ferromagnets, stress release on the
earth’s crust in the form of earthquakes, and many others.
A remarkable characteristic of most of these realizations is the
fact that the size distribution of the avalanches may display
power laws that are a manifestation of the lack of intrinsic
spatial scale in the system.

The theoretical analysis of such a variety of different
processes has focused on the common features of the problems
and has tried to isolate the minimum necessary ingredients
to explain the phenomenology that is common to most
realizations. There are numerous models that display critical
behavior, and thus a power-law avalanche-size distribution.
In most cases the obtained values of the exponents charac-
terizing the avalanches are limited to a few possible values,
corresponding to different universality classes.

One of the reference models that are studied in this
context is directed percolation (DP). DP is the paradigmatic
example of dynamical phase transitions into absorbing states
(see [1–4] for reviews). It provides an example of a very
robust universality class with well studied critical behavior,
where power-law distributed avalanches are generated. One
of its most remarkable characteristics is its robustness: many
different particular models can effectively be described within
the DP scenario.

It has been shown that the critical properties of the DP
transition are lost if the probability to activate a site for the
first time is reduced with respect to the subsequent probabilities
[5,6]. In this paper we show that in this case criticality can be
restored by an appropriate increase of some of the following
probabilities, in a process that we call “compensation.” Several
critical exponents found at compensation do not coincide with
those of pure DP. In particular, a time-reversal symmetry

known to be valid for DP is violated at compensation.
Other exponents conserve the values they have for DP. The
values of the exponents that are seen to change depend in
a continuous way on the precise choice of the activation
probabilities.

The rest of the paper is organized as follows. In Sec. II,
we review the critical properties of directed percolation,
introducing the critical exponents and the scaling relations.
In Sec. III, we recall the results known for a modified first
infection model and present a variant: the modified first attempt
model. In Sec. IV we present our results about the possibility
of compensation. These results are discussed and compared
with related models in Sec. V. Finally our conclusions are
given in Sec. VI.

II. CRITICAL BEHAVIOR OF DIRECTED PERCOLATION

DP is a dynamical model defined on a lattice, where each
site is associated with a state (active or inactive) that evolves in
time. Two commonly considered variants of this model are site
DP and bond DP. In site DP, a site on the lattice will be active
at time t + 1 with probability p if at least one of its neighbors
is active at time t . In bond DP, a site will be active at time
t + 1 with probability 1 − (1 − p)k , where k is the number of
its active neighbors at time t . The configuration with no active
sites is called an absorbing state because once it is reached,
the dynamics stops. In DP the absorbing state is unique.

For p small, the system is trapped in the absorbing state
exponentially quickly, while for large p, the system has a
finite probability to remain active indefinitely. There exists a
threshold pc at which the system is critical and in which the
surviving probability decays to zero as a power law. Around
the threshold pc the system displays a nonequilibrium phase
transition from a fluctuating phase to an absorbing state. As for
standard equilibrium phase transitions, universal behavior and
critical exponents are expected. It was found that both site and
bond DP belong to the same universality class. Here we focus
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on bond DP on a two-dimensional square lattice, for which
pc � 0.287338 [7].

Because p is the control parameter of the transition, we
denote the distance from criticality as � ≡ |p − pc|. Two
different order parameters can be defined: When the initial
condition corresponds to a fully active lattice the relevant
question is to determine the density of active sites when
t → ∞ (the stationary state), namely ρst. For p < pc, ρst = 0;
for p > pc, ρst = �β . When at time t = 0 a single site located
at the origin is active, a cluster of active sites spreads from it.
Here the relevant question is to determine the probability to
remain out of the absorbing state when t → ∞, namely Qst.
For p < pc, Qst = 0; for p > pc, Qst = �β ′

.
Similarly to the case of equilibrium phase transitions,

when approaching criticality a diverging length ξ⊥ ∼ �−ν⊥

describes the spatial correlations. Moreover in dynamical
phase transitions there is a characteristic scale for time
correlations, ξ‖ ∼ �−ν‖ . These scales are independent of the
observable and thus of the initial condition, while one expects
the two distinct order parameters ρst and Qst to be characterized
by different exponents β and β ′ [8]. We see that other quantities
display power-law behavior with different critical exponents;
however, it is possible to write scaling relations that constrain
the set of critical exponents to only four independent quantities.

In practice, in numerical simulations it is convenient to start
from the single seed initial condition and let the cluster evolve
up to time t . To characterize the growth of spreading clusters,
one measures the survival probability Q(t) and the average
number of active sites at time t , N (t). These two quantities
obey the scaling forms

Q(t) ∝ t−δg1(t/ξ‖), (1)

N (t) ∝ tηg2(t/ξ‖), (2)

where g1 and g2 are 1 at t = 0, and gi(x) → 0 for x → ∞
below threshold. When we consider surviving clusters only,
we can measure the average spatial extension of the cluster at
time t , namely Ld (t), and the average density ρ(t) of active
sites at time t inside this region. These two quantities obey the
scaling forms

ρ(t) ∝ t−θg3(t/ξ‖), (3)

L(t) ∝ t
1
z g4(t/ξ‖), (4)

where g3 and g4 behave similarly to g1 and g2 below threshold.
Above threshold, both Q(t) and ρ(t) approach their asymp-

totic stationary state, Qst and ρst, at a characteristic time ∼ξ‖,
so that two scaling relations can be written

β = θν‖, (5)

β ′ = δν‖. (6)

At the critical point the scale invariance predicts that if time
is rescaled by a factor b, space should be rescaled by a factor
bν⊥/ν‖ . Thus the size of a cluster grows as L(t) ∼ tν⊥/ν‖ and a
third scaling relation can be written:

z = ν‖
ν⊥

. (7)

Finally a generalized hyperscaling relation [9] valid below
the upper critical dimension [4] relates the four quantities
previously defined. Namely N (t) can be expressed as the
sum of two contributions: the active sites of surviving
clusters [∼ρ(t)Ld (t)] which have probability Q(t), and the
contribution of dead clusters. This is written as

N (t) = Ld (t)ρ(t)Q(t) + 0 × [1 − Q(t)],
(8)

η = d

z
− θ − δ.

Below threshold, each cluster can be identified with an
avalanche and dies in a finite time T . We define the size S of
an avalanche as the total number of activations that occurred,
and we are mainly interested in its statistics, P (S), which is
expected to follow a power law at criticality: P (S) ∼ S−τ . The
characteristic size of an avalanche is related to T through

S(T ) ∼
∫ T

0

N (t)

Q(t)
dt ∼ T 1+η+δ. (9)

Assuming that fluctuations around this characteristic value are
small, we can write P (S) dS ∼ −Q′(T ) dT , where −Q′(T ) ∼
T −δ−1 stands for the rate of death. Combining the latter relation

with Eq. (9) we have P (S) ∼ T −(1+η+2δ) ∼ S
−( 1+η+2δ

1+η+δ
), and a

scaling relation for the exponent τ can thus be written:

τ = 1 + η + 2δ

1 + η + δ
= 1 + δ

1 + η + δ
. (10)

The exponents and relations that we introduced here are
general features of all absorbing phase transitions, which
are characterized by only four independent exponents: δ, θ ,
z, and ν‖. The exponents β, θ , ν‖, ν⊥, and z are called
“bulk exponents” because they can be measured both from
the fully active initial condition and from the single seed
initial condition with averages performed over surviving runs
exclusively. The exponents β ′, δ, η, and τ are called “spreading
exponents” because they are measured starting from a single
seed, with averages performed over all runs.

DP has an additional symmetry associated with time
reversal, which implies that θ = δ [4,10]. This is schematically
proved in Fig. 1 for one-dimensional bond DP where arrows,
drawn with probability p, connect neighboring sites. An
activated site at the start of an arrow activates the site at the
end of the arrow. The key observation is that the direction of
time is arbitrary: Starting from the top is equivalent to starting
from the bottom with reversed arrows. The survival probability
Q(t) with fully active initial condition (with normal direction
of time) is exactly equal to the density ρ(t) with single seed
initial condition in reversed time. This exact relation thus reads

Q(t) = ρ(t), (11)

δ = θ. (12)

This is exact for bond DP, while in general Q(t) ∼ ρ(t), thanks
to the universality of DP. A necessary condition for this time-
reversal symmetry is the uniqueness of the absorbing state. In
a process with multiple absorbing states, or aging, one cannot
freely reverse the arrow of time.
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FIG. 1. (Color online) One-dimensional bond DP. Normal direc-
tion of time is downwards. The arrows are given once and for all and
are the same for both panels. Final time is t = 12. Left: DP starting
with a fully active lattice: M = 7 occupied green (light gray) seeds,
with final density ρ(t) = 3

7 . Right: DP with time reversed. Light blue
(light gray) indicates the paths which die before the end. Open circles
(white) indicate the paths that survive until t . There are exactly m = 3
seeds that participate in surviving walks: Q(t) = 3

7 .

We recall two-dimensional DP exponents precisely mea-
sured in numerical simulations [7]:

δ = θ = 0.4505 ± 0.001, z = 1.766 ± 0.002,
(13)

ν‖ = 1.295 ± 0.006, η = 0.2295 ± 0.001.

III. FIRST INFECTION AND FIRST ATTEMPT MODELS

A generalization of the bond DP process is the modified
first infection model (IM) [5,6,11,12]. In this variant, the
probability to activate a site for the first time is given a value
p1 different from the value of the subsequent activations (that
we call psubs). This has been considered as a model to describe
epidemic processes with partial immunization. In this context,
the activation of a site is called infection, and it is understood
that the possibility of the subsequent reinfection probability
psubs can differ from the first infection probability p1 due to
“immunization” effects. The phase diagram of this problem in
d = 2 was established in [5] and is reproduced in Fig. 2, for
reference.
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FIG. 2. (Color online) Phase diagram of the model with a first
infection probability p1 different from the subsequent reinfection
probability psubs.

DP critical behavior occurs at p1 = psubs = pc. At this
point, Q(t), N (t), L2(t), and ρ(t) have the power-law dis-
tribution corresponding to pure DP. In the line terminated
in the blue (darkest) points, the system experiences a phase
transition corresponding to the so-called general epidemic
process (GEP). The fixed point of (bond) GEP is located at
p1 = 1/2, psubs = 0 and corresponds exactly to the problem
of bond isotropic percolation.

Along the AB line, except for the unstable DP fixed point,
the system is not critical. In particular, the surviving probability
Q(t) and the size distribution of the avalanches P (S) decay
faster than a power law. The instability of the DP fixed point
was shown in [6]: The renormalization flow takes one from
any point in AB (outside the DP point) to either A or B.

Instead of the case in which there are different probabilities
for the first infections, we focus in this paper on the case in
which different probabilities occur for successive attempts,
namely irrespective if the activation of the site actually
occurred. The state is defined by the number of trials of
activation, not the number of infections. The reason to study
this variant is that it may be useful to understand the avalanche
size distribution in some models of seismic phenomena (the
connection of DP with this problem is discussed elsewhere).
We refer to this variant as the attempt model (AM), to
distinguish it from the infection model previously described.
The AM is a sort of milder modification of the original DP
problem, compared to the IM. We expect the phase diagram
of the AM to be qualitatively similar to that of the IM.

In particular, the DP fixed point is clearly located at the
same position, while the GEP point is slightly different. As we
stated before, for the IM the GEP point corresponds to two-
dimensional bond isotropic percolation (p1 = 0.5, psubs = 0).
Instead, for the AM it corresponds to two-dimensional site
isotropic percolation (p1 � 0.592746, psubs = 0). Indeed, we
observe that for the AM, when psubs = 0, a site can be activated
only at the very first attempt, with probability p1 (no matter
if we consider site or bond DP); thus the sites that are
activated once with this rule are exactly the sites activated
in d-dimensional site isotropic percolation.

The main difference between AM and IM is that the AM
has a nonsingular limiting behavior as p1 → 0, leading in
particular to a finite mean event size 〈S〉 in this limit, whereas
for the IM 〈S〉 goes to 0 as p1 → 0.

IV. RECOVERING CRITICALITY WITH
COMPENSATION: MODEL AND RESULTS

The main point addressed in the present paper is to show
that for the AM the lack of criticality generated by a value of the
first attempt p1 smaller (larger) than pc can be “compensated”
by a larger (smaller) than pc second attempt probability
p2. We present strong numerical evidence showing how this
compensation occurs, restoring critical behavior in the system.

In addition, a remarkable result is that at compensation,
several critical exponents of the problem, in particular the bulk
exponents θ , z, and ν‖, take their normal DP values, while the
spreading exponents (δ,η,τ ) depend on the precise values of
p1 and p2.

We do not discuss the possibility of compensation in the IM
since we cannot be conclusive at present. Although it seems
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that compensation can be obtained, numerical evidence is not
enough for a discussion on the variation or not of the obtained
critical exponents. We prefer to concentrate on the attempt
model, where we are much more confident with the numerical
results.

We consider the case in which the first two attempts p1 and
p2 differ from the subsequent ones, which from now on we
consider to be equal to the critical DP value: pi>2 ≡ psubs =
pc = 0.287338.

A heuristic argument suggesting that such a compensation
can result in criticality is the following. As a perturbation, the
relevant character of a change in p1 was demonstrated in [6]
for the IM. The analysis presented there indicates that a change
in p2 generates qualitatively the same kind of perturbation (to
leading order) as a different p1. Therefore, it is not surprising
that there are particular combinations of p1 and p2 at which the
leading terms of both perturbations cancel each other. These
particular combinations are the compensating pairs of values
(p1,p2). However, the fact that we do not recover the pure DP
exponents indicates that higher order terms do not vanish but
result in a marginal perturbation.

We present first the numerical evidence of the compensation
effect. In all simulations, we started from a single active site
(seed) a time t = 0 that was in a state of being attempted twice,
and we let the clusters grow until their natural death, or time
t = 105 or 106. The lattice is large enough that the boundaries
are never reached by the cluster. To be very precise about our
choices, a site that has been successfully infected at the first
attempt is still in a state of being attempted just once.

We investigated two pairs of compensating points (p1,p2)
and compared with usual DP (in which p1 = p2 = psubs =
pc). For the first one, we set p2 = 0 and varied p1 in order
to find the critical point. In Fig. 3, we show a few results
for different values of p1. A careful study around the point
p1 = 0.4888 shows that we recover the critical character of
the surviving probability at (p1 = 0.4888 ± 0.0005,p2 = 0).
The critical exponent δ measured at the compensation point
(δ = 0.25 ± 0.01) is different from that at DP.
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FIG. 3. (Color online) Q(t) for different choices of (p1,p2).
Circles represent the pure DP at p1 = p2 = psubs = pc. Averages
are performed over 106 samples. Triangles represent the AM with
p2 = 0,psubs = pc. From top to bottom, we used p1 = 0.494, 0.4888,
and 0.485. For p1 = 0.4888, Q(t) displays a clear power law with
δ = 0.25 ± 0.01. Averages were performed over about 105 samples.
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FIG. 4. (Color online) Q(t) for different choices of (p1,p2).
Circles represent the pure DP at p1 = p2 = psubs = pc. Squares
represent the AM with p1 = 0.01, psubs = pc. From top to bottom,
we used p2 = 0.62, 0.60, and 0.58. For p1 = 0.600, Q(t) displays a
clear power law with δ = 0.53 ± 0.01. Averages are performed over
about 108 samples.

The second compensation point is searched by setting p1 =
0.01 and varying p2. In Fig. 4, we show the critical character
of the point (p1 = 0.01,p2 = 0.6000 ± 0.0005). As for the
previous point, this level of precision on the location of the
critical point was obtained from a careful numerical study.
Similarly we find a new value for δ: 0.53 ± 0.01.

Let us present the critical behavior of the quantities related
to the bulk exponents, θ , z, and ν‖. L(t) corresponds to the
mean cluster width averaged over runs that survive until time
t . In Fig. 5 we compare our data at two compensation points
and at the DP point: We notice that the z exponent does not
change, unlike the coefficient before the power law. In Fig. 6,
ρ(t) corresponds to the mean density averaged over runs that
survived until t . The density of a single run is measured as
the ratio of the number of active sites at t over the number of
sites that were activated at least once. Again, one may notice
in Fig. 6 that the exponent θ remains unchanged between the
different critical points.
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FIG. 5. (Color online) L(t) for the AM at criticality. Circles
represent the pure DP at p1 = p2 = psubs = pc. Squares represent the
AM with p1 = 0.01, p2 = 0.600, and psubs = pc. Triangles represent
the AM with p1 = 0.4888, p2 = 0, and psubs = pc. The dashed line
corresponds to a slope 1/z = 0.566, using the exponent z measured
in pure DP (13). Averages are performed over 105–108 samples.
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FIG. 6. (Color online) ρ(t) for the AM at criticality. Circles
represent the pure DP. Squares represent the AM with p1 = 0.01,
p2 = 0.600, and psubs = pc. Triangles represent the AM with
p1 = 0.4888, p2 = 0, and psubs = pc. The dashed line corresponds
to the exponent measured in pure DP (13). Averages are performed
over 105–108 samples.

We want to check if ν‖ changes with p1 and p2. To do
this we set (p1 = 0.01,p2 = 0.600) and use different values
of psubs < pc, thus varying �, and observe the deviation from
power-law behavior in Fig. 7(a). We consider the scaling law
in Eq. (1); using the value of δ = 0.53 extracted from Fig. 4
and the DP value given in Eq. (13), we obtain a perfect collapse
for the survival probability. This shows that ν‖ does not change
between compensation and DP.

The scenario is different for the spreading exponents δ,
η, and τ . We already saw that δ changes at compensation.
In addition, in Fig. 8, the number of active sites averaged
over all runs, N (t), is seen to depend on the compensation
pair (p1,p2). For the compensated point (p1 = 0.4888,p2 = 0)
we measure η = 0.44 ± 0.01 and for (p1 = 0.01,p2 = 0.600)
we measure η = 0.15 ± 0.01. At compensation, we expect
the hyperscaling relation (8) to hold. Because z and θ are
found to be constant, the only way to preserve this relation
is to have δ + η = d/z − θ = const. This constant is 0.680 ±
0.002, if we refer to [7]. For the point (p1 = 0.4888,p2 =
0,psubs = pc), we find that δ + η = 0.69 ± 0.02. For the other
compensation point (p1 = 0.01,p2 = 0.600,psubs = pc), we
find δ + η = 0.68 ± 0.02. These results are consistent with
the expected value, for both compensation points.

In Fig. 9, we present the probability density function
P (S). The scaling relation (10) holds for the compensation
process. In particular for the first compensation point (p1 =
0.4888,p2 = 0), using δ = 0.25 ± 0.01, Eq. (10), and δ + η =
0.69 ± 0.02, we expect τ = 1.148 ± 0.006. We measure τ =
1.151 ± 0.005. For the other compensation point we expect
τ = 1.315 ± 0.006 and measure τ = 1.318 ± 0.005. These
results are all consistent with the expected values, within
our numerical precision. We see that the relations derived in
the first section are still valid, except for the time-reversal
symmetry which is violated, since δ = θ .

V. DISCUSSION AND RELATED MODELS

A generic description of the behavior of the model can be
presented in the (p1,p2) parameter plane (Fig. 10). In this plane
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FIG. 7. (Color online) (a) Q(t) for the AM for p1 = 0.01, p2 =
0.600, and different psubs. From top to bottom, psubs = 0.287338,
0.28733, 0.28732, 0.2873, 0.2872, and 0.287. Averages are per-
formed over 8 × 106 samples. (b) We collapse these data, plotting
Q(t)t δ against t/�−ν‖ . We used the δ = 0.53 measured in Fig. 4, and
the DP value given in Eq. (13) for ν‖.

there is a line along which the behavior of the system is critical.
This line passes through the DP point (p1 = pc,p2 = pc). The
values of the bulk exponents z, θ , and ν‖ are constant all
along the line. The three spreading exponents δ, η, and τ

change continuously when we move along the line but always
respect relations (8) and (10), so there is only one independent
exponent that changes. The value of δ passes from lower-
than-DP values when p1 > pc > p2 to larger-than-DP values
when p1 < pc < p2. Out of this line, there is in general a
stretched exponential contribution to the distribution of the
relevant quantities of the problem.

Although we do not have an analytical proof of our main
claim, i.e., the existence of a critical line in the (p1,p2) plane,
we can simply demonstrate that there is a singular line in some
respect. Along the diagonal of the (p1,p2) plane, the DP point
separates a long term survival probability Qst of zero (towards
the origin, p1 = p2 = 0) and a finite value of Qst (towards
larger values of p1 and p2). The values of Qst in other parts of
the (p1,p2) plane must smoothly match this known behavior.
In particular, we have a singular line separating a region with
Qst = 0, towards the origin and along this line, from another
region with Qst = 0, to the right and above this line. This
proves that there is a singular line with respect to Qst in the
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FIG. 8. (Color online) N (t) for the AM at criticality. Triangles
represent the AM with p1 = 0.4888, p2 = 0, and psubs = pc. There
we measure η = 0.44 ± 0.01 (dashed line). Circles represent the pure
DP at p1 = p2 = psubs = pc. The dashed line corresponds to the
exponent measured in pure DP (13). Squares represent the AM with
p1 = 0.01, p2 = 0.600, and psubs = pc. We measure η = 0.15 ± 0.01
(dashed line). Averages are performed over 105–108 samples.

(p1,p2) plane. Our expectation is that this singular line is also
a critical line in which quantities are power-law distributed.

We can understand the behavior of the bulk exponents if
we think that these exponents can be measured starting from
a fully active lattice. In this case the evolution of the system
coincides with that of pure DP after a few time steps. However,
bulk exponents can also be measured on the surviving runs
started from a single active site. In this case space-time is
divided into two regions: the active one, and the outer, inactive
one. In Fig. 11 we show a snapshot of an AM growing cluster at
a given t . We see that sites that make the difference with usual
DP are mostly located at the boundary of the active region. We
consider a large box of size �⊥ � ξ⊥ in space and �‖ � ξ‖ in
time, sufficiently far away from the boundary with the inactive
region. Its statistical properties will be completely independent
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FIG. 9. (Color online) P (S) for the AM at criticality. Circles
represent the pure DP at p1 = p2 = psubs = pc. We check that
τ = 1.268 ± 0.005. Squares represent the AM with p1 = 0.01, p2 =
0.600, and psubs = pc. We measure τ = 1.318 ± 0.005. Triangles
represent the AM with p1 = 0.4888, p2 = 0, and psubs = pc. There
we measure τ = 1.151 ± 0.005. Averages are performed over 105–
108 samples.

FIG. 10. Phase diagram of the system in the (p1,p2) parameter
space with psubs = pc = 0.287338. The dashed line (schematic) is
a critical line on which quantities in the system are power-law
distributed. Above the line there is annular growth, and below there
is subcritical growth. The bulk exponents θ,z,ν‖ are equal to DP
values all along this line, whereas the spreading exponents δ,η,τ vary
continuously along the line (representative values of τ are indicated).
The crosses correspond to those points along the critical line that
were numerically determined.

of its precise location and are indistinguishable from those
of a box with the same size, with the fully active initial
condition. Since the role of the boundaries is asymptotically
small, this shows that the bulk exponents θ,ν⊥,ν‖ and thus z

are unchanged by the compensation process also if we use the
single seed initial condition. However, the spreading exponents
δ,η,τ are naturally defined only in the seed initial condition
and involve averages over all runs. These exponents depend
continuously on p1 and p2.
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FIG. 11. (Color online) A snapshot of a growing cluster in the
AM at compensation (p1 = 0.01, p2 = 0.600). Red (gray) and black
points at the border are those sites that have been attempted once or
twice, respectively. The whole interior is formed by sites that have
been attempted more than twice.
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A similar scenario happens in one-dimensional models
which display critical behavior, despite their breaking of the
time-reversal symmetry. In these models [7,9,13–19] each site
is active or inactive, as in DP, but is equipped with an additional
auxiliary field φ which allows for a large degeneracy of the
absorbing state. We discuss DP with auxiliary fields using
the example of the threshold transfer process (TTP) [9,16].
In the one-dimensional TTP, a site may be vacant, singly or
doubly occupied, corresponding respectively to states σi = 0,
1, or 2. The auxiliary field φ denotes the density of singly
occupied sites. A doubly occupied site corresponds to the
active state. Initially, only the site at the origin is doubly
occupied, while the state σi of each other site is 1 with
probability φinit, and 0 otherwise. At each time step, a site
i is selected at random. If σi(t) < 2, then σi(t + 1) = 1 with
probability r and 0 with probability 1 − r , irrespective of the
precise initial value. If σi(t) = 2, the site releases one particle
to all neighbors with σ (t) < 2. Contrary to the DP case, there
are infinitely many absorbing states since any configuration
with no doubly occupied site is absorbing.

In TTP, r plays the role of control parameter, and in
d = 1, rc = 0.6894 [16]. At criticality the bulk exponents
and the hyperscaling relation behave as in DP, independently
of the initial condition. However, the spreading exponents
continuously depend on the initial condition φinit. Setting the
initial density of singly occupied sites to its stationary value
φst = rc, one recovers the full set of DP critical exponents [9].
As far as we know, a theoretical explanation for the continuous
change in the spreading exponents δ,η is still an open question.

It is worth mentioning a second class of models with similar
behavior, which corresponds to DP with special absorbing
boundary conditions. In particular DP with absorbing walls
at positions x(t) = ±Ct1/z shows spreading exponents that
continuously depend on C [20,21]. Analogous results with
a moving active wall are presented in [22]. Moreover, one-
dimensional models with soft or hard wall conditions can
be studied analytically in the case of compact DP. They can
be mapped onto compact first attempt (for soft walls) and
compact first infection (for hard walls). Dickman showed [23]
that in this case the critical behavior is maintained when p1 is
reduced; i.e., in this case we do not have a stretched exponential
contribution.

In conclusion, memory effects in immunization problems,
or the presence of auxiliary fields in TTP-like models,
introduce high degeneracy of the absorbing state and thus break
the time-reversal symmetry. In these systems, at criticality,
the bulk DP exponents are recovered. However, if the initial
condition is sufficiently far from its stationary value (which is
φst for TTP-like models, and the fully twice-attempted lattice
for the compensation model, or the fully once-infected lattice
in the modified first infection model), the spreading exponents
depend continuously on the initial condition. Nonstationarity
seems to play a key role in the observed anomaly of the
spreading exponents.

VI. CONCLUSIONS

We have shown that DP universal behavior is strongly
affected by changes in the first probabilities to activate sites.
This modification corresponds to a special case of “long

memory,” where each site remembers exactly how many times
it has been activated (or attempted) before. Our main result is
that, although the change of the very first attempt probability
takes the model out of criticality, by changing the second
attempt probability in the opposite direction, we can restore
critical behavior, in a process we call compensation.

We have focused in this paper on the case of two spatial
dimensions, but qualitatively the same behavior is obtained for
one dimension. However, in one dimension the deviations from
criticality when p1 is changed are much weaker than in two
dimensions, making the determination of the compensation
condition much more difficult numerically.

It is uncertain for us at present if the phenomenology of the
compensation in the attempt model applies also to the infection
model. It seems that the compensation effect can occur, but we
do not have enough numerical evidence to ensure that the
systematics of critical exponents is the same as that discussed
in this paper for the attempt model.

The quantitative change we have obtained of the critical
exponent τ is rather weak. For instance, we have obtained
changes of the value of τ of approximately ±0.1 around the
DP value τ = 1.268. These variations are typically within the
error bars of experimentally determined exponents in concrete
situations. Although changes in other exponents like η and δ

were found to be larger, in some practical situations where
avalanches are observed, only the size distribution exponent τ

can be directly measured. So it seems dubious that the effect
we have discussed can be observed in a concrete realization.

In this respect we want to mention that we have found other
realizations of the DP process where the effect is quantitatively
much more important. For instance, the process in which we
try to activate neighbors with probability p, having in addition
a self-activation probability p0 of the same site, belongs also
to the DP universality class. In this case we have observed that
a lower probability to activate neighbors for the first time can
be compensated by larger self-activation probabilities during
the next steps, and in this case the quantitative effect is much
more important. In particular we have obtained avalanche-
size distributions with τ as large as �1.7. This variant of the
DP problem and its relation to earthquake dynamics will be
addressed in another presentation.

Aside from any application to a concrete situation, we
want to stress the fact that the present model provides a link
between two classes of models with very different behavior:
the models with auxiliary field and the infection model.
Although we obtained the same results as in models with
an auxiliary field (criticality with scaling relations preserved,
time-reversal symmetry broken), our microscopic description
fits in the framework of modified first infection models, for
which analytical computations have been successful [6]. This
may be an interesting approach to the open problem of initial-
condition-dependent exponents in absorbing phase transitions.
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