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Seismic cycles, size of the largest events, and the avalanche size distribution in a model of seismicity
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We address several questions on the behavior of a numerical model recently introduced to study seismic
phenomena, which includes relaxation in the plates as a key ingredient. First, we make an analysis of the scaling
of the largest events with system size and show that, when parameters are appropriately interpreted, the typical
size of the largest events scale as the system size, without the necessity to tune any parameter. Second, we show
that the temporal activity in the model is inherently nonstationary and obtain from here justification and support
for the concept of a “seismic cycle” in the temporal evolution of seismic activity. Finally, we ask for the reasons
that make the model display a realistic value of the decaying exponent b in the Gutenberg-Richter law for the
avalanche size distribution. We explain why relaxation induces a systematic increase in b from its value b � 0.4
observed in the absence of relaxation. However, we have not been able to justify the actual robustness of the
model in displaying a consistent b value around the experimentally observed value b � 1.
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I. INTRODUCTION

Modeling of seismic phenomena as a statistical mechanic
process has a long history that goes back almost to the very
beginning of plate tectonics. There are a lot of variables
affecting seismic activity, and many of them cannot be taken
into account in a simplified theoretical description. However,
if a model gives a sequence of events strongly resembling real
ones (in its temporal, spatial, and magnitude distribution),
it is tempting to consider that the model captures those key
ingredients playing an important role in the production of
seismic events. This is what happens with the model proposed
by Burridge and Knopoff [1,2]. Constructed in the form of a
large collection of repetitive and simple elements (rigid blocks
interacting through elastic springs and sliding on a rigid
surface), it displays nontrivial features, most remarkably the
existence of avalanches (earthquakes) with a broad distribution
of sizes. Based on the work of Burridge and Knopoff, in
1991 Olami, Feder, and Christensen (OFC) [3] introduced a
model that has become one of the paradigms of simulation of
seismic activity. The model is presented in the form of cellular
automata, and the dynamics is defined as a list of rules. A broad
distribution of event sizes is obtained with the OFC model.
Despite the attention it received, the OFC model displays a
series of unrealistic features when trying to model seismic
phenomena. For instance, the prominent spatial and temporal
correlation of events that is observed in the field, mostly the
existence of aftershocks, is not reproduced [4]. Also, obtaining
a realistic value of the b exponent in the Gutenberg-Richter
(GR) law requires the tuning of an internal parameter of the
model.

In the last years, we have been working on introducing
modifications to this kind of model in such a way that more
realistic sequences of events are obtained. The two crucial
modifications we have proposed are [5,6] (see a more detailed
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account in the next section) the consideration of variable
thresholds (instead of the constant value considered by OFC)
and the incorporation of a mechanism of internal (also called
structural) relaxation, quantified by a parameter R. With these
two ingredients we have obtained a model in which (i) the
spatial and temporal correlation of events is comparable to that
of real ones, in particular, aftershock sequences obeying the
Omori law [7] are obtained; (ii) the avalanche size distribution
has a GR form, with an exponent b very close to actually
observed values (around 1); and (iii) the friction properties
derived from the model reproduce nontrivial results such as
velocity weakening and the stress peak in experiments of
slip-stop-slip [8]. It is worth mentioning that as long as R is
larger than some threshold value, all these results are obtained
irrespective of the precise value of R.

The number of realistic features that have been obtained
with this model encouraged us to go further and investigate
in more depth its properties to better understand how they
originate in the existence of the relaxation process. This is
the aim of the present work. To make the presentation self-
contained, in the next section the model is explained with all
necessary detail, in the case without relaxation, R = 0, and
in the presence of relaxation, R �= 0. Also, a limiting case of
infinite relaxation R → ∞ is introduced, which is interesting
to consider throughout the paper.

In Sec. III we review some results obtained in the case
R = 0. It is shown that this case is equivalent to the problem
of depinning of an elastic interface in a random medium. We
also give a comparison of the results obtained at “constant
driving velocity” with those at “constant force,” showing that
there is a clear mapping between the two.

In Sec. IV we show that when R �= 0 we cannot make
an equivalence between simulations at constant velocity and
constant force. In fact, in constant velocity simulations at
R �= 0, there are systematic fluctuations of the stress on the
system that make the problem nonstationary, and this generates
a scenario in which a description in terms of a “seismic cycle”
naturally emerges.
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In Sec. V we discuss the scaling of the linear size of
the largest events Lmax with the control parameter α. We
show that with an appropriate interpretation of α as inversely
proportional to the thickness of the sliding slabs, there are
events that are comparable in size with the size of the system.
This is a consequence of the existence of relaxation and does
not occur in the R = 0 case.

Section VI is devoted to the following issue: the model with
R = 0 gives a consistent (although unrealistic) value for the b

exponent of about b � 0.4. The inclusion of relaxation drives
this exponent to values closer to the realistic value b � 1,
without tuning of any parameters. What is the reason for this
behavior? As we see, we are only in the position to provide a
partial answer to this question.

Finally, in Sec. VII, we make a brief summary and present
our conclusions.

II. MODELS

A. OFC model

Our starting point is the cellular automata model proposed
by OFC [3] to describe seismicity. The OFC model considers
a set of real-valued variables ui , where i indicates the position
in a two-dimensional lattice. ui is interpreted as the force
that a rigid substrate exerts on a solid block at position i,
and it represents the local stress between the sliding plates
(see Fig. 1). The system is driven by uniformly increasing
the values of ui with time at a rate V , simulating the tectonic
loading of the plates. Every time one of the variables ui reaches

FIG. 1. Sketch of the sliding situation that we study. (a) Two solid
blocks slide against each other due to a constant driving between the
top and the bottom planes. Their relative velocity is V . Dimensions
of the blocks are Lx , Ly in the sliding plane and Lz perpendicular to
it. (b) The solids in (a) are replaced by a rigid surface and an array of
small blocks joined by springs of stiffness k0. Driving acts on each
block through a spring of stiffness k1. Note that the value of k1 is
inversely proportional to Lz in (a). (c) Values of friction forces ui

and maximum forces uth
i at each site are shown for the OFC* model.

Friction forces increase uniformly (as indicated by the arrows) as
driving proceeds. (d) The prescription as one ui reaches the local
threshold: ui decreases by 1 unit, and the neighbors increase their u

values by a quantity α.

a maximum value (ordinarily set to a uniform, dimensionless
value of 1), the local stress ui is “discharged” by setting it
to 0. This local stress drop �u produces a stress increase
onto neighbor blocks according to uj → uj + α�u, where j

indicates a neighbor site to i. The value of α can vary between
0 and αc ≡ 1/Z, Z being the number of neighbors in the
lattice. We refer only to the case of a square lattice, so Z = 4,
αc = 1/4. The case α = αc is called the conservative case,
whereas α < αc are nonconservative cases. In the mechanical
interpretation of the model, the value of α is related to the
stiffness of the springs that interconnect the blocks and springs
that push from the blocks at velocity V [see Fig. 1(b)]. The
actual relation is α = k0/(k1 + 4k0). A discharge event can
produce the overpass of the maximum local stress on one or
more than one neighbor, and in this way a large cascade can
be generated. This cascade is called an event and is identified
with an individual earthquake (note that the complete cascade
is assumed to occur at a constant time, namely, earthquakes
are instantaneous). The size S of an event is defined as the sum
of all discharges that compose the event, and the magnitude
is defined as M = 2

3 log10 S, so as to match (up to an additive
constant) the usual definition used in geophysics [9].

The OFC model is typically simulated using open boundary
conditions; otherwise, the spatial homogeneity generated
by the use of periodic conditions induces a strong global
synchronization in the model. The OFC model displays an
exponential decay of number of events as a function of
magnitude (or a power-law decay if expressed in terms of S)
compatible with a GR law of the form N (M) ∼ 10−bN . The
b value depends on the value of α. Realistic values of b are
obtained for α � 0.2.

B. OFC* model

The maximum values that the variables ui can withstand in
the OFC model are set to a constant, uniform value of 1. Having
in mind the realistic situation of a heterogeneous fault, with the
constitutive materials having different properties at different
positions, it becomes natural to consider a case in which
the threshold values are not constant but have some spatial
variation. This is the first modification we introduce into the
OFC model. Concretely, the values of the local thresholds are
called uth

i , and we draw them from some random distribution.
Each time ui overpasses the local threshold uth

i , ui is updated
to a new value. We use the update rule ui → ui − 1; i.e, we
implement the prescription of a unitary local stress drop. Upon
this drop in the local stress, the values of u on neighbor sites
are updated as before, namely, uj → uj + α, for j neighbor
to i [see Figs. 1(c) and 1(d)]. Every time ui is updated, a
new value is assigned to the local threshold uth

i , taken from its
original random distribution. This prescription is justified by
the same physical arguments as before, since the sliding pieces
can reasonably be thought of as finding different maximum
strengths as sliding proceeds. We refer to the OFC model with
this modification as the OFC* model.

The results obtained with the OFC* model differ qualita-
tively from those obtained with the OFC model. In particular,
the b exponent becomes α independent, taking a value
of around b � 0.4 (still quite unrealistic for earthquakes).
Interestingly, now the maximum avalanche size is controlled
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by the value of α, diverging for α → αc (assuming an infinite
spatial extent of the system). This may be considered a weak
point, since it seems to indicate that it is not sufficient to have an
infinitely large system to have critical behavior; the condition
α → αc is also needed. However, we see in Sec. V that this
argument is flawed, as the large system size limit also implies
Lz → ∞, and in this limit we naturally obtain that α → αc.

C. OFCR model

The second and crucial modification we made to the OFC
model is the introduction of internal relaxation effects. We do
not repeat here the arguments that justify its introduction, but
let us just mention the following fact that points to the necessity
of these effects: In the OFC, or OFC* models, a sudden stop
of tectonic loading causes all seismic activity to cease at once.
This is unrealistic, as, for instance, the processes that trigger
aftershocks after a main event depend on the rearrangements
that occur in the fault after the main shock and are not directly
related to tectonic loading. In other words, dynamical effects
within the faults should be taken into account in order to have
a realistic description of the seismic process. This is what we
did by introducing the internal relaxation mechanism into the
OFC* model. As this relaxation is controlled by a parameter
R, we call this the OFCR model. The concrete implementation
prescribes that the evolution of the variables ui is given by

dui

dt
= R(∇2u)i + V ; (1)

namely, in addition to the external loading (represented by
the V term), there is a tendency to make the values of ui

progressively more uniform in the system. This relaxation term
produces the appearance of aftershocks and realistic friction
properties in the system. In addition, the exponent of the GR
law is modified, acquiring a value consistent with observations.
[5,6]

For the rest of the paper it is important to consider a couple
of variations of the previous relaxation mechanism. One of
them is to consider relaxation in a “mean-field” manner. By
this we understand that, instead of the sum over the neighbor
sites implied by the Laplacian operator in Eq. (1), we take the
average over the whole system, i.e, noting ū, the mean value
of ui , we have

dui

dt
= −4R(ui − ū) + V (2)

(the factor of 4 is included to make a more direct comparison
between the R parameters in the two equations). Consideration
of relaxation in the mean field is important because it allows
very efficient determination of the next site that becomes
unstable (i.e., the first site for which ui reaches uth

i ), as Eq. (2)
can be solved analytically, whereas the same determination for
Eq. (1) requires a time-consuming integration scheme. Results
using both schemes of relaxation do not differ substantially.
A comparison between the two schemes was presented in
Ref. [5].

The second special case considered is the limit of “infinite
relaxation” defined by the condition R/V → ∞. In this limit,
there is a clear-cut separation between events that are triggered
by the tectonic loading V term in Eq. (1) or (2) and those that
are triggered by the relaxation term proportional to R. In fact,

in this case events separate naturally into “clusters.” In between
successive clusters, the spatial distribution of ui is uniform, and
the V term acts, moving up all ui uniformly until the lowest uth

is reached. At this point, an event is triggered that leaves the
u’s in a nonuniform state, over which the relaxation term acts.
Under this action, aftershocks are triggered until the spatial
distribution of u’s becomes uniform again, and the process is
repeated.

III. BACKGROUND MATERIAL ON THE R = 0 CASE

We present in this section a few reference results for the
case of no relaxation, but with variable thresholds, namely,
what we have called the OFC* model.

A. Mapping between elastic interfaces in random
media and the OFC* model

Different authors have explored the relation between the
deppining transition of an elastic interface and spring-block,
sandpile, or charge-density wave models [10–12]. Here we
show that the OFC* model can be mapped onto the problem
of a two-dimensional elastic interface close to the depinning
transition.

Let us consider an ensemble of block positions hi iden-
tifying a two-dimensional interface. The energy of a given
interface can be written as the sum of three contributions.

(1) The elastic energy between nearest-neighbors blocks:
E1 = k0

2

∑
〈i,j〉(hi − hj )2, where hi and hj are the positions of

blocks i and j , and k0 is the “surface tension” of the elastic
interface.

(2) The energy of tectonic loading: E2 = ∑
i

k1
2 (hi − V t)2,

where V measures the rate and k1 is the stiffness of the loading.
(3) The random energy associated with the block position

hi , which is responsible for the pinning of the blocks.
Elastic interactions and tectonic loading generate a force
Fi = −∂hi

(E1 + E2) which competes with the pinning force
Fpinn(hi) induced by the random energy. The force Fi acting on
each block increases with time because of the loading. When
Fi overcomes Fpinn(hi), the block i becomes unstable and its
position is increased by 1 (hi → hi + 1). As a consequence, (i)
the force Fi drops to Fi − (4k0 + k1), (ii) a new pinning force
is associated with the new position hi + 1, and (iii) the force
acting on the neighboring blocks increases, Fj → Fj + k0.

The dynamics of this interface in the presence of a
disordered landscape can be easily identified with OFC*
dynamics in the presence of variable thresholds, the stress
ui being Fi/(k1 + 4k0) and the control parameter α being
k0/(k1 + 4k0).

B. Review of the depinning transition

The zero-temperature motion of an elastic interface in
random media has been studied in detail in the last two
decades [13–16]. Two dynamical protocols are possible:
(i) constant velocity, which corresponds to the OFC* model
with a tectonic loading; and (ii) constant force, where the
parabolic tectonic loading E2 is replaced by the action of a
constant and uniform stress σ , and the force acting on block i

writes Fi = (−∂hi
E1) + 4k0σ .
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1. Constant force

For a given (and low) σ the interface is pinned in a
metastable state for which the forces acting on all the blocks
are smaller than the forces induced by the pinning centers.
When σ is increased by an infinitesimal amount δσ , two things
can happen: (i) either the metastable state remains metastable
or (ii) the metastable state becomes unstable and moves to a
new metastable position. The distance between the old pinned
position and the new one can be measured as the volume S

included between the two consecutive metastable states. This
volume represents the size S of the event. A critical threshold
σc exists, above which there are no metastable states, and
the interface evolves indefinitely. The transition between the
pinned phase, σ < σc, and the moving phase, σ > σc, is called
depinning.

Results of simulations at different values of σ < σc show
that the distribution of events follows a power law, with a large
size cutoff, Smax(σ ), and an exponent τ > 1:

N (S) ∝ 1

Sτ
f

(
S

Smax(σ )

)
. (3)

The exponent τ used by the statistical mechanics community
is related to the exponent b typically used by geophysicists
when looking at real earthquakes. The relation between them
is given by τ = 1 + 2b/3. We refer mainly to values of τ

from now on. The function f (S/Smax) has a fast decay when
S � Smax and the characteristic large size Smax(σ ) diverges as
σ reaches a critical threshold σc. The divergence of Smax goes
with the divergence of the linear size of the maximal avalanche
Lmax. Lmax is often seen as the “growing correlation length”
associated with this dynamical phase transition, and close to
σc, Lmax behaves as (σc − σ )−ν , where the positive exponent
ν is defined in analogy with the correlation length exponent of
equilibrium critical phenomena.

Large avalanches occur because the system is “organized”
at large distances; another consequence of this “organization”
is that the interface is a correlated object displaying a
power-law roughness. A positive roughness exponent ζ can
be defined from the growth of the distance between blocks
|hi − hj | ∼ |i − j |ζ . An argument based on a symmetry of the
system (statistical tilt symmetry) [14–16] allows us to relate
the exponent ν to the exponent ζ , yielding

ν = 1

2 − ζ
. (4)

From basic dimensional arguments we can write

Smax ∼ L2+ζ
max ∼ (σc − σ )−ν(2+ζ ) ∼ (σc − σ )−

2+ζ

2−ζ . (5)

An important scaling relation between τ and ζ can be
established if we compute the average size of an event S̄.
On one hand, using the scaling form of Eq. (3), this quantity
can be written in terms of the cutoff size, in the form
S̄ ∝ S2−τ

max , as long as 1 < τ < 2, which is always the case
here. On the other hand, we observe that the displacement
of the center of mass xc.m. of the interface when the stress
in increased by an infinitesimal amount can be written as
xc.m.(σ + δσ ) − xc.m.(σ ) = S̄Nσ (δσ )/(LxLy), where Nσ (δσ )
is the number of events when the stress jumps from σ to
σ + δσ . If this number does not diverge when the threshold

is approached (as confirmed by all simulations), then we
can power expand, and to leading order we have Nσ (δσ ) ∼
c1δσLxLy + · · ·. Thus, it follows that the average size of an
event is proportional to S̄ ∼ δxc.m./δσ ≡ χ , the susceptibility
of the interface. As the critical threshold is approached the
interface moves more and more, the position of the interface
grows as xc.m.(σ ) ∼ L

ζ
max, and thus the susceptibility diverges

as χ ∼ (σc − σ )−νζ−1. We thus obtain

ν(2 + ζ )(2 − τ ) = νζ + 1 =⇒ τ = 2 − ζ + 1
ν

2 + ζ
. (6)

Using the statistical tilt symmetry relation Eq. (4), we obtain

τ = 2 − 2

2 + ζ
. (7)

2. Constant velocity

At a constant velocity, instead of a uniform stress, we
have the parabolic potential E2 centered at V t . The interface
embedded in this potential can be rough only at short length
scales. The crossover between the short-distance regime,
characterized by a rough interface, and the long-distance
regime, with a flat interface, can be determined by dimensional
analysis of the term E1 ∼ L2ζ versus the term E2 ∼ k1L

2ζ+2.
The crossover length can be identified with the correlation
length Lmax ∼ 1/

√
k1. Using the statistical tilt symmetry of

elastic systems it is possible to show that this identification is
actually correct. It is easy to verify that αc − α ∼ k1, so that
αc − α � L−2

max.

C. Results for the OFC* model

The previous arguments are consistent with the results of
our simulations in the OFC* model. In Fig. 2 we show a
sequence of individual events and the corresponding stress as
a function of time for a fixed α and the event size distribution
obtained for different values of α. A value τ � 1.27 is
systematically observed. Also, from the distributions of N (S)

M
(t

)

 1

 2

 3

σ (
t)

t
 0.827

 0.829

 0.831

 0  0.025  0.05  0.075  0.1

α=0.2495

N
(S

)

S

x−1.27

α:

0.24999 0.2499 0.24910−10

10−6

10−2

100 102 104 106

FIG. 2. (Color online) Magnitude-time and stress-time plot for
the OFC* model, and the event size distribution obtained for three
values of α as indicated. These distributions are very well fitted by a
power law with an exponential cutoff.
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FIG. 3. Scaling of (a) Smax and (b) Lmax with (αc − α) for the
OFC* and the OFCR models, shown by filled and open symbols,
respectively.

and the corresponding ones for N (L) (L is the typical linear
size of the avalanches), we obtain the value of the large-scale
cutoff Smax and the maximum linear size Lmax as a function
of α for the OFC* model. Results are presented in Fig. 3. We
found Smax ∼ (αc − α)−γ with γ � 1.37, which is consistent
with the ratio γ = 1 + ζ/2 predicted by the theory of elastic
interfaces of the previous section. We also find from Fig. 3 that
Lmax ∼ (αc − α)−1/2, showing that statistical tilt symmetry
is satisfied by the OFC* model, as the mapping to the elastic
interface problem could have anticipated. As Narayan notes
in the case of magnetic domain wall motion in Ref. [17],
the cutoff diverges with system size; we discuss this topic
in Sec. V.

For a fixed value of α we can follow the value of the average
stress in the system (see Fig. 2), σ ≡ ui . The stress settles
around a mean value, with fluctuations typical of finite-size
effects. According to arguments in the previous section, the
time-averaged σ vs α is expected to have a critical behavior
as α → αc of the form (σc − σ ) � (αc − α)1/(2ν) for some
σc. This is verified in our numerical simulations (Fig. 4), as
1/(2ν) � 0.62.

The existence of a well-defined average value of σ for each
value of α allows us to recover the scaling relation Eq. (7)
between τ and ζ using a slightly different argument. If an event
of size S occurs in the system, it produces a reduction of σ by
an amount proportional to S�α/(LxLy) (�α ≡ αc − α). If it
is assumed (as it is in fact numerically verified) that the time
interval between events does not become singular as �α →
0, then there is a typical stress increment between events of
the order of 1/(LxLy). To obtain a stationary mean value of
σ , these two quantities have to compensate, on a temporal
average; namely, we can write S̄�α ∼ 1, where, by S̄, we
note the average value of the events. Putting this estimation
together with S̄ ∝ S2−τ

max and also using Eq. (5), we reobtain
Eq. (7).

Simulations of the OFC* model at α < αc and a constant
velocity are associated (in the mechanical analogy of the
model) with driving by a finite-stiffness spring at a constant
velocity. The univocal relation between α and σ also allows

FIG. 4. Time-averaged values of σ as a function of the values of
α for the OFC* model. Inset: The power-law dependence close to
αc = 0.25, σc � 0.84236 is emphasized in this logarithmic plot.

an alternative interpretation of the model, which is equivalent
to driving the model at a constant force. Instead of applying
a finite driving at fixed α < αc, we set α = αc, the driving
velocity V = 0, and fix the mean value of σ from outside.
A random site is chosen to initiate the avalanche. After the
avalanche is exhausted, the process is repeated. Note that
σ does not change in this process and remains equal to the
externally imposed value. In this way of doing the simulation,
after a transient period, the avalanche size distribution becomes
stationary in time, and its statistics coincides with that obtained
fixing a noncritical α and having a finite V , as shown in Fig. 5.
The expected behavior of Smax as a function of σ is given in
Eq. (5). This behavior is consistent with our data for which
ν(2 + ζ ) � 2.2.

IV. OFCR MODEL AND THE SEISMIC CYCLE

In this section we begin to analyze results obtained in
the presence of relaxation. We work in the limit of infinite

M
(t

)

t

 1

 2

 3

 4

 0  0.02  0.04

σ=0.83549

N
(S

)

S

x−1.27

σ:

0.841 0.835 0.819
10−8

10−4

100

100 102 104 106

FIG. 5. (Color online) Magnitude-time plot for the OFC* model,
taking V = 0 and α = 1/4 and using the stress σ as a control
parameter, and event size distribution obtained for three values of
σ as indicated. Note the similarity to Fig. 2.
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FIG. 6. (Color online) (a) Magnitude-time and stress-time plot for
the OFCR model. The probability of large events is strongly enhanced
every time some threshold value of the stress (roughly indicated by
the dotted horizontal line) is passed. (b) The corresponding event size
distribution for the whole sequence at different values of α.

relaxation and use the mean-field implementation of relax-
ation. A typical sequence of events for this case is shown
in Fig. 6. We also indicate in that figure the evolution of σ

over the simulation. In the infinite relaxation case we refer
to an “internal” and an “external” temporal scale, which are
totally decoupled. The external time scale is the scale of
tectonic loading, and the internal time scale is the scale of
relaxation in Eq. (1). In Fig. 6 we plot events as a function
of the external time scale. This means that at a fixed value
of the horizontal coordinate, we find a whole “cluster” of
events. The events within some of these clusters, depicted as
a function of the internal time scale, are shown in Fig. 7(a).
One may consider that a cluster consists of a main shock and
all the aftershocks it produces. The clear-cut identification
of aftershocks as being linked to some main event can be
unambiguously made only in the present case of full separation

FIG. 7. (Color online) (a) Magnitude-internal time (tint) for some
of the main clusters observed in Fig. 6(a). tint is measured in units of
the relaxation parameter; i.e, a whole cluster here occurs at a single
horizontal coordinate in Fig. 6(a). (b) The event size distribution of
the individual clusters.

of time scales. Note, however, that within a cluster, the largest
shock is not necessarily (or even usually) the first one. In
any case, we can consider a cluster as the full sequence of
events that is committed to appear once the first event has
been triggered, in the case in which tectonic loading is stopped
after the initial event. We emphasize that in the R → ∞ case,
not only is the value of σ shown in Fig. 6 the average value
of u through the system, but also it is the actual value of
every ui .

From the results in Fig. 6 we see a systematic pattern
of a steady increase in σ , followed by abrupt drops. We
interpret this cycle of a smooth stress increase and sudden
stress decrease as the manifestation in our model of a “seismic
cycle” [9]. The concept of the seismic cycle suggests that stress
on a fault builds up smoothly for a long period of time until
it is suddenly released in a large earthquake, and the process
starts over. This leads to the idea that large earthquakes in
a given region occur in a quasiperiodic manner. This idea,
however, has been difficult to verify: on one hand, because of
the large time intervals between large earthquakes and, on the
other hand, because deviations from periodicity could be so
large as to transform a quasiperiodic sequence into something
rather unpredictable. We note, however, that there have been
a number of attempts (sometimes successful [18]) to infer the
likelihood of the next large earthquake based on the record of
previous large earthquakes in a particular region.

In the simulations, an alternation of large events and periods
of rather low, slowly increasing activity is observed (see Fig. 6).
However, this sequence is not periodic; instead, it looks like
a more or less random process. In our case, we have the
advantage of having access to all variables in the system,
particularly to the instantaneous value of the stress, and thus we
see that a large event occurs with a high probability once some
typical value of the stress (roughly indicated by the dotted
horizontal line in Fig. 6) has been passed. These observations
point to the fact that there is some degree of predictability
of the appearance of large earthquakes in the present model.
However, we do not discuss this issue here, as we plan to
elaborate in a forthcoming publication.

The fluctuations of stress during the seismic cycle for the
OFCR model are more fundamental than those observed for
the OFC* model in the previous section. Insight into this
issue is provided by taking the data in Fig. 6 and plotting
the total seismic moment Sc of each cluster (namely, the sum
of the seismic moments of all events within a cluster) which is
proportional to the stress drops observed in the curve of σ (t) as
a function of the value of stress at which the cluster is triggered.
The result is shown in Fig. 8. We see that when σ is small,
the clusters are typically small also and the stress drop caused
by these relatively small clusters is not able to compensate
the stress increase caused by tectonic loading. As σ becomes
larger than a certain value (indicated by the dotted vertical line
in Fig. 8), there is a finite probability that a very large cluster is
triggered. The size of these large clusters diverges as α → αc.
These large events generate the abrupt decrease in stress shown
in Fig. 6, reinitiating the seismic cycle. This tells us that the
fluctuations of stress in the OFCR model are a necessary part of
the dynamics of the model, which is eminently nonstationary,
and the existence of a seismic cycle is the manifestation of
that.
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FIG. 8. The seismic moment of individual clusters Sc vs the
initial value of stress at which they were triggered. Crossover stress
(corresponding to the dotted horizontal line in Fig. 6) is indicated by
the dotted vertical line. When stress becomes larger than this value
there is some probability of triggering a very large cluster (these large
clusters have been highlighted by using a larger symbol size).

V. MACROSCOPIC LIMIT OF THE OFCR MODEL

There is a clear-cut difference in the macroscopic limit of
the OFC* and OFCR models, which shows that the OFCR
model is a candidate to be a realistic model for describing
seismicity, whereas the OFC* model is not. This is related to
the scaling of the largest events observed for the two models
in the macroscopic limit, which we discuss now.

This analysis starts from the key observation that the value
of αc − α should be considered as being proportional to L−1

z ,
where Lz indicates the thickness of the slabs that slide against
each other. This is clear upon comparing Figs. 1(a) and
1(b): the value of k1 [and thus of αc − α = k1/4(4k1 + k0)]
is proportional to the restoring force the system exerts on a
given displacement of the top plane of the slab. For a fixed
displacement, the restoring force is inversely proportional to
Lz, namely, αc − α ∼ L−1

z .
In the macroscopic limit we should consider that L (L ≡

Lx = Ly ; the two lengths in the x-y plane are taken equal
for simplicity) and Lz go to macroscopic values, although not
necessarily with the same tendency. We consider the case in
which L � Lz; i.e., we maintain a sort of slab geometry. In this
situation we want to calculate the maximum spatial extent Lmax

of the earthquakes in the x-y plane for the OFC* and OFCR
models. In the first case the statistical tilt symmetry [verified in
the numerical simulations; see Fig. 3(b)] implies that Lmax ∼
1/(αc − α)1/2, from which Lmax ∼ L

1/2
z . This means that as Lz

goes to infinity, the maximum spatial extent of the earthquakes
becomes comparatively small. In other words, at large scales
the sliding is smooth in the OFC* model, and earthquakes do
not survive the macroscopic limit.

The situation is qualitatively different for the OFCR model.
Here, numerical simulations indicate that the maximum spatial
extent of the events has a different dependence on (αc − α).
The results presented in Fig. 3(b) indicate a dependence
Lmax ∼ 1/(αc − α), which, in terms of Lz, can be written as

Lmax ∼ Lz. This is a remarkable result. It indicates that no
matter how large Lz is, the maximum size of earthquakes is
a sizable fraction of it. We can thus say that, in this case, in
the macroscopic limit earthquakes persist, and their maximum
size scales as the system size itself. We think that this is a key
point in the claim that this model can describe earthquakes in
the macroscopic limit.

The finding of sizable earthquakes with size Lz can be
correlated with other properties of the model. It is accepted in
the geophysics community that systems in which earthquakes
occur must have an effective friction law of the velocity
weakening type [8,9]; namely, the average friction force must
be a decreasing function of the velocity, at least in a velocity
range relevant for the process. Actually, we have shown
elsewhere [5] that the OFCR model does display velocity
weakening, and in the origin of this behavior is again the
existence of relaxation. It is immediate to show that such
velocity weakening systems cannot sustain uniform sliding,
and a stick-slip motion must necessarily occur for a sufficiently
soft driving (i.e., for α → αc). Now if we assume a generic
dependence of Lmax on Lz of the form Lmax ∼ Lω

z , the value
ω < 1 would correspond to an asymptotically smooth sliding,
and since this cannot occur, we should have ω � 1. On the
other hand, it is very unlikely that Lmax scales as a power of Lz

larger than 1, because in a geometry of a slab of thickness Lz, a
static perturbation at some point does not have an effect beyond
some distance of the order of Lz. This takes us to the heuristic
finding that the exponent effectively found in the numerical
simulations, namely, ω = 1, is the most natural result to be
expected.

A further question that we asked ourselves concerning
this point is the following. The OFC* model displays a
behavior with ω = 1/2, whereas our results for the OFCR
model indicate ω = 1. How is the transition between these two
exponents as the precise value of R is varied between 0 (OFC*)
and a large value (OFCR)? Although this is an attractive
question to explore, some investigation of the possibilities to
provide an answer based on numerical simulations convinced
us that we are not able to do so at present. We want to stress,
however, our expectation that an answer to this question could
give insight into the puzzling problem of creeping faults [19],
namely, a piece of a fault in which there is an almost-complete
absence of earthquakes and the sliding is smooth, while
earthquakes occur in adjacent segments of the same fault. In
our view this could be related to an abrupt transition between
ω = 1 for a “normal” segment to a value of ω < 1 in a creeping
fault, and this abrupt transition could be driven by a smooth
change in the amount of relaxation in the system. Clearly this
issue is an open line for future research.

VI. WHY b � 1?

One of the results that surprised us most concerning the
OFCR model is the fact that it displays a realistic exponent
b � 1 (τ � 1.67), whereas the OFC* model has b � 0.4 (τ �
1.27). This is surprising because the inclusion of relaxation
was aimed at generating aftershocks (which it does), and not at
obtaining a “correct” GR law. So we believe that it is necessary
to provide an explanation for this behavior.
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In Sec. III C we recovered Eq. (7) linking the avalanche
exponent τ with the roughness exponent ζ of the events in the
OFC* model. The steps followed there can be done also in
the case of the OFCR model. The only important difference
is that, as explained in the previous section, the scaling of
Lmax ∼ (αc − α)−ω has a different exponent for the OFCR case
(ω = 1) compared to the OFC* case (ω = 1/2). The result that
is obtained for a generic value of ω is

τ = 2 − 1/ω

2 + ζ
. (8)

This modified scaling relation suggests already a larger τ

exponent in the OFCR case. In fact, assuming only a non-
negative value for ζ , we get τ > 1.5. To determine the value
of ζ we need to characterize the internal structure of an
avalanche. Four quantities can be used to this scope: (i) the
already mentioned size S, which counts the total number
of discharges; (ii) the area A, defined as the total number
of blocks involved in the avalanche; (iii) the “duration” T ,
defined as the number of discharge steps that are necessary to
exhaust the avalanche (note that sites that are critical at the
same moment are discharged in parallel, in a single step); and
(iv) the linear size L of the avalanche. Similarly to the size S, all
these quantities are power law distributed up to a cutoff which
depends on αc − α. In the stationary regime, the study of the
cutoff divergence, as the threshold αc is approached, allows us
to determine the value of the critical exponents like ζ , ν, . . ..
A different approach, which does not rely on the stationary
regime, consists in studying the behavior of A, T , and L as
a function of the size S. For large S we expect a power-law
behavior with 〈A(S)〉 ∼ SκA , 〈T (S)〉 ∼ SκT , and 〈L(S)〉 ∼ SκL ,
where 〈A(S)〉 is the area averaged over all avalanches of size
S, 〈T (S)〉 is the duration averaged over all avalanches of size
S, and 〈L(S)〉 is the linear size averaged over all avalanches
of size S. For the OFC* model, scaling relations predict,
in two dimensions, κA = 2

2+ζ
∼ 0.73, κT = z

2+ζ
∼ 0.57, and

κL = 1
2+ζ

∼ 0.36, where we have used the value z = 1.56 for
the dynamical exponent. Numerical simulations in the OFC*
model agree with these predictions. More surprisingly, also the
avalanches in the OFCR model seem to have the same internal
structure and the same value of the κ exponents. As the first
consequence, if the value of ζ does not change appreciably
from the value ζ � 0.75 in the absence of relaxation, through
Eq. (8), we predict τ � 1.64, which is consistent with the
value observed in the simulations (Fig. 6). On the other hand,
the invariance of ζ when including relaxation gives a clue
to the possible mechanism for the change of the τ exponent.
In fact, if the new value of τ corresponds to the system being
controlled by a different fixed point in the parameter space (i.e.,
a new universality class), we should expect that all exponents
of the OFCR model are different from those in the OFC*
model. However, as explained by Durin and Zapperi [20] in the
context of a magnetic problem, if the internal (κ) exponents
of the avalanches do not change, it is likely that the new τ

exponent originates as an effect of nonstationarity. If there is
in the model a parameter that samples a wide distribution of
values, the complete event size distribution can be generated
as an integration of partial distributions restricted to particular
values of the parameter. If, for instance, this parameter controls

the position of the cutoff of the distribution, such an integration
produces a larger effective τ exponent but does not affect the
exponents κA, κT , and κL characterizing the internal structure
of the avalanches.

A parameter that widely fluctuates in the OFCR model is
the stress σ . Since σ controls the position of the cutoff of the
distribution in the OFC∗ model (see Fig. 5), an integration
over all σ values could be the responsible of an overall power
law with a larger decay exponent in the OFCR model. If this
explanation is correct, the event size distribution restricted to
some small stress interval should display a τ � 1.27, with a
cutoff that is stress dependent. However, this is not the case. In
Fig. 7(b) we show event size distributions restricted to the
events in some of the individual clusters shown in Fig. 6
(and thus characterized by a single value of σ at triggering).
We see for each individual cluster an event size distribution
with the modified exponent τ � 1.67, indicating that σ is
not the parameter over which the effective integration takes
place. Some other, less obvious scheme of “integration over a
parameter” may be responsible for the change in exponent.

We have not been able to identify clearly in the OFCR
model the parameter that produces the effective integration.
However, we have advanced toward this goal by doing the
following simplified analysis. Let us consider a distribution
of values of u and uth. The thresholds are assumed to have
an exponential distribution. The typical distribution of u and
uth in the absence of relaxation is sketched in Fig. 9(a). Note
that instead of showing the actual values of uth, we show
the distribution from which they are chosen. In the presence
of relaxation, the values of the forces move as indicated in
Fig. 9(b). In this process, any site for which ui < σ increases
in value. As long as the actual value of uth is not reached,
the probability distribution of uth continues to be exponential
above ui . If ui reaches uth

i , an aftershock is triggered. On the
other hand, if ui > σ relaxation decreases the ui value.

FIG. 9. (a) A typical distribution of forces u and thresholds uth

in the absence of relaxation. For uth we show in gray the distribution
from which each value is chosen, and not the values themselves. In
the presence of relaxation, the configuration is modified as indicated
in (b): sites for which relaxation produces an increase in ui can trigger
aftershocks. If not, the distribution of uth continues to be exponential.
Sites for which relaxation produces a decrease in ui get a gap between
u and the lowest possible uth, and these sites have a lower probability
of being destabilized upon receiving a load from neighbors.
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FIG. 10. (Color online) Avalanche size distribution for an uncor-
related distribution of u’s and a shrink parameter s, as indicated. The
distribution of u’s is flat between ū ± δu, with ū = 1.29 and δu = 1.
The result of an integration over the parameter 0 < s < 1 is shown by
the line labeled “averaged” (vertically shifted, for convenience). As a
reference, power laws with exponents 1.27 and 1.67 are also plotted.

To understand the effect of relaxation, and having in
mind the previous scheme, we do the following simulation.
We take uncorrelated values of u, from some distribution
of width δu and mean ū, and take thresholds from an
exponential distribution above the corresponding u, to mimic
the configuration in Fig. 9(a). Then the values of u are shrunk
toward σ by a factor s (0 < s < 1) to simulate the effect of
relaxation, namely, u → σ + s(u − σ ). If, in this process, u

becomes larger than the corresponding uth, the threshold is
chosen again. In this final configuration we destabilize a site at
random and measure the size of the avalanche that is generated.
Statistics is collected on many realizations of the process.
Results are shown in Fig. 10. For s = 1 (i.e., no relaxation)
we get a power-law distribution with an exponent close to
(actually, a bit larger than) the normal value τ � 1.27. As s

is taken lower than 1, the distribution becomes steeper. The
qualitative reason for this lies in the gaps that appear between
the u values and the corresponding thresholds [Fig. 9(b)]: sites
with larger gaps become less probable of being activated upon
receiving a load from a neighbor.

By choosing s from a flat distribution between 0 and 1
(i.e., doing an integration over the value of s), a power-law
decay is recovered, with an exponent similar to that found
with the full OFCR model. In a full simulation with the OFCR
model, one can imagine a situation in which each event occurs
at a particular value of s, and an effective integration over
this parameter occurs, generating the modified exponent. A
full justification of this scenario is not trivial, and we expect
to provide it elsewhere. In any case, our conclusion is that an
effective integration over an internal parameter that is related to

relaxation may be responsible for the change of the τ exponent
in the OFCR model.

VII. SUMMARY AND CONCLUSIONS

In this paper we have elaborated on the properties of a seis-
micity model that is based on the one proposed by OFC and that
incorporates relaxation effects as a fundamental ingredient. In
the past, this model was shown to generate realistic sequences
of events, in particular, displaying aftershocks following an
Omori law. It also generates a GR event size distribution
with realistic power-law behavior and reproduces frictional
properties experimentally observed in geological materials.

Here we have focused on the following issues. First, we
have shown that there is a natural notion of a “seismic cycle”
in the model. This occurs because the stress in the system
has temporal variations that reflect the overall state of the
plates, and we have found that mayor earthquakes can be
expected only when this stress is larger than some minimum
value. Second, we have made an analysis of the scaling of the
largest events in the system upon system size increase. With
appropriate interpretation of the parameter α of the model, it
was suggested that, in fact, the size of the largest events scales
as the system size (in particular, with the thickness of the plate
we are trying to model). This indicates that the model is able to
describe earthquakes in the macroscopic limit. Note that this
is not true in the absence of relaxation, since in this case the
largest events scale with system size with a power of <1.

Finally, we have tried to understand why relaxation is
able to tune the exponent of the GR law to a realistic value
around b = 1 (or τ � 1.67). We have provided evidence that
the reason for this modification is mainly the creation of
“gaps” between the u values and the corresponding thresholds
uth, originated in the existence of relaxation. Despite this
qualitative understanding of the effect of relaxation, we have
not been able to explain why the exponent of the GR law in the
presence of relaxation seems to adjust systematically around
the value b � 1 (or τ � 1.67). Taken as a whole, the results
presented in this paper reinforce our view that the relaxation
mechanism introduced in some seismicity models provides
an important tool for the study of seismic phenomena.
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