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We study properties of a random walk in a generalized Sinai model, in which a quenched random

potential is a trajectory of a fractional Brownian motion with arbitrary Hurst parameter H, 0<H < 1, so

that the random force field displays strong spatial correlations. In this case, the disorder-average mean-

square displacement grows in proportion to log2=HðnÞ, n being time. We prove that moments of arbitrary

order k of the steady-state current JL through a finite segment of length L of such a chain decay as

L�ð1�HÞ, independently of k, which suggests that despite a logarithmic confinement the average current is

much higher than its Fickian counterpart in homogeneous systems. Our results reveal a paradoxical

behavior such that, for fixed n and L, the mean-square displacement decreases when one varies H from 0

to 1, while the average current increases. This counterintuitive behavior is explained via an analysis of

representative realizations of disorder.
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Since the pioneering works [1–3], random walks (RWs)
in random media have attracted considerable attention.
In part due to a general interest in dynamics in disordered
systems, but also because such RWs found many physical
applications, including dynamics of the helix or coil phases
boundary in a random heteropolymer [4,5], a random-field
Ising model [6,7], dislocations in disordered crystals [8],
mechanical unzipping of DNA [9], translocation of bio-
molecules through nanopores [10], and molecular motors
[11]. Some functionals arising here, e.g., probability cur-
rents in finite samples, show up in mathematical finance
[12,13]. Other examples can be found in Refs. [14–16].

In the discrete formulation, a RW evolves in a discrete
time on a lattice. At each time step the walker jumps from
site X to either site X þ 1 with the site-dependent proba-
bility pX ¼ 1

2 ð1þ " � sXÞ, or to the site X� 1 with the

probability qX ¼ 1� pX, where the amplitude 0< "< 1
measures the strength of the disorder and sX are quenched,
independent, and identically distributed random varia-
bles. One often assumes binomial random variables, i.e.,
sX ¼ �1 with probabilities p and 1� p, respectively.

In the case of no global bias (p ¼ 1=2), i.e. for the
so-called Sinai model (SM), a remarkable result [3] is
that for a given environment fpXg the squared displacement

X2
n �mðfpXgÞln4ðnÞ; (1)

as n ! 1 with probability almost 1, where mðfpXgÞ is a
function of the environment only [17]. Another intriguing
feature of the SM concerns transport properties. It was
revealed by analyzing the probability current JL through
a finite Sinai chain of length L that the disorder-average

current decays as 1=
ffiffiffiffi
L

p
[18–21]. Curiously enough,

despite a logarithmic confinement (1), the disorder-average

current appears to be anomalously high, so that such
disordered chains offer on average less resistance with
respect to transport of particles than homogeneous chains
(all pX � 1=2) for which one finds Fick’s law JL � 1=L. In
the absence of disorder, deviations from Fick’s law can also
be found for Lévy walks [22]. Full statistics of the current
has been recently computed for the asymmetric simple
exclusion process (ASEP) model [23].
It is well known that a RW in an uncorrelated random

environment fpXg can be considered as one in the presence
of a random potentialVL, which represents itself as a RW in
space. Indeed, on scales L a RW ‘‘explores’’ the potential

VL ¼ XL�1

X¼1

ln

�
pX

qX

�
¼ �

XL�1

X¼0

sX; � ¼ ln

�
1þ "

1� "

�
; (2)

which is just a RW trajectory with step length �. The
standard SM, in which the sX’s are uncorrelated, is now
well understood. On the contrary, there hardly exist
analytical results for the case where these random variables
are strongly correlated. Such correlations are important,
e.g., for the dynamics of the helix-coil boundary in random
heteropolymers, where the chemical units are usually
strongly correlated [24]. They are also currently studied
in mathematical finance, improving the standard Black-
Scholes-Merton model [25]. Any exact result for such
situations would thus be welcome.
In this Letter, we study properties of random walks in

random environments in which the transition probabilities
fpXg are strongly correlated so that the potential VL in (2)
is a fractional Brownian motion (FBM): VL is Gaussian,
with VL¼0 ¼ 0 and moments
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EfVLg ¼ 0; EfðVL � VL0 Þ2g ¼ �2jL� L0j2H; (3)

where Ef� � �g here and henceforth denotes averaging over
realizations of VL and 0<H < 1. The case H ¼ 1=2
corresponds to the original SM. For H < 1=2 the potential
is subdiffusive, while for H > 1=2 it is superdiffusive.

The mean-squared displacement EfX2
ng in a correlated

random environment can be estimated as follows.
Assuming Arrhenius’s law for the activated dynamics
[14], the time nL required for a particle to diffuse in a

disordered potential VL over a scale L is of order nL � eV
�
L ,

where V�
L is a typical energy barrier. For VL in (3),

V�
L � �LH, so that for sufficiently large times n

EfX2
ng � ��2=Hln2=HðnÞ: (4)

Our focal interest here is in understanding the behavior
of the disorder-average current JL through a finite sample
(of length L) of such a disordered chain, of its moments
of arbitrary order, and, eventually, of the full probability
density function (PDF) of JL. We proceed to show that,
while its typical value is exponentially small Jtyp �
expð�LHÞ, all its moments decay algebraically

�kðLÞ � EfðJLÞkg � AkL
��; L � 1; (5)

where � ¼ 1�H is the persistence exponent of the FBM
[26,27]. Recall that the persistence exponent associated
with a stochastic process characterizes the algebraic
decay of its survival probability SðnÞ � n�� [28,29]. The
L-independent constants Ak depend, in general, on the
microscopic details (such as the lattice discretization).

The result in (5) is rather astonishing: (a) it states that
�kðLÞ for arbitrary order k decay in the same way. (b) for
arbitrary H, 0<H < 1, the disorder-average current in
such random chains is larger than the Fickian current in
homogeneous systems, and (c) on comparing Eqs. (4) and
(5) for fixed n and L sufficiently large, and varying H, one
concludes that EfX2

ng increases when H goes from 1 to 0,
while the disorder-average current decreases, which is an
absolutely counterintuitive and surprising behavior.

In what follows we prove (5) and explain this astonish-
ing behavior using three complementary approaches: (i) a
rigorous one, based on exact bounds, for the discrete RW in
a FBM potential, (ii) scaling arguments for the continuous-
space and -time version, which also allows us to study
the whole PDF of JL, and (iii) via numerical simulations.
We argue that (5) holds for any potential VL, which is the
trajectory of a stochastic process with persistence exponent
�: as a matter of fact, such a behavior of �kðLÞ is domi-
nated by the configurations of VL which drift to �1
without recrossing the origin and occur with a probability
�L��, yielding the L dependence in (5).

Consider first the discrete chain, take a finite segment of
length L and impose fixed concentrations of particles at
the end points, P0 and PL. For a fixed environment fpXg,
the steady-state current is given by [18,19]

JL ¼ D0P0

�L
�D0PL

��L
; (6)

where D0 ¼ 1=2 is the diffusion coefficient of a homoge-
neous chain, �L is the so-called Kesten variable [30],

�L ¼ 1þ p1

q1
þ p1p2

q1q2
þ � � � þ p1p2 . . .pL�1

q1q2 . . . qL�1

; (7)

and ��L is obtained from (7) by replacements pk ! qL�k

and qk ! pL�k. Thinking of L as ‘‘time,’’ one notices
that �L and ��L are time-averaged discretized geometric
fractional Brownian motions (they can be thought of as
the ‘‘prices’’ of Asian options within the framework of the
fractional Black-Sholes-Merton model [13]). Note that in
the absence of a global bias Ef1=�Lg ¼ Ef1=��Lg, and
hence, without any loss of generality we set PL ¼ 0 in
what follows. Thus, combining Eqs. (2), (6), and (7), and
setting P0 ¼ 1 yields

JL ¼ 1

2

�
1þ XL�1

l¼1

expðVlÞ
��1

: (8)

For typical realizations of fpXg, the size of jVlj isOðlHÞ, so
that the typical current Jtyp is Jtyp � expð�LHÞ.
To obtain an upper bound on �kðLÞ, consider a given

realization of the sequence V1; V2; . . . ; VL�1 and denote the
maximal among them as Vmax ¼ max0�i�L�1Vi. From (7)
one has �L ¼ ð1þP

L�1
l¼1 VlÞ 	 expðVmaxÞ, so that JkL �

ð1=2Þk expð�kVmaxÞ. Since expð�kVmaxÞ ! 0 as L ! 1
(recall that Vmax � LH), the average value of expð�kVmaxÞ
is dominated by configurations with Vmax ! 0. The asymp-
totic behavior of the PDF PLðVmaxÞ for fixed Vmax and large
L is known [26,27], yielding lnPLðVmaxÞ ¼ � lnL�1 þ
Oð1Þ, where � ¼ 1�H is the persistence exponent [31].
Hence, we have

�kðLÞ � BkL
H�1; L � 1; (9)

where Bk is an L-independent constant.
To determine a lower bound on �kðLÞ we follow

[18,19,32] and make the following observation: averaging
(8) is to be performed over the entire set � of all possible
trajectories fVlg1�l�L. Since �L > 0, a lower bound on
�kðLÞ can be straightforwardly obtained if one averages
instead over some finite subset �0 
 � of trajectories
with some prescribed properties; that is, �kðLÞ 	
E�0 fJkLg. We choose �0 as the set comprising all possible
trajectories fVlg0�l�L which, starting at the origin at l ¼ 0,
never cross the deterministic curve Yl ¼ Y0 � � lnð1þ lÞ
with Y0 > 0 and �> 1. For any such trajectory, �L ¼ 1þP

L�1
l¼1 expðVlÞ is bounded from above by

P
L�1
l¼0 expðYlÞ,

which, in turn, is bounded from above by expðY0Þ�ð�Þ,
where �ð�Þ is the zeta function. Hence, we have �kðLÞ 	
½expðY0Þ�ð�Þ=2��kE�0 f1g, where E�0 f1g is, by definition,
the survival probability, SL up to time L, for a FBM,
starting at the origin in the presence of a ‘‘moving trap’’
evolving via Yl ¼ Y0 � � lnð1þ lÞ.

PRL 110, 100602 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

8 MARCH 2013

100602-2



For standard Brownian motion (H ¼ 1=2) in the pres-
ence of a trap which moves as �lz, the leading large-L
behavior of the survival probability SL is exactly the same
as in the case of an immobile trap, provided that z < 1=2
[33]. It is thus physically plausible to suppose that the same
behavior holds for a more general Gaussian process such as
a FBM. That is, one expects that for anyH > 0 the leading
large-L behavior of E�0 f1g will be exactly the same for
an immobile trap and for a logarithmically moving trap,

i.e., that SL ¼ E�0 f1g � Y�=H
0 =L� as L ! 1 [26,27], where

� ¼ 1�H. In fact, this can be shown rigorously [34,35].
Consequently, we find

�kðLÞ 	 DkL
H�1; L � 1; (10)

where Dk is independent of L. Note that the bounds in (9)
and (10) show the same L dependence and thus yield the
exact result announced in (5).

We now turn to a continuous-time and -space dynamics
in a disordered FBM potential. The position xðtÞ 2 ½0; L�
of a particle at time t obeys a Langevin equation: _x ¼
�V 0ðxÞ þ �ðtÞ, where V 0ðxÞ is a quenched random force
such that VðxÞ is a FBM with Hurst exponent H (3) and
�ðtÞ is a Gaussian thermal noise of zero mean and covari-
ance h�ðtÞ�ðt0Þi ¼ 2T�ðt� t0Þ. The steady-state current
and the concentration profile CðxÞ can be obtained from
the corresponding Fokker-Planck equation

JL ¼ T

�Z L

0
exp½VðxÞ=T�dx

��1
;

CðxÞ ¼ JL
T

Z L

x
dx0 expf½Vðx0Þ � VðxÞ�=Tg

(11)

[see (6) and (8) with D0 ¼ T and P0 ¼ 1] [36]. The total
number of particles is then NL ¼ R

L
0 CðxÞdx. We focus

next on the moments and on the PDF of JL (11).
Instead of JL=T, which can be viewed as the inverse of

the SM partition function, we study the PDF �T¼0ðFÞ of
the free energy F ¼ T logðJL=TÞ. Consider first T � 0,
in which case F ¼ Emin ¼ min0�x�LVðxÞ. Recalling that
Vð0Þ ¼ 0 (Emin < 0), the cumulative distribution qLðEÞ ¼
PrðEmin >�EÞ (with E> 0) coincides with the probability
that, up to ‘‘time’’ L, VðxÞ starting at E at x ¼ 0 ‘‘survives’’
in the presence of an absorbing boundary at V ¼ 0. For
self-affine process, qLðEÞ takes the scaling form qLðEÞ ¼
QðE=LHÞ: for L�E1=H, qLðEÞ behaves algebraically [28],
qLðEÞ � E�=H=L� (� ¼ 1�H for FBM [26,27]), while for

L � E1=H, qLðEÞ is of order 1. Hence, one has for
�T¼0ðFÞ ¼ @EqLðEÞjE¼�F

�T¼0ðFÞ ¼

8>><
>>:
0; F > 0

L��jFj�=H�1; �LH � F < 0

expð�F2=2L2HÞ; F � �LH:

(12)

Finally, the regime F � �LH corresponds to a fraction of
paths VðxÞ that propagate from E to zero in a time L. In
general, the tail of this probability coincides with the one

of the free propagator, which is Gaussian for FBM. What
happens at finite T where F ¼ E� TS is now the balance
between the energy E and the entropy S? One expects a
particle to be localized close to the minimum Emin, which
is of order OðLHÞ, while the maximum entropy �OðlnLÞ.
Hence, when L � 1 the main contribution to F comes
from Emin so that, for a given sample at finite T, F will
be very close to Emin. This is corroborated by numerical
simulations (see Fig. 2).
We now come back to the current distribution. Very

small currents, JL � Jtyp � expð�LHÞ, correspond to

F � �LH in (12) and one obtains that PðJLÞ is
log-normal, lnPðJLÞ / �ln2ðJL=TÞ. Within the opposite
limit, JL � Jtyp, one finds from (12) that

PðJLÞ � ½logðJL=TÞ��=H�1

JLL
�

: (13)

This power-law behavior holds up to a large cutoff value
Jmax. At T ¼ 0 we have a sharp cutoff at Jmax ¼ 1 (12),
while at a finite T, PðJLÞ has a fast decay which depends
on the fluctuations of VðxÞ at a short length scale close to
the origin x ¼ 0. For L � 1, �kðLÞ are dominated by the
regimewhere Jtyp � JL < Jmax �Oð1Þ (13), such that one
gets �kðLÞ � 1=L� (5). This calculation shows that (rare)
negative persistent potential leads to very large currents.
We observe that these rare persistent profiles also exhibit
large barriers, growing like LH. These barriers stop the
particle diffusion and are responsible for the subdiffusive
behavior of the mean-square displacement. One could
expect that these barriers should also affect the behavior
of the current. However, by looking at the steady-state
concentration profile CðxÞ (11), one can see that large
barriers induce a very large number of particles in the
system located in the deep valleys of the potential VðxÞ,
which allows us to sustain a large current.
In our numerical simulations we consider a discrete ran-

dom potential Vk, k ¼ 0; 1; . . . ; L� 1, with �2 ¼ 1, which
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FIG. 1 (color online). EfJLg (squares) and �kðLÞ with k ¼ 2
(circles) and k ¼ 3 (triangles) versus L for the FBM, with
H ¼ 0:75, 0.4, and 0.25 (from top to bottom). The solid line is
L�� (5) with � ¼ 1�H. The temperature T ¼ 0:25 and aver-
aging is performed over 105 samples. We use arbitrary units
because we vertically shift the data (by a factor 20 for H ¼ 0:75,
5 for H ¼ 0:4, and 1 for H ¼ 0:25). In any case, the prefactors
Ak are nonuniversal and model dependent.
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displays FBM correlations (3). We use a powerful algorithm
[37,38], which allows us to generate very long samples of
FBM paths. For each sample, we compute the current, JL ¼
T½PL�1

k¼0 expð�Vk=TÞ��1, the free energy F ¼ T lnðJL=TÞ,
and the ground state energy Emin ¼ minkVk. In Fig. 1 we
plot the first three moments as a function of L for different
values of H. These plots show a very good agreement with
our analytical predictions in (5). In Fig. 2, we show that the
PDFof the rescaled free energyF=LH at finite temperatureT
converges to the PDF of the rescaled ground state energy
Emin=L

H. The reason for this is that, for each sample, the
difference between F and Emin grows very slowly with L,
probably logarithmically (see inset of Fig. 2). In the rescaled
variables, this difference vanishes when L ! 1.

We close with an observation that such chains show
a transition to a diodelike behavior, when 	 ¼ �2L2H

exceeds some critical value 	c. Consider a chain in which
at site X ¼ 0we maintain a fixed concentration P0 ¼ 1 of,
say, ‘‘white’’ particles and place a sink for them at X ¼ L.
At X ¼ L we introduce a source which maintains concen-
tration 1 of ‘‘black’’ particles, and place a sink for them
at site X ¼ 0. The particles are mutually noninteracting.
For a fixed fpXg we have countercurrents of white (JwL ) and
black (JbL) particles, which obviously obey, on average,
EfðJwL Þkg � EfðJbLÞkg for any k > 0.

Consider next the random variable !¼JwL=ðJwLþJbLÞ¼
��L=ð��Lþ�LÞ, which probes the likelihood of an event that
for a fixed fpXg one has JwL ¼ JbL. The PDF of ! can be
calculated exactly to give

Pð!Þ ¼ 1ffiffiffiffiffiffiffi
2


p
!ð1�!Þ�LH

exp

 
� ln2ð1�!

! Þ
2�2L2H

!
: (14)

Remarkably, Pð!Þ in (14) changes the modality when 	
(which defines the value of a typical barrier) exceeds a
critical value 	c ¼ 2 (see Fig. 3). For short chains (or small
�) Pð!Þ is unimodal and centered at ! ¼ 1=2: any given
sample is transmitting particles in both directions equally
well and, most probably, JwL ¼ JbL. For 	 ¼ 	c the PDF is
nearly uniform (except for narrow regions at the edges) so
that any relation between JwL and JbL is equally probable.
Finally, for 	 > 	c (sufficiently strong disorder and/or a
long chain) the symmetry is broken and Pð!Þ becomes
bimodal with a local minimum at ! ¼ 1=2 and two max-
ima close to 0 and 1. This means that a given sample is
most likely permeable only in one direction.
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