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We study the probability distribution function (PDF) of the position of a Lévy flight of index 0 < « < 2 in
the presence of an absorbing wall at the origin. The solution of the associated fractional Fokker-Planck equation
can be constructed using a perturbation scheme around the Brownian solution (corresponding to & = 2) as an
expansion in € = 2 — «. We obtain an explicit analytical solution, exact at the first order in €, which allows us
to conjecture the precise asymptotic behavior of this PDF, including the first subleading corrections, for any «.
Careful numerical simulations, as well as an exact computation for « = 1, confirm our conjecture.
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I. INTRODUCTION

Random walks are trajectories consisting of a collection
of random steps. They are employed to model the stochastic
activity observed in many fields such as physics, biology,
quantitative finance, or computer science. As such, they have
been widely studied by mathematicians [1-3] and physicists
[4—7]. One of the simplest examples is given by a symmetric
one-dimensional random walker whose position x(n) after n
steps evolves, for n > 1, according to

x(n) = x(n — 1) + n(n), (1

starting from x(0) = 0. Moreover, we consider random steps
independent and identically distributed, according to a prob-
ability distribution ¢(7n); consequently, the random walk is
Markovian and homogeneous.

Despite being simple to define, most of the properties
of a random walk remain difficult to determine analytically.
However, when the number of steps is large, the random
walk displays a “universal” behavior and the statistics of the
position x(n) becomes independent of most of the details of
@(n). This asymptotic regime is the one we have more chance
to characterize and it is often the one which is relevant for
applications. In this limit, two cases should be distinguished.
If ¢(n) is a narrow distribution, the random walk exhibits a
diffusive behavior x(n) ~ n'/2, and only the second moment of
the step distribution f _OOOQ n*@(n)dn = o affects the statistics
of x(n). On the other hand, if the random variables n(n)’s have
a broad distribution, with a diverging second moment, i.e.,

c
o(n) ~ W s nl > 1 2

with 0 < o < 2, the random walk exhibits a superdiffusive
behavior x(n) ~ n'/*. Such power-law distributions (2) have

“reinaldo.garcia@cab.cnea.gov.ar
talberto.rosso@u-psud.fr
fgregory.schehr @th.u-psud.fr

1539-3755/2012/86(1)/011101(10)

011101-1

PACS number(s): 05.40.Fb, 02.50.Cw

been initially studied in the early 1960s in economy [8] and
finance [9] and in the early 1980s they started to proliferate
in physics where they have found many applications ranging
from disordered and glassy systems, superdiffusion in micellar
systems, laser cooling of cold atoms [10], random matrices
[11], photons in hot atomic vapors [12], etc. One striking
feature of such processes is that their statistical behavior is
governed by a few rare events, the occurrence of which are
thus governed by the fail of the distribution.

Also in this case, when the number of steps becomes large,
we expect that the statistics of x(n) becomes independent of
the details of ¢(n) except for the index « and the constant c. In
particular, in absence of boundaries, the central limit theorem
ensures that the propagator P(x,n), i.e., the probability to find
the particle in x after n steps, converges to a stable distribution
given by

1
PGx,n) = —2 R(Y), (3)
/ R dy = )

where the parameter a is related to the constant ¢ [see Eq. (8)]
and where we have introduced, from dimensional analysis, the
rescaled variable

X
nl/e’

y (5)
Although the Fourier transform of R(y), its characteristic
function, has a very simple expression (4), there is no simple
closed form expression for R(y), except for o« = 1, which
corresponds to Cauchy distribution. It, however, admits the
following asymptotic expansion, valid for any value of « [3]:

1 o0
R(y)~—>)» a™*
|yl Z

k=1

sin (442 )T(ak + 1)(—DFH!

kt]y|et ©

One thus sees on this expression that R(y) inherits the power-
law tail of the step distribution (2). One can further show [2,3]
that the amplitude itself is not renormalized such that to leading

©2012 American Physical Society


http://dx.doi.org/10.1103/PhysRevE.86.011101

GARCIA-GARCIA, ROSSO, AND SCHEHR

order

R(y) ~ y% + y% +0(y7 7, @)
which fixes the value of a:
o e
¢ T ()Tt ®
while d can also be obtained explicitly from Eq. (6).

Although free Lévy flights are thus perfectly well under-
stood, there are physical situations which actually involve Lévy
flights in a confined geometry. An interesting example is the
Lévy flight model which has been proposed [13] to describe
the transports of solar photons in cloudy atmosphere. These
photons are eventually reflected back to space or absorbed by
the ground, so their trajectories are bounded random walks.
In such cloudy atmosphere, the height of which is typically of
the order of 10 km, the photons can be trapped in an optically
dense region (inside the clouds), traveling less than a meter
between scatterings, while they can “fly” many kilometers
from cloud to cloud. It was shown experimentally that Lévy
flights provide a reliable description of the photons transport
in such situations [14]. It was shown, in addition, that the
one-dimensional model is a reasonable approximation of the
three-dimensional geometry [15]. More recently, Lévy flights
in confined geometry have also found applications in the
context of random search problems [16].

Obviously, when the walker is confined inside a domain, the
central limit theorem does not apply, but the scaling analysis is
still valid and the “universal” behavior of the rescaled position
y = x/n"/* is still expected. Computing the statistics of the
rescaled variable y in the presence of confinement is in general
possible for Brownian motion (o« = 2) for which powerful
analytical tools are available such as path-integral techniques
[17,18]. Unfortunately, for Lévy flights, analytical approaches
are usually quite difficult. Recently, a lot of papers advertised
the possibility to write a fractional Fokker-Planck equation for
Lévy flight propagator [6] :

o
x|

where the continuum time ¢ captures the large n behavior of
the random walk, and the fractional operator % is the Riesz-
Feller derivative of fractional order « > 0 [19,20], which has
an integral representation involving a singular kernel of power-
law form. In the absence of boundaries, this equation can be

simply written in Fourier space

%P(x,t) =a” P(x,t), P(x,t=0)=38x), (9)

3 - . 3
o P = —lakl*P.n). Plr=0)=1, (10)

and it is easy to check that the free propagator introduced
in Eq. (3) is a solution of Eq. (10) (with the identification
t—n>1).

In the presence of boundaries, the translational invariance
is broken and the Fourier representation becomes useless. For
o =2, when the fractional operator becomes the standard
Laplacian, the method of images allows us to express the
propagator in the presence of boundaries as a linear combi-
nation of free propagators. Unfortunately, we will see that
these techniques can not be applied for « < 2 [21,22]. More

PHYSICAL REVIEW E 86, 011101 (2012)

Final position- = = = = = - -

x(n)

n

FIG. 1. (Color online) Trajectory of a random walker with an
absorbing boundary condition at the origin. P,(x,7), computed
perturbatively in Eq. (C18), is the probability density function of
the position of such a random walker at time ¢.

generally, if translational invariance is lost, the fractional
Fokker-Planck equation in Eq. (9) becomes a difficult inte-
grodifferential equation with nonlocal boundary conditions.
One could conclude that the Fokker-Planck formalism is of
little help for Lévy flights. However, following a recent work
by Zoia, Rosso, and Kardar [23], we show that Eq. (9) can be
studied also in the presence of boundaries using a perturbation
theory where the small parameter € < 1 is ¢ =2 —€. At
variance with the method of Ref. [23], we perform this
perturbation theory directly in the continuum limit without
resorting to a discretization (in space) of the trajectories. The
calculations turn out to be somewhat simpler in this continuum
setting.

For concreteness, we will study in detail the case where
there is an absorbing wall in x = 0 as depicted in Fig. 1: we
thus consider only the paths that remain positive up to the nth
step. In the limit of large n, the probability density function to
find the particle in x after n time steps also takes the scaling
form, as in Eq. (3),

1
Pien) =~ Ry (). (1)

We emphasize that R, (y), being a probability density function,
is normalized, i.e., fooo R.(y)dy =1, while, in Ref. [21],
Zumofen and Klafter studied a similar quantity, which is
however not normalized (see also Ref. [24]). In particular,
they were able to show that the small argument behavior of
R, (y) is given by [21,25]

Ri(y) ~ y*/2, (12)

in contrast with the method of images that would predict
R, (y) ~ y. Our perturbative approach allows us to conjecture
the exact behavior of the tail of R, (y), which controls the
statistics of rare events:

ch y‘ziia +o(y™29), 2>a>1
Ri(y)= _y1+ot d, + o _1_2a) l>a>0
YT+ y s .

13)

To our knowledge, only the exponent of the leading term
R, (y) o< y~'7® was known from Ref. [21]. Here, we obtain
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the exact result for the amplitude ¢ :
cy = 2c, (14)

where c is the amplitude of the tail of the jump distribution (2).
In addition, the first subleading corrections in Eq. (13), by
comparison to the free case (7), also bear the fingerprints of
the absorbing wall. These results (13) are first obtained ana-
Iytically for « close to 2, i.e., « = 2 — €, using a perturbation
theory to first order in €. We also obtain this behavior fora = 1,
albeit with logarithmic corrections for the subleading term, for
which an exact calculation can be done. We then demonstrate
this behavior using thorough numerical simulations.

The paper is organized as follows. In Sec. II we present
the general framework of the perturbation scheme. We first
illustrate it on the simplest example of the free propagator
in Sec. IT A, and then in Sec. IIB we study the case with
an absorbing boundary at the origin. The discussion of the
results is left in Sec. IIC. Section III contains the results of
our numerical simulations, and our conclusions are in Sec. I'V.
The Appendices A, B, and C contain some technical details.

II. PERTURBATION SCHEME

In this section, we set a = 1 for simplicity and without
loss of generality, and write the fractional Fokker-Planck
equation (9) in the familiar Schrodinger form

atP(X,X(),t) = HP()C,X(),I), (15)

P(x,xp,t =0) =6(x — x9), (16)
where the propagator P(x,xo,t = 0) represents the probability
density to find a particle in the interval [x,x + dx] at time
t, knowing that the particle was in xo at time O and the
operator H is the fractional operator of index «. In quantum
mechanics, Eq. (15) corresponds to the Schrodinger equation
of the element (x, xo) of the density matrix P at the temperature
1/t. The general solution of Eq. (15) reads as

P(x,x0,0) = / dq Yy (x0) ¥y (x)e" 9", (17)

where E(q) are the eigenvalues and ,(x) the associated
eigenfunctions of the operator H. They are solutions of the
eigenvalue problem Hvr, (x) = E(q)¥,(x) with the appropri-
ate boundary conditions and satisfy the orthonormality and
closure relations

/xlfq(X)ﬁf(X)dx =8(q —q"). (18)

f Y ()Y, (x)dg = 8(x — x'). 19)

Please note that the domain of integration over x depends on
the boundary condition and the integration over ¢ is meant over
the whole spectrum. If the spectrum is discrete, the integral is
replaced by a discrete sum.

The eigenvalue problem of the operator 7 is in general
very difficult and the solution is known only in the absence of
boundaries where the eigenfunctions are simple plane waves.
The case o =2 corresponds to the standard Laplacian for
which a lot of results are known. In particular, the spectrum
can be exactly solved in one dimension. A possible strategy to
gain insights on the behavior of Lévy flights in the presence of
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boundaries is to use the perturbation scheme around the well
studied o = 2 case. For « = 2 — €, the operator H and the
propagator can be expanded in powers of €:

P(x,x0,t) = PO(x,x0,1) — e PV (x,x0,1) + O(eD),
H = Hy— eH, + O(e?),

where P©(x,x,t) is the propagator associated to Hy = 92,
with the prescribed boundary conditions. The expression of
the first correction PV(x,xp,¢) in Eq. (20) is well known from
quantum mechanics and it is rederived in Appendix A. It reads,
writing PV = PW(x,xo,1), as

eE@r _ oE@)

m_ v B — B /
PWY = [q/q Vq ()Y, (x0) Eqd)—E@ (qIHilg"), (D)

where we use the notation fq = [dgq and where it is
understood here that y,(x) are the eigenvectors and E(q)
the corresponding eigenvalues of Hy, and for the matrix
elements (g|H|q’) we use the bra-ket notation, borrowed from
quantum mechanics with (x|g) = ¥,(x). This formula (21) is
the cornerstone of the perturbation approach presented here.

A. Absence of boundaries

We first illustrate this perturbative approach by computing
the first order correction to the Brownian propagator in the
absence of boundaries, i.e., the Gaussian propagator, when
a =2 —¢€ and xo = 0. In this simple case, the eigenvalue
problem of Hy = 92 gives

1.
Yy (x) = e E(q) = —q*, —o0 <q <oo. (22)
T

Using that k=€ = k? — € k? In |k| + O(€?), the matrix element
(qIH1lq") can be explicitly computed:

/ dk *
taittlg) = [ [ [ dxidn v o
x k% In |[k|e* 1) = §(g — ¢")g*In|gq|, (23)

where the integral over x,x,,k is performed over the whole
real axis. Note that, thanks to the oscillating term e/¥*¥1—2),
the integral over k in (23) is dominated by the small values
of k where one can safely expand k>~ in powers of €. From
Eq. (21), one obtains

1 > dq 2 —g%t
PUx,t) = —t — cosgxq” Inge 9", (24)
0 T

Using k = ¢+/t and the scaling variable z = x/+/t, Eq. (24)
can be recast in a simpler form

Vi PD(x,1) = Ra(2) + Rp(z) Int, (25)
© dk >
Ra(z) = —/ — coskzk® Inke ™, (26)
0 b
© dk
Rp(2) =/ == coskzk e ™. 27
0 2

From the scaling argument, one expects [Eq. (3)]

1 X
P(XJ)=WR<I17), (28)
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and a general issue of these perturbative computations is that
for o = 2 the natural scaling variable is z = x/+/f, while for
o = 2 — € the correct scaling variable is y = x/ tﬁ, which
also admits a perturbative expansion. For this reason, our final
result should be recast in terms of y in order to identify the
perturbative expansion of the scaling function R(y) in Eq. (28)
as

R(») = RO(y) —eRV(y) + 0(?) , (29)

where R©(y) is the Gaussian propagator given by

VA, (30)

27

This can be done if in the equation ¢'/*P(x,t) = R(y) we
expand at the first order in € both 1'/* ~ /7 + £/fInt and

y~z+ ;llez Int. After some simple algebra, we can write

RO®y) =

ViPO(x,r) = RV(z) + Zlnt (1+20.) RO).  (31)
Comparing with Eq. (25), we identify 4Rz(z) = RO (z) +
79, RO(z) so that we conclude that RM(y) in Eq. (29) is given
by
* dk
RV(y) = —/ — coskyk* Inke ™. (32)
0 T
By performing an asymptotic analysis of Eq. (32) for large y,

one finds a series expansion of R(y) given in Eq. (29) which
converges nowhere but exists as a formal power series

[o.¢]

Q! 1 1 12 180

R(y)~ Z T €<—3+—5+—7+...).
= 2(k = 1)yt ooy

This result in in perfect agreement with the expansion given
in Eq. (6) fora =2 — €.

B. Propagator in the presence of an absorbing
boundary at x = 0

We consider now G (x,x¢,t)dx, the probability to find a
particle in the interval [x,x 4 dx] at time ¢, knowing that the
particle was in x( at time O and given that it stayed positive
up to time ¢ (see Fig. 1). At variance with the free propagator,
the integral over x of G(x,xo,t) is smaller than one and
gives the fraction of surviving walker up to time ¢ (i.e., the
survival probability). In the geometry defined by Eq. (1), the
initial position of the discrete random walk is xo = 0. Here,
we are considering a process which is continuous in time, and
this initial condition xy = 0, together with the presence of an
absorbing boundary at the origin, is ill defined. Indeed, itis well
known that if the continuous time walker crosses zero once,
it will recross zero infinitely many times immediately after
the first crossing. Therefore, it is impossible to enforce the
constraint xop = 0 and simultaneously forcing the position of
the continuous time walker to be strictly positive immediately
after. Therefore, we set xo > 0 and small in order to regularize
the continuous time process and we will take the limit xo — 0
at the end of the calculation. Our final result corresponds to
the geometry of Eq. (1) in the limit of a large number of steps.

PHYSICAL REVIEW E 86, 011101 (2012)

It is useful to express G.(x,xp,f) in terms of rescaled
variables as in Eq. (5):
G4 (x,x0,1) = 72 Z(¥,0)- (33)

The scaling function Z(y,y) depends explicitly on o and we
compute it here in perturbation theory fore =2 — o < 1:

Z(y,y0) = Z9,5) — € ZV(y,y0) + O(€).  (34)

In the presence of an absorbing boundary at the origin, the
action of the fractional operator can be written as

° * dk . "
f dx'r(x") f 2—(—|k|“)e’k<x—*>=E<q>wq<x>, (35)
0 —o0 &7

and the solution is known only for o« = 2:

Yq(x) = 0(x),/ — sm(qx) E(@)=-4%q>0 (36)

where 0(x) is the Heaviside function: 6(x) =1 if x > 0
and 0(x) =0 if x < 0. At zeroth order in €, the scaling
function Z©(y,yy) can be computed from Eq. (17) with
¥, (x) givenin Eq. (36). Using the identity 2 sin(ky) sin(kyy) =
cos [k(y — yo)] — cos [k(y + yo)], one obtains

ZO(y.30) = 0(»0(x0) / K o (cosTk(y — yo)]
0
— cos[k(y + yo)D). 37)

Let us note that the same result can be straightforwardly
obtained using the method of images:

ZO%,y0) = 00RO (y — yo) — ROy + y0)l.  (38)

At the first order in €, we first compute the matrix element
(q/H1lq’) which has the form given in Eq. (23) with the
prescription that the integrals over x; and x, are performed
over the interval (0,00) and v, (x) are the eigenvectors given
in Eq. (36). The integrals over x; and x, need to be regularized
to be well defined and this can be done via the identity
oo
lim _x eikx—ex

sin(gx)
€—0 Jo

I
w(k* —q?)

where PV indicates a principal value. After some algebra,
given in Appendix B, one gets [see Eq. (B11)]

_py + % 18—k -8+ 0], (39

!/

_99
2q+4q)
By combining the latter equation with Eq. (21), we can write
an expression for Pf)(x,xo,t). Analogously to the case of the
propagator in the absence of boundaries, the integrals involved
in the expression of Pil)(x,xo,t) can be naturally recast in
terms of the variables z = x/+/t and zg = xo/+/t instead of
the correct scaling variables y and y. Following the same
lines of the previous discussion, we easily write the scaling
function Z("(y,yo) as

ZW(y,y0) = Za(y.y0) + Z(y,y0), (41)

(qIHilg’y = 8(g — q")q* Inlq| + (40)

Za(y.y0) = RV(y — y0) — RV (3o + y), (42)
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k1k2 -k _ e_klz)
Z = dky dk
B(y,y0) = // 1 4K2 kl —f-kz)(k% —k%)
x sin(k; y) sin(k, yo), (43)

where the integrals over kj,k; run over the interval (0,00). It
is worth to stress that the term Z 4 corresponds to the images
method prediction, while the term Zp represents the violation
of the images prediction at the first order level.

It is easy to realize that the probability density function
R (y) is simply related to Z(y,yp) in the following way:

Z(y,y0)
= e R —— (44)
R . Ofo dy' Z(y'.y0)’
For o = 2, one has from Eq. (38) in the limit yy — 0
2
7Oy v0) = yoZ© 0(2) . 700 = —2 o=,
(y.30) = % ZY( + 0(y5) ” =3 NG
(45)
which yields
y 2
RO =5e 7. (46)

2

The integrals in Eqgs. (42) and (43) which give the term
RS:)( y) have to be discussed carefully, and the details are given
in Appendix C. The net result of this analysis is that R, (y)
can be written as

Ri(y) =

where W, (y) can be expressed in terms of elementary and
special functions [see Eq. (C18)]. From this expression, one
obtains the asymptotic behaviors of R (y). In the limity — 0,
one finds

RO +eW () + 0@EH], @)

€
Ri(y) ~ % - Ty(]ny +i)+ 00 Iy, (48)

wherek =2 —In2 — —yE In particular, the small y behavior

in Eq. (48) is consistent with R, (y) ~ y? in agreement with
previous findings [21,23]. For y — oo, one finds

RENC

2 =6 ¢2
Ri(y)~ e ( 3 ) + 0 7".€), (49
y y
where the leading term, vanishing as 1/y?, is expected from
previous analysis [21]. We notice that the right tail of the
R (y) has the same behavior as the right tail of R(y). Quite
interestingly, our perturbative result shows that
S oim B oy o, (50)
c y—oo R(y)
where ¢ and ¢, are defined in Eqs. (7) and (13), respectively.
Another signature of the boundary, revealed by this perturba-
tive calculation, appears in the subleading correction, which
vanishes as 1/y* for R, (y) [see Eq. (49)] instead of 1/y°, as
for R(y) [see Eq. (33)].

C. Discussion and conjectures

It is interesting to compare our perturbative results, valid in
principle for 2 — o < 1, with the exact results which we can

PHYSICAL REVIEW E 86, 011101 (2012)

obtain for the special case « = 1. In this case, corresponding
to Cauchy random variables, i.e., () = 7~ '(1 + 1?)~!, one
can use the results which were obtained by Darling [26] and
Nevzorov [27] in the context of the extreme statistics of such
Lévy statistics to obtain an exact result for R, (z) in terms of
a single integral:

1
Ri(z) = —ﬁ/ 8
0

v
0= gt [raremon (-5 [ )]
8k 7T(1+Z2)3/4 TP\ o 14+ u? “IN

v — )2 g,

(5D

Its asymptotic behaviors are given by
R, (2) ~ l\/2, z—=0 (52)
Ri(2) ~ ;Ziz + glnz +0(E7), z—o00. (53)

On the other hand, one has in this case [Eq. (6)] R(y) ~
1/(wy?) when y — oo such that one obtains also in this case
o=1:

C+ Ri(y)

= =Ry R(y) =2 54

Based on the perturbative result obtained above (50) and on
this exact result (54), we conjecture that this relation c; = 2¢
actually holds for all values of «, as stated in the Introduction
[Eq. (14)]. This conjecture is corroborated below by our
numerical simulations.

Besides, we interpret the exponent of the subleading
correction in R, (y), which decays as 1/y* in Eq. (49), as 4 =
2 4+ o, with ¢ = 2 4+ O(e) while the subleading corrections in
R(y) decay as 1/y° [Eq. (6)] with, instead 5 = 1 + 2a, for
o =2+ O(e). This leads us to conjecture that the subleading
corrections behave actually differently forov > 1 ora < 1, as
announced in the Introduction [Eq. (13)]:

S Aoy, 2>a>1

Cy y

R(Y) = 2
y S 4oy,

(55)
1 >a>0.

Hence, « =1 appears as a critical value regarding these
subleading corrections, for which it is not surprising to
observe logarithmic corrections (53). This also implies that
the coefficient d above (55) is diverging when o — 1 from
above. In the following, we will test this behavior by means of
numerical simulations.

III. NUMERICAL SIMULATIONS

We consider the case where the increments distribution ¢(n)
is the symmetric Pareto distribution

$(m) = { e for Inl > 2¢. (56)

0 otherwise.
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10° : :

1 10 100
n’ y

FIG. 2. (Color online) Case o = 1.5. Behavior of the right tail
for ¢(n) (black) and the the rescaled final position y of free random
walks of n = 1000 step (red, light gray). Histograms are performed
using 107 samples.

This distribution can be sampled efficiently using random
number drawn from a uniform distribution

[rn(0.5)] "
~ (0]

where ran(0, %) is a random number in the interval (0, %). We
construct a large number of random walks; for each random
walk we record the final position x(n) after n steps and compute
the corresponding rescaled variable y = x,/n'/%. We first
present our data for & = 1.5, for which ¢ () = 1.5/|n|>/? for
|n| > 2%/3. For large n, the distribution of y should converge
to the stable distribution centered around O and with an
asymptotic tail

with probability 1,
(57)
with probability 3,

24 4
R(y) = + = + 00 ). (58)

2y
This prediction is confirmed by our direct simulation; in Fig. 2,
we show that the tail of ¢(1) and R(y) coincide when n,y —
0o. The symmetric distribution R(y) is also plotted in Fig. 3
where we also show R (y), the histogram of the rescaled final
position of the random walks constrained to be positive. R, (y)

0.15

o 0.1

0.05

FIG. 3. (Color online) Case o = 1.5. Free random walks of
n = 1000 steps (red, light gray) and random walks constrained to
be positive (blue, dark gray). Histograms are performed using 10°
samples.
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R(y). R.(y)

0.1 1 10 100
y

FIG. 4. (Color online) Case o = 1.5. Free random walks of
n = 1000 steps (red, light gray) and random walks constrained to
be positive (blue, dark gray). Study of the tails. Histograms are
performed using 10® samples. The expected tails 1.5/y>/? and 3/y>/?
are also drawn (solid line).

is clearly defined only for positive y, vanishes at y = 0, and,
when y — oo, decays as ¢ /y¥/2. One of our main predictions
is that, for large y, R (y)/R(y) = 2, which means c; = 3 for
our model. This is verified in Fig. 4.

A. Finite size effect and different values of o

Stable distributions and universal behavior are expected
in the limit of a large number of steps (i.e., n — 00). In
our numerical simulation, the asymptotic behavior of R(y)
and R (y) is studied for n = 1000. Is this number enough
to capture universality? In Figs. 5 and 6, we study how the
finite number of steps affect the function R, (y). Finite size
effects are visible close to the boundary y = 0 where, only
for very large size, the distribution vanishes with the predicted
exponent «/2 = 0.75. For y =~ 10, the convergence with the
size n becomes faster and the constant

cr = lim Ry(y)y*™! (59)
y—>00

0.1 1 10
y

FIG. 5. (Color online) Case o = 1.5. Finite size effects for
random walks constrained to be positive. Long random walks [rn =
5000 (blue, dark gray)] vs short random walks [n = 250 (red, light
gray)]. Histograms are perfomed over 107 samples. The slope y? is
plotted as a guide of the eye (black line).
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R,(y) v*2

O = N W H O ON © ©

FIG. 6. (Color online) Case « = 1.5. Finite size effects for
random walks constrained to be positive. Long random walks [rn =
5000 (blue, dark gray)] vs short random walks [n = 250 (red, light
gray)]. The constant c; = 3 is recovered.

can be correctly estimated even with a moderate number of
steps (see Fig. 6).

Finally, we have checked that our result for ¢, applies
to all range of 0 < o < 2 for symmetric Lévy flights. The
asymptotic tail is more and more pronounced as o < 2. This
means that the insights given by our perturbative calculation
are actually valid for all Lévy flights (see Fig. 7).

B. Subleading corrections

We also check the behavior of the subleading correc-
tion (55). For @ > 1, this correction is expected to behave
like d,y~®!, while for & < 1 we expect that it decays as
~ d,y~?*~! This prediction is confirmed in Fig. 8 for & > 1
and in Fig. 9 foro < 1.

IV. CONCLUSION

To conclude, we have presented a perturbative approach
to the study of a Lévy flight, of index 0 < « < 2 on a half
line, where the perturbative parameter is € = 2 — «. This
approach, following the work of Zoia, Rosso, and Kardar [23],
amounts to construct a perturbative solution of the fractional

FIG. 7. (Color online) Random walks constrained to be positive
for n = 1000 steps and o = 1.75,1.25,0.75,0.5,0.25 (from left to
right). Histograms are perfomed over 107 samples. The asymptotic
behavior ¢ /y**! is also plotted (black line).
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[R,(y) - ¢,y y™*2

10 20 30 40 50 60 70 80 90 100
y

FIG. 8. (Color online) Subleading correction for o« = 1.25 > 1.
Random walks constrained to be positive for n = 1000 steps.
Histograms are performed over 10® samples. The plateau reached
at large y gives a numerical estimation of d .

Fokker-Planck equation (9) with appropriate (nonlocal)
boundary conditions. Here, at variance with Ref. [23], the
perturbation theory is carried out directly for a process which
is continuous both in space and time.

We have then used this perturbative method to compute,
to order O(¢e), the probability density function R. of the
position of such a walker with an absorbing wall at the
origin. A different perturbation scheme (based on path integral)
was used recently [28] to compute the same quantity for
the fractional Brownian motion, a non-Markovian process
displaying anomalous diffusion. Our main result here is to
give a precise conjecture, valid for any value of «, on the
relation between the tail of this distribution and the tail of the
steps of the random walk. Numerical simulations confirm our
conjecture.

This perturbative scheme opens the way to an analytical
study and can be used for any confined domain for which the
Brownian solution, corresponding to o = 2, is known. More
realistic confined geometry, such as the one relevant to the
scattering of solar photons, can be studied along these lines.
Here, we have proposed the simplest of these geometries. A
first extension of this study concerns the study of the extreme
statistics of a Lévy bridge, which is a Lévy random walk

[R+(y) _ C+/ya+1] y2 a+1

0 20 40 60 80 100

FIG. 9. (Color online) Subleading correction for ¢ = 0.5 < 1.
Random walks constrained to be positive for n = 1000 steps.
Histograms are performed over 107 samples. The plateau reached
at large y gives a numerical estimation of d, .
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on the time interval [0,¢] constrained to start and end at the
origin. Such a constrained Lévy random walk, for which little
is known, has recently received some attention in statistical
physics [29] (in relation with some real-space condensation
phenomena) as well as in finance [30]. Another interesting
application of such a perturbative calculation could be the
study of nonintersecting Lévy walkers, the so-called “vicious”
Lévy walkers, which were recently introduced in Ref. [31].
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APPENDIX A: PERTURBATIVE SCHEME TO ORDER O (¢)

In this appendix, we give a short derivation of the expression
for the first correction PV (x,x,¢) [Eq. (20)] given in Eq. (21).
The equation for PV (x,x,?) reads as [see Egs. (15) and (20)]

3 P (x,x0,1) = Ho PV (x,x0,1) + Hi PO (x,x0,0), (A1)
with the initial conditions PP (x,xp,t =0)=0 and
PO (x,x¢,t) is given in (17). Equation (A1) is inhomogeneous
and we can obtain its solution using the method of variation
of constants. We look for a solution under the form

PY(x,x0,1) = / D), () dg, (A2)

where v, and E(g) are the eigenvectors and eigenvalues of
Ho, while the coefficient c((]l)(t) depends explicitly on time ¢.
Plugging Eqgs. (A2) and (17) into (A1), one finds

f dq' "y (x)d,c) (1) (A3)

= / dq'e® Ty (o) Ha g (x). (Ad)
We multiply the left- and right-hand sides of Eq. (A3)
by ¥ (x) and we then integrate both sides over x. Using
the normalization relation f dx I/I;(x)lﬂqf(x) =38(qg —q), we
obtain

eE(q)zatcl(]l)(t) — /dq/<q|7_ll|q/)w:]",()co)eE(q/)t7 (AS5)

where we have used the bra-ket notation, borrowed from
quantum mechanics, and such that (x|g) = v¥,(x). This can
be straightforwardly integrated, using the boundary condition
attime t = 0:

E(@) _ oE(gqi

o . / / * e—
¢, ()= /dq {qHilg Vg (x0) E(q) — E(g)’

By combining (A6) and (A2), one obtains Eq. (20) given in
the text.

(A6)

PHYSICAL REVIEW E 86, 011101 (2012)

APPENDIX B: EVALUATION OF AN INTEGRAL

Here, we compute the principal value of the integral
entering the matrix element in Eq. (40):

~ qq'k* In k|

oo K= g?)(k* —q7?)

= ,PV/oodk Knk (B1)
I R e e W

Without any loss of generality, since I(g,q") = I(q’,q), we
assume ¢’ > ¢. By performing the change of variable k = s ¢,
one obtains straightforwardly

I(q.q) = PV/

2 I I 2 ’ !
1q.4) = 2 fi (q—> Ing + =2 > (q—> . (B2
T q T q
where
o0 52
fl(x) :PV/O dSm, (B3)
_py [Tas s B4
Sa(x) = /O s(s2 67 =) (B4)
We notice that f,(x) can be written as
o0 In(s/x)
f2(x) = fl(x) Inx + PV‘/(; ds S2m. (BS)

The purpose of this trick (BS) is that the integrand has now
only a simple pole in s = 1 so that, taking the principal value,
yields a perfectly smooth function of x. This integral can then
be evaluated to yield

7.[2

fz(x)=f1(x)1nx+4(1+x), (B6)
so that one has
N 24 (4 , qq
I = — — )1 _— B7
(q.9") nzﬁ(g)nq +2(q+q,) (B7)

Looking at the expression of fj(x) above (B3), one sees that
for x = 1, the integrand has a double poleins = 1 and one thus
expects f1(x) to be highly singular in x = 1. To characterize
it, we compute its Fourier transform

fipy =2 /0 dxfi(x) cos (px), (B8)

which yields after straightforward manipulations of Eq. (B3)
(which can be done, e.g., with MATHEMATICA)

2

A T
Silp) = — o8 p, (B9)
which yields
’ 7.[2
fi (q—> =295 ¢, (B10)
q 4
and finally
1 qq
1(q,9)=8(g —q)=g*’Ing + —————, Bil
(g.9") =é(q q)zq q G +a) (B11)

which is used in Eq. (40) in the text.

011101-8



LEVY FLIGHTS ON THE HALF LINE

APPENDIX C: DETAILS ABOUT THE PERTURBATIVE
CALCULATION OF THE PROPAGATOR WITH
AN ABSORBING WALL

This appendix is devoted to the analysis of ZV(y, o) given
by the sum of the two terms in Eqs. (41), (42), and (43) in the
limit yg — 0. The first term Z4(y,yp) is easy to analyze and
yields

Za(y.y0) = =209, RV () + 0(y5), (Cl)

where R((y) admits the integral representation given in
Eq. (32).

The analysis of the small yy behavior of Zg(y,yo) given
in Eq. (43) is more subtle. To deal with this double integral
over k; and k;, we first make the change of variable k| = u’
and k, = uu’ and observe that the integral over 1’ can then be
performed to yield

I “
Zg(y.y0) = m/o d”m[e

_ Guy)? 1 _ G-uyg)? _ Guy)?
—e 4 + —le 4u? —e 2 .
u

_ (y+z«y0)2
)

(C2)
Using now the identity
u 1 1
WD+ @t 12 w—nutrp
we split Zg(y,yo) into two parts:
Zs(y.30) = }[L(y W +LowL (€

where

Zi(,y0) /oo du [‘ﬂo)z _om?
5 = e 4 —e p)
H0 o (u+1)7?

1 _ (—uyp)? _ (tuyg)?
+—le w2 — e a2 s (CS)
u

0 d )2 . 2
u _ Ortuyp) _ O—uyp)
Tr(z,w) =/ ( |:e T —e 1
0

u—Du+1)2
1 _ (,\‘*uvmz _ (u+uv0)2
+—|e w2 — e 4u? . (C6)

u
In Z»(y,y0) [Eq. (C6)], the small y, limit can be taken easily.
It yields

2(Y,Y0) = Y Yo A (u—l)(u+1)2 e ue
+0(»). (C7)

We now decompose Z;(y,yo) [Eq. (C6)] into two parts
Z1(y,y0) = Z11(y,y0) + Z12(y, Y0)s

du (rtuyg 2 (yfuvg)z
s — - - 4 — p iy s 8
Z11(y,0) /0 PN <e e > (C8)

Z_ ( ) /OO du _(_v—u,\;o)z _(V+u§0)2
s = —_— e du — e 4u .
12LY, Yo ) w12

In Z12(y,y0), it is straightforward to obtain the small yy
behavior as

du 2

o0
Zio(y,yo) = yyo/ ——e «?
0

PR + 0(y5)- (C9)
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The integral in Z;(y,yp) contains a logarithmic singularity
when yo — 0, which is a bit tricky to extract. To do so,
we first perform a change of variable s = you and then add
and subtract the term y, f,* ds(e™"/* — e /47%) (s + y)2.
Now using

oo
1
ds————(™ —1)=y(nyy+Iny +
/0 (S+y0)2( ) = y(nyp y+ve)
+ O(yoIn o), (C10)

one obtains, for yp — 0,

T b yoye ™ (vg +Iny)
(C11)

Z11(y,y0) = (Yo In yg) ye
— e "4 Q(y) + 0 (y3 In yo),

where

o= [T G e 12 T (5)].

Finally, by combining Egs. (C7), (C9), and (C11), one obtains
the small yy behavior of Zg(y,yp) in Eq. (C4) as

(C12)

ZB(yvyO)
- % [(yo In yo) — yo<Q(y ) e —In(y) — A(y))]
+ O(y§ In yo), (C13)
where A(y) is given by
Y 1 I 2y
A(y)—/o du(u_l)(u+1)2|:ue u]
(C14)

One can then obtain Z(y,yo) = ZV(y,y0) — €[Za(y.y0) +
Zp(y,y0)] in the limit yy — O from Egs. (45), (Cl), and
(C13) as

200 =0 (1= Sny) =™ —enZi), (€15)

2\/_
where Z;(z) can be read off straightforwardly from Egs. (C1)
and (C13):

= —29,RD(y) — —2—e™/4

(? —ye—Iny— A(y))

Zi(y)
(C16)

This perturbative expansion (C15) is fully consistent with the
expected behavior [21,25]

ZO®y) —ezWV(y),

(C17)

Z(y,50) ~ ¢ Z(y), yo = 0,Z(y) =

where Z((y) is given in Eq. (C16). These integrals that enter
the definition of Z"(y) can then be computed, for instance
using MATHEMATICA, to yield the following expression of
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R, (y) from Eq. (44):
Ri(y) = RO + W, (y) + O(eM)],

1 4
Wo(y) = E[60 —24yp —481In2 — y*(18 — 6y — 12In2) — 6(2 — /my)e T + y2(y? — 4)y7 2 Fs (1,1;

. %e“fmf (3) - 370% ~ 2Eei (3) + 30° - 4Ei <yT2> }

PHYSICAL REVIEW E 86, 011101 (2012)

N | D

2
,3;y—)
4

(C18)

where Rf)(y) is given in Eq. (46) and ,F, (1,1' 2 3;u) is a hypergeometric series [32]. From this expression (C18), it is

L R)

straightforward to obtain the asymptotic behaviors given in the text [Egs. (48) and (49)].
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