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Abstract

We discuss the non-local ‘Variant Monte Carlo’ algorithm which has been successfully employed in the study of driven
elastic strings in disordered media at the depinning threshold. Here we prove two theorems, which establish that the algorithm
satisfies the crucial ‘no-passing’ rule and that, after some initial time, the string exclusively moves forward. The Variant Monte
Carlo algorithm overcomes the shortcomings of local methods, as we show by analyzing the depinning threshold of a single-pin
problem.
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1. Introduction understanding of this transitigd]. A number of ex-
periments on the contact line of a liquid meniscus on
Over the past few years relevant progress has beena rough substrate have also been analyzed].
made in the study of disordered elastic interfaces. One  In this context, we have introduced new algorithms
of the most intriguing problems concerns the response which allow us to solve the depinning problem at
of the interface to an external forge Two regimesare  zero temperature in finite samples. This paper dis-
observed at zero temperature: (i) Wheris smaller  cusses mathematical aspects of the Variant Monte
than a certain critical threshold., the interface is Carlo (VMC) algorithm, which have not been pub-
pinned; (i) when the forcef passes the threshold |ished yet, although they were implied in past works
value(f > f.) the system undergoes the so-called de- [8—10]. In Section2, we prove the no-passing theo-
pinning transitior{1], which has been widely investi-  rem and the forward-moving property for the VMC
gated during the last yeai2,3]. The functional renor-  gigorithm, then in SectioB we discuss in detail the
malization group has allowed to gain a much deeper single-pin problem.
The VMC algorithm is able to detect the critical
" * Corresponding author. force and the critical configuration (i.e. the ultimate
E-mail addresswerner.krauth@ens.{iV. Krauth). pinned configuration) of a one-dimensional string with
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short-range elasticity moving on a disordered two- the strings in the sample

dimensional lattice. We have also developed a con- N

tinuous algorithn{11], which is remarkably useful in ~ fe = ?Zaaf(fd (7). ©
higher dimensions and allows to handle long-range in-

teractions. The VMC algorithm simply moves a single front of

minimal length £ among the unstable forward and
backward fronts. The VMC algorithm is not a valid
] ] Monte Carlo algorithm. However, each possible move
2. Variant Monte Carlo algorithm within the VMC algorithm is also allowed with all the
non-local algorithms, and its depinning threshold and
We consider a string’ = {h!};—o,...;, moving at ultimate pinned configuration is the same as the one of
timestr =0, 1, 2, ... on a spatial square lattice of side each non-local algorithm. We will show that the above

L, in a random potentiaV (i, h) with h =0, ..., M. definition of f, is appropriate for the VMC algorithm.
The energy of the string is This implies that it is also correct for general non-local
rules, even if they are not restricted to moving fronts
L only [8].
E(h')y=>_[V(i.h}) = fh}+ Ee(|hl 1 — hi1)]. (1) We stress that these definitions and the following
i=1 theorems can be easily extended to a genédimen-

sional interface with a convex elastic energy. However,
the VMC seems to be practically useful only for one-
dimensional interfaces with short-range elastic energy
as the total number of fronts remains polynomial. We
prove the following theorems:

where f is the external driving force andfe a
short-range convex elastic energy. We assume toroidal
boundary conditions with a winding term fgt such
that, at largef, the line keeps winding around the
torus, lowering the energy at each time step. In Sec-
tion 3, we show that a non-local algorithm needs to be
used allowing an arbitrary number of poirits move
simultaneously by one site in any directif®j.

Following Ref.[8] we define a ‘forward front’ of
length & as a contiguous set of pointsi + 1,...,
i + k — 1 which move together in forward direction.
A ‘backward front’ is defined similarly. A frontis ‘un- X ,
stable’ if moving it lowers the energfl). One has We suppose the gmstenge of a strigforbidden by
to check only~ 2L2 fronts to establish whether a the theorem (sekig. 1(b)):
string is pinned, i.e. has no unstable front. The ‘de- (y  g@?) — EP) <0,
pinning force’ f;(h%) of a stringh® is the smallest
non-negativef which destabilizes one of its forward
fronts. The ‘critical force’ of a whole sample can then Due to the definition of the VMC dynamics the front
be defined as the largest of the depinning forces of all connectingh? to h¥" (seeFig. 1(c)) must be stable.

Theorem 1. Leti* be a stable configuration. Then the
VMC algorithm cannot reach a configuratidr¥ with
hg’ > hY for somei from a starting configuratior?

with hf < hevi.

This theorem is illustrated iRig. 1(a, b, c and d).
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Fig. 1. lllustration of the two theorems.
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Moreover, the stability ok assures that the front con-
nectingh® to ¥ (seeFig. 1(d)) is also stable:

0)
(1
Subtracting Eq(3l) from Egs.(4) and using the ex-
pression(1) leads to

Eei(|hy, — 11) — Eei(1h ) + Eei(h}, + 11)

— Eel(lhfy]) > 0;

EMW) — EhP) >0,

ER’") — E(h%) > 0. )

(®)

where, without any loss of generality, we ﬁéyﬂ =

h% 4 =0 (seeFig. 1(a)). Fromh?, < h% we write:

hE <h% —1<h®,
R < B +1<h®. ©)

A convex function f(x) in [x,y] satisfies for all

x1,x2 € [x, yI:

ftx1+ @ —0)x2) <tf(x1) + (A —1) f(x2),
o<l

)

Takingxi = hﬁ, andx; = 1%, from (6) we can find &

m?
such that:
he —1=thb + @1 —nh®
he +1=1th% + (1 —n)hb.

Using this relation to impose the convexity of the elas-
tic energy in(5) we end up with a contradiction which
demonstrates the theorem.
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Theorem 2. Let 1% be pinned in forward direction.
Then, the VMC algorithm can at most recede towards
a string h# (hf < k¢ Vi), which is itself pinned in
forward direction. The analogous property holds for
strings pinned in backward direction.

An illustration of this theorem is displayed in
Fig. 1(e, f, g and h). We suppose that a configuration
hY, forbidden by the theorem, is reached by the string:

() E®m)-EWmP)<0,
() h! >h¢ forsomei.

©)

The instability of the front connecting® to h?
(Fig. 1(e)) implies

Eh?) — E(h*) <O. (10)
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We may connect the stririg* to the stringz” by mov-

ing two fronts (seeFig. 1(g)).! The forward front is
stable becausk” is pinned in forward direction. The
backward front is also stable because it is smaller than
the front connecting® to ## (VMC dynamics). Thus
we conclude:

E() — E(h%) > 0. (11)

Eq.(11)contradicts the sum ¢81) and (10) invalidat-
ing the starting hypothesis and proving the theorem.
The ‘no-passing theoremTheorem } assures that
the VMC algorithm connects an arbitrary initial state
with the critical string, whereas the ‘forward-moving
theorem’ Theorem 2 allows us to understand that
Eq. (2) is indeed appropriate: one might have imag-
ined that the elastic line which cannot advancefat
could move backwards and then be avoided during the
subsequent forward evolutiohheorem Z2xcludes the
existence of such loopholes. Finally we remark that
both theorems transpose correctly to the lattice the
analytical properties of the continuum equation of mo-
tion [12].

3. Single-pin problem

We now discuss the motion both of a continuous
and a discrete elastic line. The line is pinned at a sin-
gle point which corresponds, with periodic boundary
conditions, tohg = Ay = 0. The equation of motion
for the continuous line is

dh/dt = —0Ee)/dh + f. (12)

A discreteharmonic elastic energyEe = %|hi+1 —
h;|? then corresponds to the continuous eneligy(x)
= %(ah/ax)z, to be integrated over. The stationary
solution under the indicated pinning condition is eas-
ily seen to bei(x) = %fx(L — x), as shown irFig. 2
for L =10.

We may also follow the dynamics of the discretized
problem from a starting configuratidi‘,n:0 =0Vi. Of
particular interest is the case= 1 + ¢, with ¢ > 0.

In analogy withTheorem 1we have also to consider the case
shown inFig. 1(h), where we suppose that the line starting friofn
moves toh* instead ofk? . Using the convexity conditioli7) the
theorem remains valid.
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Fig. 2. Single-pin problem with harmonic elasticity. The station-
ary solution of the VMC algorithm is close to the continuum so-
lution. The stationary solution of the local Monte Carlo algorithm
approaches the continuum solution only fo& fioc = 1.

The VMC solutions are given in the figure. They have
to be contrasted with the solutions of the local al-
gorithm (only fronts of length 1 can be moved). For
f = 1— ¢, the starting configuration is stable under

local dynamics, as any forward move of a single point
costs an elastic energy 1, more than what is recovered

through the driving force. The VMC solution is recov-
ered only forf > fioc1. This specific ‘critical force’
fioc Of the local algorithm is independent &f only
for the harmonic elastic energy.

The local algorithm is more pathological for stron-

ger than harmonic elastic energies, which have proven

to be important in this conteX9]. This is evident
in the metric constraint model (s¢8]). As an ex-

ample (stronger than harmonic, weaker than metric

constraint) we treat a quartic elastic enerfy =
%2|h,-+1 — hi|* (corresponding to a continuous en-
ergyEe|(x) = %Z(ah/ax)“). The stationary continuum
solution of Eq.(12): h(x) = SCHY3LY3 — (L —
2x)#3], is again recovered with the VMC algorithm.
However, the specific critical force at which the lo-
cal algorithm becomes equivalent to the VMC metho
grows with L as fioc ~ (3 /)%3L?/3, i.e. diverges
with L.
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We conclude that the local dynamics is inconsistent
even for a single-pin problem. In general disordered
samples, it similarly fails to describe the real dynamics
of the continuum and is very sensitive to exceptional
(local) configurations of the disorder potential, which
can block the string even of an infinite systems, and
eliminate the interplay between disorder and (collec-
tive) elasticity which is at the heart of the depinning
problem.
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