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Abstract

We discuss the non-local ‘Variant Monte Carlo’ algorithm which has been successfully employed in the study o
elastic strings in disordered media at the depinning threshold. Here we prove two theorems, which establish that the
satisfies the crucial ‘no-passing’ rule and that, after some initial time, the string exclusively moves forward. The Varian
Carlo algorithm overcomes the shortcomings of local methods, as we show by analyzing the depinning threshold of a s
problem.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Over the past few years relevant progress has b
made in the study of disordered elastic interfaces. O
of the most intriguing problems concerns the respo
of the interface to an external forcef . Two regimes are
observed at zero temperature: (i) Whenf is smaller
than a certain critical thresholdfc, the interface is
pinned; (ii) when the forcef passes the thresho
value(f > fc) the system undergoes the so-called
pinning transition[1], which has been widely invest
gated during the last years[2,3]. The functional renor-
malization group has allowed to gain a much dee
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understanding of this transition[4]. A number of ex-
periments on the contact line of a liquid meniscus
a rough substrate have also been analyzed[5–7].

In this context, we have introduced new algorith
which allow us to solve the depinning problem
zero temperature in finite samples. This paper
cusses mathematical aspects of the Variant Mo
Carlo (VMC) algorithm, which have not been pu
lished yet, although they were implied in past wor
[8–10]. In Section2, we prove the no-passing the
rem and the forward-moving property for the VM
algorithm, then in Section3 we discuss in detail th
single-pin problem.

The VMC algorithm is able to detect the critic
force and the critical configuration (i.e. the ultima
pinned configuration) of a one-dimensional string w
.
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short-range elasticity moving on a disordered tw
dimensional lattice. We have also developed a c
tinuous algorithm[11], which is remarkably useful in
higher dimensions and allows to handle long-range
teractions.

2. Variant Monte Carlo algorithm

We consider a stringht = {ht
i}i=0,...,L moving at

timest = 0,1,2, . . . on a spatial square lattice of sid
L, in a random potentialV (i, h) with h = 0, . . . ,M .
The energy of the string is

(1)E(ht ) =
L∑

i=1

[
V (i, ht

i) − f ht
i + Eel

(|ht
i+1 − ht

i |
)]

,

where f is the external driving force andEel a
short-range convex elastic energy. We assume toro
boundary conditions with a winding term forf such
that, at largef , the line keeps winding around th
torus, lowering the energy at each time step. In S
tion 3, we show that a non-local algorithm needs to
used allowing an arbitrary number of pointsi to move
simultaneously by one site in any direction[8].

Following Ref. [8] we define a ‘forward front’ of
length k as a contiguous set of pointsi, i + 1, . . . ,

i + k − 1 which move together in forward directio
A ‘backward front’ is defined similarly. A front is ‘un
stable’ if moving it lowers the energy(1). One has
to check only∼ 2L2 fronts to establish whether
string is pinned, i.e. has no unstable front. The ‘
pinning force’ fd(hα) of a stringhα is the smalles
non-negativef which destabilizes one of its forwar
fronts. The ‘critical force’ of a whole sample can th
be defined as the largest of the depinning forces o
the strings in the sample

(2)fc = max{hα} fd(hα).

The VMC algorithm simply moves a single front
minimal length k among the unstable forward an
backward fronts. The VMC algorithm is not a val
Monte Carlo algorithm. However, each possible mo
within the VMC algorithm is also allowed with all th
non-local algorithms, and its depinning threshold a
ultimate pinned configuration is the same as the on
each non-local algorithm. We will show that the abo
definition offc is appropriate for the VMC algorithm
This implies that it is also correct for general non-lo
rules, even if they are not restricted to moving fro
only [8].

We stress that these definitions and the follow
theorems can be easily extended to a generald-dimen-
sional interface with a convex elastic energy. Howev
the VMC seems to be practically useful only for on
dimensional interfaces with short-range elastic ene
as the total number of fronts remains polynomial.
prove the following theorems:

Theorem 1. Lethα be a stable configuration. Then th
VMC algorithm cannot reach a configurationhγ with
h

γ

i > hα
i for somei from a starting configurationhβ

with h
β
i � hα

i ∀i.

This theorem is illustrated inFig. 1(a, b, c and d).
We suppose the existence of a stringhγ forbidden by
the theorem (seeFig. 1(b)):

(3)
(I) E(hγ ) − E(hβ) < 0,

(II) h
γ

i > hα
i for somei.

Due to the definition of the VMC dynamics the fro
connectinghβ to hγ ′

(seeFig. 1(c)) must be stable
Fig. 1. Illustration of the two theorems.
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Moreover, the stability ofhα assures that the front con
nectinghα to hγ ′′

(seeFig. 1(d)) is also stable:

(4)
(I) E(hγ ′

) − E(hβ) > 0,

(II) E(hγ ′′
) − E(hα) > 0.

Subtracting Eq.(3I) from Eqs.(4) and using the ex
pression(1) leads to

Eel
(|hα

m − 1|) − Eel
(|hα

m|) + Eel
(|hβ

m + 1|)

(5)− Eel
(|hβ

m|) > 0;
where, without any loss of generality, we seth

β

m+1 =
hα

m+1 = 0 (seeFig. 1(a)). Fromh
β
m < hα

m we write:

(6)
hβ

m � hα
m − 1< hα

m,

hβ
m < hβ

m + 1� hα
m.

A convex function f (x) in [x, y] satisfies for all
x1, x2 ∈ [x, y]:
f

(
tx1 + (1− t)x2

)
� tf (x1) + (1− t)f (x2),

(7)0� t � 1.

Takingx1 = h
β
m andx2 = hα

m, from (6) we can find at
such that:

(8)
hα

m − 1= thβ
m + (1− t)hα

m

hβ
m + 1= thα

m + (1− t)hβ
m.

Using this relation to impose the convexity of the el
tic energy in(5) we end up with a contradiction whic
demonstrates the theorem.

Theorem 2. Let hα be pinned in forward direction
Then, the VMC algorithm can at most recede towa
a string hβ (h

β
i � hα

i ∀i), which is itself pinned in
forward direction. The analogous property holds f
strings pinned in backward direction.

An illustration of this theorem is displayed
Fig. 1(e, f, g and h). We suppose that a configurat
hγ , forbidden by the theorem, is reached by the stri

(9)
(I) E(hγ ) − E(hβ) < 0,

(II) h
γ

i > hα
i for somei.

The instability of the front connectinghα to hβ

(Fig. 1(e)) implies

(10)E(hβ) − E(hα) < 0.
We may connect the stringhα to the stringhγ by mov-
ing two fronts (seeFig. 1(g)).1 The forward front is
stable becausehα is pinned in forward direction. Th
backward front is also stable because it is smaller t
the front connectinghα to hβ (VMC dynamics). Thus
we conclude:

(11)E(hγ ) − E(hα) > 0.

Eq.(11)contradicts the sum of(9I) and (10), invalidat-
ing the starting hypothesis and proving the theorem

The ‘no-passing theorem’ (Theorem 1) assures tha
the VMC algorithm connects an arbitrary initial sta
with the critical string, whereas the ‘forward-movin
theorem’ (Theorem 2) allows us to understand th
Eq. (2) is indeed appropriate: one might have ima
ined that the elastic line which cannot advance afc

could move backwards and then be avoided during
subsequent forward evolution.Theorem 2excludes the
existence of such loopholes. Finally we remark t
both theorems transpose correctly to the lattice
analytical properties of the continuum equation of m
tion [12].

3. Single-pin problem

We now discuss the motion both of a continuo
and a discrete elastic line. The line is pinned at a
gle point which corresponds, with periodic bounda
conditions, toh0 = hL = 0. The equation of motion
for the continuous line is

(12)∂h/∂t = −∂Eel/∂h + f.

A discreteharmonic elastic energyEel = 1
2|hi+1 −

hi |2 then corresponds to the continuous energyEel(x)

= 1
2(∂h/∂x)2, to be integrated overx. The stationary

solution under the indicated pinning condition is e
ily seen to beh(x) = 1

2f x(L − x), as shown inFig. 2
for L = 10.

We may also follow the dynamics of the discretiz
problem from a starting configurationht=0

i = 0 ∀i. Of
particular interest is the casef = 1 ± ε, with ε � 0.

1 In analogy withTheorem 1we have also to consider the ca

shown inFig. 1(h), where we suppose that the line starting fromhβ

moves tohλ instead ofhγ . Using the convexity condition(7) the
theorem remains valid.
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Fig. 2. Single-pin problem with harmonic elasticity. The statio
ary solution of the VMC algorithm is close to the continuum s
lution. The stationary solution of the local Monte Carlo algorith
approaches the continuum solution only forf > floc = 1.

The VMC solutions are given in the figure. They ha
to be contrasted with the solutions of the local
gorithm (only fronts of length 1 can be moved). F
f = 1 − ε, the starting configuration is stable und
local dynamics, as any forward move of a single po
costs an elastic energy 1, more than what is recov
through the driving force. The VMC solution is reco
ered only forf > floc1. This specific ‘critical force’
floc of the local algorithm is independent ofL only
for the harmonic elastic energy.

The local algorithm is more pathological for stro
ger than harmonic elastic energies, which have pro
to be important in this context[9]. This is evident
in the metric constraint model (see[8]). As an ex-
ample (stronger than harmonic, weaker than me
constraint) we treat a quartic elastic energyEel =
1
12|hi+1 − hi |4 (corresponding to a continuous e
ergyEel(x) = 1

12(∂h/∂x)4). The stationary continuum

solution of Eq.(12): h(x) = 3
8(

3f
2 )1/3[L4/3 − (L −

2x)4/3], is again recovered with the VMC algorithm
However, the specific critical force at which the l
cal algorithm becomes equivalent to the VMC meth
grows with L as floc ∼ (3

2f )2/3L2/3, i.e. diverges
with L.
We conclude that the local dynamics is inconsist
even for a single-pin problem. In general disorde
samples, it similarly fails to describe the real dynam
of the continuum and is very sensitive to exceptio
(local) configurations of the disorder potential, whi
can block the string even of an infinite systems, a
eliminate the interplay between disorder and (coll
tive) elasticity which is at the heart of the depinni
problem.

References

[1] M. Kardar, Nonequilibrium dynamics of interfaces and line
Phys. Rep. 301 (1998) 85.

[2] T. Nattermann, S. Stepanow, L.H. Tang, H. Leschhorn, D
namics of interface depinning in a disordered medium, J. P
(Paris) 2 (1992) 1483.

[3] O. Narayan, D.S. Fisher, Threshold critical dynamics of driv
interfaces in random media, Phys. Rev. B 48 (1993) 7030.

[4] P. Le Doussal, K.J. Wiese, P. Chauve, Two-loop functio
renormalization group theory of the depinning transition, Ph
Rev. B 66 (2002) 174201.

[5] M.O. Robbins, J.F. Joanny, Contact angle hysteresis on ran
surfaces, Europhys. Lett. 3 (1987) 729.

[6] S. Moulinet, A. Rosso, W. Krauth, E. Rolley, Width distribu
tion of contact lines on a disordered substrate, Phys. Rev.
(2004) 035103(R).

[7] S. Moulinet, C. Guthmann, E. Rolley, Roughness and dyn
ics of the contact line of a viscous fluid on a disordered s
strate, Eur. Phys. J. E 8 (2002) 437.

[8] A. Rosso, W. Krauth, Monte Carlo dynamics of driven elas
strings in disordered media, Phys. Rev. B 65 (2002) 01220

[9] A. Rosso, W. Krauth, Origin of the roughness exponent
elastic strings at the depinning threshold, Phys. Rev. Lett
(2001) 187002.

[10] T. Goodman, S. Teitel, Roughness of a tilted anharmonic st
at depinning, Phys. Rev. E 69 (2004) 062105.

[11] A. Rosso, W. Krauth, Roughness at the depinning threshold
a long-range elastic string, Phys. Rev. E 65 (2002) R02510

[12] A.A. Middleton, Asymptotic uniqueness of the sliding state
charge-density waves, Phys. Rev. Lett. 68 (1992) 670.


	Variant Monte Carlo algorithm for driven elastic strings  in random media
	Introduction
	Variant Monte Carlo algorithm
	Single-pin problem
	References


