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A novel mathematical treatment is proposed for computing the time evolution of dynamic nuclear

polarization processes in the low temperature thermal mixing regime. Without assuming any

a priori analytical form for the electron polarization, our approach provides a quantitative picture

of the steady state that agrees with the well known Borghini prediction based on thermodynamic

arguments, as long as the electrons–nuclei transition rates are fast compared to the other relevant

time scales. Substantially different final polarization levels are achieved instead when the latter

assumption is relaxed in the presence of a nuclear leakage term, even though very weak,

suggesting a possible explanation for the deviation between the measured steady state

polarizations and the Borghini prediction. The proposed methodology also allows us to calculate

nuclear polarization and relaxation times, once the electrons/nuclei concentration ratio and the

typical rates of the microscopic processes involving the two spin species are specified. Numerical

results are shown to account for the manifold dynamic behaviours of typical DNP samples.

I. Introduction

Dynamic Nuclear Polarization (DNP) techniques are attracting

increasing interest due to their proven ability to improve the

sensitivity of Nuclear Magnetic Resonance (NMR) experiments

by several orders of magnitude, not only in the solid state1 but

also in solution.2 Although the disruptive potential of DNP is

nowadays well known and accepted, the articulated physical

scenario underlying these complex phenomena is still puzzling

the scientific community.

In the solid state, three different DNP regimes can be specified

according to the resonance frequency on of the nuclei to be

polarized, the width Doe of the Electron Spin Resonance (ESR)

line of the free radicals used as polarization source and the

magnitude of dipolar coupling between those radicals 1/T2e.

When on > Doe the main mechanism for nuclei to polarize,

known as the Solid Effect (SE), proceeds via microwave (MW)

assisted forbidden transitions involving simultaneous flip-flops

or flip-flips of one electron and one nucleus in mutual dipolar

interaction. The SE model has been extensively described

in ref. 3 and the role played by spin diffusion was discussed

in ref. 4. More recently, an exact quantum mechanical treat-

ment of the SE based on the density matrix approach has

been proposed by Hovav et al.5,6 and by Karabanov and

collaborators.7

On the other side, when on o Doe, nuclei can flip between

different Zeeman levels within an energy conserving three particle

mechanism involving a simultaneous flip-flop of two electron

spins (referred to as the ISS process hereafter). Such a process,

driven by electron–electron and electron–nucleus time dependent

dipolar interactions, does not involve forbidden transitions and it

is thus in general more effective than the SE. As far as the typical

interaction time T2e between different paramagnetic centres is

long compared to the electron spin lattice relaxation time T1e

(i.e. the unpaired electrons are – on average – relatively far from

each other), the polarization mechanism is referred to as the

Cross Effect (CE) and was first analyzed in ref. 8–11 The CE

model has been successfully exploited to describe DNP with

bi-radicals,12,13 i.e. polarization procedures where the polarizing

agents are tailored molecules carrying two unpaired electrons

having resonance frequencies differing exactly by on. Similarly

to the SE, also the CE model has been rigorously computed by

ab initio quantum mechanical techniques.14,15

However, the novel applications, which in the last decade have

renewed the attention on DNP due to their potential impact on

biosciences,16,17 are based on samples which generally fall into

none of the two models previously described. The nuclei of

interest for this kind of applications (typically 13C or 15N) have

a low-gyromagnetic ratio gn and, as a consequence, a resonance

frequency on significantly smaller than the width of the typical

radicals used as polarizing agents (trityls or nitroxides). More-

over, the concentration of these radicals, usually above 10 mM in

the solution to polarize, leads to non-negligible electron spin–spin

interactions, i.e. to the condition 1/T2e c 1/T1e that defines

the Thermal Mixing (TM) regime. Under TM assumptions,

a Centro Ricerche Bracco, Bracco Imaging Spa, via Ribes 5,
10010 Colleretto Giacosa (TO), Italy.
E-mail: sonia.colombo@bracco.com
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when a transition is saturated by an external, frequency

selective, microwave field, the whole electron spin distribution

reacts through energy conserving flip-flops (spectral diffusion)

and evolves towards a new steady state different from Boltzman

equilibrium. Hence, via the previously introduced ISS processes,

the nuclear Zeeman populations are also perturbed and,

depending on the frequency of the saturated electron transition,

possibly result in depletion or enhancement of the population of

the ground state and thus in an enhanced nuclear magnetic

order. At high temperature, where a linear expansion of the

density matrix can be used, the evolution of the electron and

nuclear polarizations is accounted for by a set of rate equations

formulated by Provotorov.3,18–21 At the typical temperatures

(about 1 K) where most of the DNP experiments aimed to

obtain substantial nuclear polarization values (>0.1) are per-

formed, however, a linear expansion of the density matrix is not

allowed and consequently the Provotorov approach does not

apply. Fortunately under these conditions, the electron reso-

nance lines of the free radicals used as polarizing agents are

normally inhomogeneously broadened and can likely be

depicted as the convolution of several individual packets of

given resonance frequency, mutually connected by the electron–

electron dipolar interaction.3 Hyperpolarization via TM at low

temperature has been first discussed by Borghini, who also

calculated the steady state solution for the electron and nuclear

polarization after imposing certain constraints to the model.22

The same – steady state – result has been achieved by Abragam

and Goldman3 using a slightly different mathematical proce-

dure. The Borghini prediction has the merit of reproducing, at

least qualitatively, many observations obtained in DNP experi-

ments at low temperature.23–25 It has, at the same time, several

limitations, the major of them are listed below.

(i) It provides a picture of the steady state polarization

without contributing in any way to the understanding of the

time evolution of nuclear spin order towards equilibrium.

(ii) It is obtained by assuming an a priori analytical form for

the electron spin polarization.

(iii) It is derived under strong saturation conditions and in

the limit of perfect contact between the electron and the

nuclear reservoirs; the latter hypothesis consists in assuming

highly effective ISS processes.

As a consequence of the constraints (ii) and (iii), the model

leads to a final steady state nuclear polarization which substan-

tially depends only on the lattice temperature, the magnetic field

in which the DNP phenomenon takes place and the width of the

electron resonance line. The sample specific parameters like

electron and nuclear spin-lattice relaxation rates and the relative

concentration of the two spin species play only a secondary role.

In this work we aim to overcome these three limitations by

introducing a dynamic analysis of the low temperature TM

model (described in detail in Section II) based on a set of rate

equations presented in Section III which spontaneously pro-

vide the time evolution laws of the electron and nuclear

polarizations without any a priori assumption of their func-

tional form. The results obtained by numerically solving the

rate equations are reported in Section IV and discussed in

Section V, with particular emphasis on themodifications occurring

in the steady state and in the dynamic parameters in the presence

of nuclear leakage and finite electron–nucleus exchange.

The technical arguments underlying the derivation of the rate

equations set are given in Appendices A and B, while in

Appendix C, for the convenience of the reader, the derivation

of the Borghini equation for the steady state as proposed by

Abragam and Goldman3 is briefly recalled.

II. Model description

A system made up of Nn nuclear spins I with Larmor

frequency on and Ne electron spins S with mean Larmor

frequency oe is considered (S = I = 1/2). Typically oe is

about three orders of magnitude higher than on. Since all terms

in the nuclear Hamiltonian with the exception of the Zeeman one

are small in comparison to the other energy scales considered,

nuclei are assumed to resonate all at the same frequency.

The first assumption of the model is that the main contribu-

tion to the ESR line shape is the spread of g-factors (inhomo-

geneous broadening of the I type), which reflects the different

orientation of the unpaired magnetic moments with respect to

the external magnetic field due to single ion anisotropy. The

practical relevance of this assumption is confirmed, for instance,

by the experimental evidence obtained from the widely used

trityl radical family.23 Inhomogeneously broadened lines are

conveniently decomposed in a sequence of narrow individual

spin packets of frequency oi = oe � Di, width do and relative

weight fi (see Fig. 1) such that:X
i

fi ¼ 1 ð1Þ

X
i

fiDi ¼ 0;

valid for any ESR line. The continuous limit is recovered when

do - 0. For each electron packet, a local polarization Pe,i =

2hSi
zi may be defined, where hi stands both for the quantum

mechanic expectation value and the average over all electron

Fig. 1 Discretization of the ESR line. Each basic packet centered at

oi = oe � Di is characterized by a width do and a weight fi. By way of

example the irradiation frequency is set to o0 = oe � D0 and the

nuclear Larmor frequency corresponds to three basic packets (dnp = 3).
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spins belonging to the i-th packet. The second assumption of

the model is that on is smaller than the ESR line width, as

actually is the case for low gn nuclei with almost any type of

radical or for high gamma nuclei, such as 1H, with broad line

radicals (e.g. nitroxides). In view of the mathematical descrip-

tion proposed in the next section, it is useful to introduce at

this point the variable

dnp ¼
on

do
; ð2Þ

i.e. the number of electron packets corresponding to the

nuclear Larmor frequency (see Fig. 1).

The third assumption is that the spin dynamics of the system

is governed only by the five processes depicted in Fig. 2 and

briefly explained here below.

Microwave irradiation

Single electron transitions are stimulated by an external MW

field at o0 = oe � D0 that leads the electron spin system out of

equilibrium (panel A of Fig. 2). The characteristic time of this

process is named T1MW. For high microwave power T1MW - 0

and the packet D0 is saturated.

Spectral diffusion

The basic transition of this process, which involves only

electrons and conserves both the total energy and the total

electron polarization, is represented in Fig. 2, panel B. Spectral

diffusion transitions are promoted by the dipolar interaction

among electrons and are characterized by a time constant T2e

which in the thermal mixing regime is assumed to be much

shorter than any other relevant time scale (in practice, in a

solid solution used for DNP, it is typically o1 ms23).

ISS process

The mechanism is sketched in Fig. 2, panel C, and consists in a

simultaneous flip-flop of two electron spins, belonging to

packets separated by on, compensated by a nuclear spin flip.

This process allows an energy transfer between nuclei and

electrons and while the total energy and the electron polariza-

tion are conserved, the nuclear polarization is not. In a real

system the ISS process, being promoted by dipolar inter-

actions, involves only nuclei which are sufficiently close to

paramagnetic centres. Thanks to nuclear spin diffusion, the

local information is then spread throughout the entire system.

A model which takes into account both these aspects

(local dipolar interaction and spatial diffusion) would be very

cumbersome to treat, because of the Nn degrees of freedom. In

the present work we adopt a mean field approach where all

possible terms comprising a nucleus and two electrons flip with

a characteristic time Teff
ISS which does not depend on the

mutual distances between the three particles. Setting low

values of TISS the model mimics the fast spin diffusion limit,

while setting high values of TISS the model mimics the slow

spin diffusion limit.

Electron spin–lattice relaxation

The process, shown in Fig. 2, panel D, accounts for the contact

between the electron system and the lattice which leads Pe,i(t)

towards the electron thermal equilibrium polarization P0:

P0 ¼ � tanh
�hoe

2kBT
; ð3Þ

where T is the temperature of the lattice. Its characteristic time

constant T1e ranges from hundreds of milliseconds to a few

seconds,23,26 for T t 10 K.

Nuclear spin–lattice relaxation (‘‘leakage’’)

The process is shown in Fig. 2, panel E. The nuclear system is

directly in contact with the lattice via slow processes (where

electrons are not involved), with a characteristic time T1n > 103 s,

also called ‘‘leakage’’ terms. Analogously to the latter case,

these processes lead nuclear polarization, Pn(t), towards the

thermal equilibrium value P0,n:

P0;n ¼ tanh
�hon

2kBT
� 0: ð4Þ

In the next section, the temporal evolution of the nuclear

polarization for the model described above will be determined

by a closed set of equations involving only Pn(t) and Pe,i(t).

Fig. 2 Microscopic events in the thermal mixing model. Electron

spins belonging to a generic packet i are represented in black with a

subscript e,i, nuclear spins in white with a subscript n. Panel A:

electron flip due to MW irradiation; panel B: spectral diffusion (d is

a generic number of packets); panel C: ISS processes; panel D:

electron spin–lattice relaxation; panel E: nuclear spin–lattice relaxa-

tion (‘‘leakage’’), under the assumption P0,n E 0 (see eqn (4)).
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III. Rate equations approach

To investigate the dynamic evolution of the model sum-

marized in the previous section, we introduce a system of

rate equations and solve them numerically. The discrete time

step dt for the numerical integration is defined as the inverse of

the sum of the single rates for the five processes sketched in

Fig. 2.

Microwave rate

The rate of all possible microwave events is WMW =

Ne f0/T1MW.

ISS process rate

In the mean field approximation, the number of the possible

processes involving two electrons and one nucleus is given byP
fiNefi+dnpNeNn. The total ISS rate needs to linearly scale

with the size of the system in order to assure a correct

thermodynamic limit. To achieve this, as is usually done for

fully connected models, the effective time constant of each

three particle process must depend on the system size and

scale as:

Teff
ISS = TISSNeNn, (5)

where the constant TISS is size independent. Then the total rate

of all ISS events is WISS = Ne

P
fifi+dnp/TISS.

Electron and nuclear spin–lattice relaxation rate

The rate of all the electron spin–lattice relaxation processes is

We = Ne/T1e. Similarly the rate of all the nuclear spin–lattice

relaxation processes is Wn = Nn/T1n.

Spectral diffusion rate

Being proportional to 1/T2e, it is assumed to be by far the

highest total transition rate among those characterizing

the five considered mechanisms. A large rate makes the

time step dt very small and consequently produces a dramatic

slow-down of the simulation procedure. To avoid that, the

dynamic problem has been separated into two steps: a

‘‘Short-Term Thermalization’’ (STT) step involving spectral

diffusion and a ‘‘Long-Term Evolution’’ (LTE) where the

system evolves according to defined differential equations

under the action of the remaining processes. Depending

on the value of T1MW, the microwave pumping can be

considered either as a fast process (contributing to STT) or

as a player in the LTE. In the first case the time step is

defined as:

dt ¼ 1

We þWISS þWn
; ð6Þ

while in the second case one has:

dt ¼ 1

We þWISS þWn þW1MW
: ð7Þ

The numerical procedure can be summarized as follows:

P0
e;iðtÞ

PnðtÞ

�
)
STT Pe;iðtÞ

PnðtÞ

�
)
LTE P0

e;iðtþ dtÞ
Pnðtþ dtÞ

�

A. STT. The goal of this step is to ‘‘thermalize’’ the profile

of the electron polarization P0
e,i(t) at a generic time t, under the

action of those processes considered ‘‘fast’’. The steady state

profile Pe,i(t) can be obtained by imposing the detailed balance

condition (see Appendix A):

Pe,i(t) = �tanh[b(Di � c)]. (8)

This equation depends on two parameters that can be com-

puted using conservation principles. In this respect we need to

discuss separately the two cases where spectral diffusion only

or both spectral diffusion and microwave promoted processes

are viewed as fast.

1. Spectral diffusion only. This case is relevant for relaxation

experiments (with microwave field off by definition) or when

a non-saturating microwave field is applied in a DNP experi-

ment. To calculate the two parameters c and b, the conserva-

tion of both the total energy and the total polarization is

imposed:

P
fiDi(Pe,i(t) � P0

e,i(t)) = 0 (9)

P
fi(Pe,i(t) � P0

e,i(t)) = 0. (10)

2. Spectral diffusion and saturating microwaves. For high

irradiation power, the microwaves act as an infinite bath for

energy exchange and force the polarization Pe,0(t) to 0 and in

turn, by eqn (8), c = D0. In order to evaluate the second

parameter b, the output of the STT step is conveniently

written as:

Pe,i(t) = P0
e,i(t) + dPe,i if i a 0 (11)

Pe,0(t) = P0
e,0(t) + dPe,0 + dPMW (12)

where dPe,i and dPMW are the variations of the polarization of

the i-th packet induced by spectral diffusion and by micro-

waves respectively. The conservation of the total energy and of

the total polarization can now be written as:

P
fiDidPe,i = 0 (13)

P
fidPe,i = 0. (14)

Eqn (14) can be recast as f0dPe,0 = �
P

ia0fidPe,i, so that:X
fiDidPe;i ¼

X
ia0

fiDidPe;i þ f0D0dPe;0

¼
X

fiðDi � D0ÞPe;i ¼ 0:

ð15Þ

Summing on both sides
P

fi(Di � D0)P
0
e,i(t) we get:

P
fi(Di � D0)Pe,i(t) =

P
fi(Di � D0)P

0
e,i(t). (16)

The condition for b
P

fi{P
0
e,i(t) + tanh[b(Di � D0)]}(Di � D0) = 0 (17)

identifies the unique solution for Pe,i(t).

B. LTE. In this second step the profile of the electron

polarization P0
e,i(t + dt) at time t + dt is deduced from the

output of the STT. When microwaves are off (relaxation) or

they have been already taken into account in the STT, the rate
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equations for Pe,i and Pn, as discussed in Appendix B, can be

set down in the form:

P0
e;iðtþ dtÞ ¼ Pe;iðtÞ

þ dt
P0 � Pe;iðtÞ

T1e
þ
fi�dnpP� þ fiþdnpPþ

2TISS

� �

ð18Þ

Pnðtþ dtÞ ¼ PnðtÞ þ dt
P0n � PnðtÞ

T1n
� Ne

2TISSNn

X
fifiþdnpPn

� �

whereP�=P�(i,t),P+ =P+(i,t),Pn =Pn(i,t) are given by

the expressions:

P� = Pe,i�dnp(t) � Pe,i(t) + Pn(t)[1 � Pe,i�dnp(t)Pe,i(t)]

P+ = Pe,i+dnp(t) � Pe,i(t) + Pn(t)[1 � Pe,i+dnp(t)Pe,i(t)]

Pn = Pe,i+dnp(t) � Pe,i(t) + Pn(t)[1 � Pe,i+dnp(t)Pe,i(t)].

The effect of non-saturating MW irradiation can be included

by the term �Pe,0(t)/T1MW in the rate equation for Pe,0(t),

describing the electron polarization of the irradiated packet.

IV. Numerical results

In this section we exploit the formalism described above to

calculate, in specific situations, those curves which are normally

measured in DNP experiments, namely build-up and relaxa-

tion curves. The so-called build-up curve describes the polari-

zation growth over time under selective microwave irradiation

and it is characterized by two parameters, the final nuclear

polarization Pn:

Pn = Pn(t - N), (19)

and the characteristic time Tpol that we define by the equation:

Pnðt ¼ TpolÞ ¼ Pn 1� 1

e

� �
; ð20Þ

with Pn(t = 0) = 0. Tpol corresponds to the usual time

constant in the case of exponential build-up but, through

eqn (20), one has a more general quantification of the growing

speed regardless of the specific form of the polarization function.

Relaxation curves, on the other hand, represent the sponta-

neous (at microwaves off) equilibrium recovery of a system

that is prepared out of equilibrium at t= 0. The characteristic

time is named Trelax and, if one starts with a fully polarized

system (Pn(t = 0) = 1), the constant Trelax is defined by:

Pnðt ¼ TrelaxÞ ¼ P0;n 1� 1

e

� �
þ 1

e
; ð21Þ

where P0,n is defined in eqn (4).

Setting of the parameters

In order to make the results of our simulation relevant for a

deeper understanding of experimental data, a number of basic

parameters are borrowed from some of the best known

DNP samples for biomedical applications. In this framework,

the typical number of 13C nuclei (that in most cases are the

object of DNP) is in the range 5–15 M, while the radical

concentration is 10–20 mM.27 It is thus reasonable, for our

purposes, to set Nn/Ne = 1000. Concerning the distribution of

the electron spin resonances, it looks worth using a Gaussian

function with a full width at half maximum Doe = 63MHz, as

surrogate of the ESR line of the trityl doped samples studied in

ref. 23. This is actually one of the few ESR line widths which

have been measured in a standard DNP environment (a magnetic

field of 3.35 T and a temperature of 1.2 K) and that turned out to

be inhomogeneously broadened by g-factor spreading. Finally,

despite the fact that our approach is not restricted to the case

of saturating microwaves, we work under the approximation

T1MW - N to better mimic what is normally done in actual

experiments.

ESR line discretization

The Gaussian function used as a model of the ESR line is

truncated at 3s, where s = 27 MHz. This defines a frequency

interval of about 160 MHz to be covered by electron spin

packets. Three different discretizations of the line are employed,

with different packet widths: do = 32, 10.6 and 6.4 MHz.

The corresponding number of packets Np is thus equal to 5, 15

and 25. The value of on is set at 32 MHz (resonance frequency

of 13C nuclei at the typical DNP magnetic field of 3.35 T) which

corresponds, respectively, to dnp = 1,3 and 5 for the three

selected values of Np. The MW frequency is set equal to

o0 = oe � s, which corresponds to saturating the packet 2

(for Np = 5), 5 (for Np = 15) and 8 (for Np = 25). For this

value of o0 the final nuclear polarization is maximal.

The results we show are obtained by integrating the rate

equations system (eqn (18)) together with the STT step defined

by the detailed balance condition (eqn (8)), with c = D0 and

b set by eqn (17). The boundary conditions of the ESR line

shape are correctly implemented by imposing fi+dnp = 0

(fi�dnp = 0) if i + dnp > Np (i � dnp o 0).

A. Fast ISS limit. The case of highly effective contact

between electrons and nuclei, which corresponds to very fast

ISS processes compared to electron spin lattice relaxation

(TISS { T1e), is considered first, by setting TISS = 10�3T1e

and T1e = 1 s (the latter from ref. 23) in our computational tool.

In Fig. 3, three different build-up curves computed with an

increasing value of Np and in the absence of leakage (T1n - N)

are presented. The continuum limit is approached very fast and a

good convergence is reached already with Np = 5. The final

nuclear polarization is Pn = 0.825 and the characteristic time

constant of the polarization build-up curvesTpol is equal to 1140 s.

In Fig. 4, three relaxation curves, describing the evolution of

the nuclear polarization in the absence of both microwaves

and leakage and calculated with a different discretization of the

ESR line, are shown. Again, the curve with Np = 5 is already

representative of the continuous limit. The characteristic time

Trelax E 15600 s, evaluated by means of eqn (21) with P0,n = 0,

turns out to be about 10 times longer than the corresponding Tpol.

In Fig. 5 the effect of nuclear leakage is investigated. The

thermal contact between the nuclear spin system and the

lattice significantly affects the build-up curve even when T1n

is much slower than any other transition considered. For

T1n = 10 000 s, the final nuclear polarization goes down to

Pn = 0.707, which corresponds to a reduction of 15% with
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respect to Pn in the absence of leakage, while the corresponding

polarization time becomes Tpol = 910 s.

B. Competing ISS and electron spin lattice regime. The case

of finite contact between electrons and nuclei, TISS E T1e, is

now considered.

In Fig. 6 and 7 build-up and relaxation curves, in the

absence of leakage (T1n - N) for T1e = 1 s and TISS within

the range 0.001 � 1 s, are analyzed. Two regimes can be

identified. For a fast ISS process both Tpol and Trelax are not

affected by the particular value of TISS, since the bottleneck

process is represented by the electron spin-lattice relaxation.

Conversely, when TISS grows the ISS process becomes the

rate determining step and both polarization and relaxation

times are enhanced. With TISS = 0.1 s for instance, one

obtains Tpol = 5300 s and Trelax = 44 900 s. The ratio between

the two characteristic times remains constant and close to 10.

Finally no influence on the final polarization Pn = 0.825 is

observed on varying TISS.

Surprisingly, when an almost negligible leakage term is

introduced (T1n = 10 000 s), the final nuclear polarization

becomes strongly dependent on the effectiveness of the contact

between nuclear and electron systems (Fig. 8). For TISS = 0.1 s,

the final nuclear polarization is Pn = 0.529, which corresponds

to an important reduction of 36% that could be relevant for

explaining some experimental observations. The polarization

time is measured to be equal to 3200 s.

A comprehensive summary of the role played by the different

parameters is presented in Fig. 9 and 10. Two distinct regimes

Fig. 3 Polarization build-up curves at 3.35 T and 1.2 K of a DNP

system characterized by the following parameters: Nn/Ne = 1000,

T1e = 1 s, TISS = 0.001 s, T1n - N, for different discretizations of

the ESR line: Np = 5 (solid line), Np = 15 (dashed line), Np = 25

(dotted line). The final nuclear polarization is Pn = 0.825 reached with

a characteristic time constant Tpol = 1140 s.

Fig. 4 Relaxation curves at 3.35 T and 1.2 K of a DNP system with

Nn/Ne = 1000, T1e = 1 s, TISS = 0.001 s, T1n - N, when Np = 5

(solid line), Np = 15 (dashed line), Np = 25 (dotted line). The

relaxation time is about 15 600 s.

Fig. 5 Polarization build-up curves at 3.35 T and 1.2 K of a DNP

system with Nn/Ne = 1000, T1e = 1 s, TISS = 0.001 s for different

nuclear intrinsic relaxation times: T1n -N (solid line), T1n = 10 000 s

(dashed line), T1n = 1000 s (dot-dashed line), T1n = 100 s (dotted line).

Fig. 6 Polarization build-up curves at 3.35 T and 1.2 K of a typical

DNP system with Nn/Ne = 1000, T1e = 1 s, T1n - N for different

values of contact time TISS (0.001 s (thick solid line), 0.01 s (thick

dashed line), 0.1 s (thick dot-dashed line), 0.2 s (thin solid line), 0.5 s

(thin dashed line), 1 s (thin dot-dashed line)).
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are clearly observable: highly and poorly effective contact

between nuclear and electron systems. The former (TISS - 0)

is characterized by high levels of polarization and short build-up

times, both dependent on T1e, whilst the latter (TISS - N) has

low levels of polarization and long build-up times, both inde-

pendent on T1e. Clearly, in the first regime, the bottleneck role is

played by T1e, while TISS is sufficiently high not to affect the

system dynamics. In the second regime their role is reversed.

V. Discussion and conclusion

To date, the main attempt to give a theoretical description of

the DNP phenomenon at low temperature in the TM regime

has been the prediction proposed by Borghini3,22 for the steady

state nuclear polarization that makes use of the standard

parameterization:

Pn = tanh(bnon) with bn = �h/(2kBTn), (22)

where Tn represents the temperature reached by the nuclear

reservoir under microwave irradiation. To compute this

temperature, the original derivation conjectures that the final

electron polarization profile (Pe,i = Pe,i(t - N)) takes

the form:

Pe,i = �tanh[b(Di � c)]. (23)

Actually, when the spectral diffusion is the fastest process,

this form can be rigorously derived – without any ad hoc

conjecture – by imposing the detailed balance condition as

shown in Appendix A. In addition to eqn (23), a perfect

thermal contact between the nuclear and the electron system

and an infinite microwave power were assumed in the approach

proposed by Borghini, so that b = bn and c = D0.

Under these assumptions, the celebrated relation (re-derived

in Appendix C for the convenience of the reader):

X
fiðDi � D0ÞPe;i þ D0P0 � on

NnT1e

NeT1n
Pn ¼ 0 ð24Þ

gives a unique solution for Tn and thus for Pn. In the absence

of leakage, the value of Pn predicted by eqn (24) at given

temperature and field depends only on the ESR line shape and

the irradiation frequency. For a Gaussian shape the maximal

enhancement corresponds to o0 = oe � s, where s is the

standard deviation of the electron frequency distribution.

The Borghini prediction is in good qualitative agreement

with many experimental observations obtained in low tem-

perature DNP experiments. However it does not provide an

accurate quantitative description of experimental data and in

particular of the maximum final nuclear polarization that

turns always out to be overestimated.23,28–30 When a typical

Fig. 7 Relaxation curves at 3.35 T and 1.2 K of a DNP system with

Nn/Ne = 1000, T1e = 1 s, T1n-N for different values of contact time

TISS (0.001 s (thick solid line), 0.01 s (thick dashed line), 0.1 s (thick

dot-dashed line), 0.2 s (thin solid line), 0.5 s (thin dashed line), 1 s

(thin dot-dashed line)).

Fig. 8 Polarization build-up curves at 3.35 T and 1.2 K of a DNP

system withNn/Ne = 1000 and T1e = 1 s for different values of contact

time TISS (0.001 s (thick lines) and 0.1 s (thin lines)) and nuclear

intrinsic relaxation times T1n (- N (solid lines), 10 000 s (dashed

lines) and 1000 s (dot-dashed lines)).

Fig. 9 Final polarization versus contact time TISS for different values

of the electron relaxation time T1e (2 s (circles), 1 s (squares) and 100 ms

(triangles)). Remaining parameters are set as follows: Nn/Ne = 1000,

T1n = 10 000 s. Dashed lines represent polarization final values as

estimated by the Borghini prediction in eqn (24).
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trityl doped sample, with an EPR line width of 63MHz,T1e= 1 s,

and Nn/Ne = 1000 is considered, eqn (24) predicts a maximum

steady state polarization Pn = 0.825 in the absence of leakage.

The same equilibrium value is obtained by our mathematical

approach (Fig. 3 and 6) under the same physical constraints.

On the other hand the polarization levels achieved experi-

mentally are in general much lower (see for instance ref. 23, 27

and 31). To justify this discrepancy, one can call on dissipation

terms. In fact, if a finite T1n is considered in eqn (24), a loss of

Pn is obtained, that however, with T1n generally being longer

than 104 s,23 can hardly exceed 10–15% (cfr. Fig. 5). A severe

reduction of Pn is obtained instead by means of the equation

set (18), introducing a finite contact between nuclei and electrons

in the presence of a small leakage (see Fig. 8). It is worth noting

that in the absence of leakage, i.e.when nuclei are isolated by the

lattice, the final polarization is not affected by the efficiency of

the contact between electron and nuclear systems.

Besides providing a more flexible scenario for Pn, the proposed

mathematical framework allows the computation of polarization

and relaxation times. Two regimes have been identified.

When the contact between nuclei and electrons is highly efficient,

the bottleneck of the spin dynamics is T1e and, by setting the

parameters of the simulation according the experimental conditions

used in ref. 23 one obtains Tpol E 103 s and Trelax E 104 s, as

effectively measured in ref. 23. It is interesting to observe that, in

this fast exchange limit, an estimation of the order of magnitude of

Tpol and Trelax can be heuristically derived as follows. During

polarization, the nuclear system transfers energy to electrons, which

are cooled by the lattice. In a time T1e, the lattice can absorb an

energy proportional at most to Ne, so that Tpol E NnT1e/Ne E
103 s, with Nn/Ne = 1000. During relaxation, the effective

number of electrons that can absorb energy from the nuclear

system, proportional to (1 � Pe,i)(1 + Pe,i) E (1 � P2
0),

collapses to E0.1 due to the high electron polarization

Pe,i E P0 = 0.95 at 3.35 T and 1.2 K, thus explaining the factor

Trelax/Tpol E 10 observed both in simulations and experiments.

On decreasing the effectiveness of the contact between

nuclear and electron spins, a different regime is established,

where the ISS process becomes the rate determining step and

both Tpol and Trelax become longer. This provides a possible

explanation of why Tpol can range between very different

values in samples with the same ratio Ne/Nn polarized under

analogous conditions. By way of example, one can compare

the [1-13C]-pyruvic acid samples doped with 15 mM of the

trityl radical studied in ref. 23 and 27, where Ne/Nn = 1000

and Tpol = 1200 s with the [1-13C]-butyric acid sample mixed

with 20% in volume of DMSO and doped with the 10 mM

trityl radical analyzed in ref. 31, having a much longer Tpol =

3400 s while the ratio Ne/Nn remains almost unchanged.

In conclusion, we propose a novel approach based on rate

equations for studying the dependency of dynamic nuclear

polarization in the low temperature thermal mixing regime

(T2e { T1e) from the microscopic transitions involving elec-

tron and nuclear spins. This approach allows the recovery of

the whole build-up curve and, in the limit of perfect contact

between nuclei and electrons and infinite microwave power,

leads to the same final nuclear polarization predicted by

Borghini. In addition, by tuning the efficiency of the exchange

interaction between nuclei and electrons, different values of Pn

are reached, providing an interpretation key for those experi-

mental observations of Pn which are not simply accounted for

by leakage terms depending only on spin concentration and

spin–lattice relaxation times.

The rate equation approach can be easily extended to more

complex experimental systems. A second nuclear reservoir which

also participates in TM could e.g. be included to interpret the

dynamic experimental data measured in nitroxyl doped samples

(where both 13C and 1H Larmor frequencies do not exceed the

ESR line width24,28,29) or, similarly, in trityl doped samples

containing 13C and 89Y nuclei, both in contact with the electron

reservoir.25,30 Finally the versatility of the approach proposed

here would easily allow us to introduce new dissipative processes

violating the precise assumptions and conservation principles

the Borghini prediction is based on and that could possibly be

useful to justify the many unexplained observations of low

temperature DNP, e.g. the reduction of Pn on increasing Ne.
27,32

Appendix A

Detailed balance

After defining P+
e,i as the fraction of electrons up and P�e,i as

the fraction of electrons down belonging to the packet i, the

detailed balance condition of the process depicted in Fig. 2,

panel B, is:

P+
e,i�d(P

�
e,i)

2 P+
e,i+d = P�e,i�d (P

+
e,i)

2 P�e,i+d. (A1)

Then, by using the relation

Pþe;i ¼
ð1þ Pe;iÞ

2

P�e;i ¼
ð1� Pe;iÞ

2

one comes to an equation for the electron polarization

(1 + Pe,i�d) (1 � Pe,i)
2 (1 + Pe,i+d)

= (1 � Pe,i�d) (1 + Pe,i)
2 (1 � Pe,i+d), (A2)

Fig. 10 Polarization build-up times as a function of the contact time

TISS for different values of the electron relaxation time T1e (2 s (circles),

1 s (squares) and 100 ms (triangles)). Remaining parameters are set as

follows: Nn/Ne = 1000, T1n = 10 000 s.
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that can be solved in the continuum limit where do- 0,Np-N

and Pe,i - Pe(Di). It is sufficient to consider the transitions

between consecutive packets, so that Pe,i+d = Pe,i+1 -

Pe(Di + do), and write a second order expansion

PeðDi þ doÞ � PeðDiÞ þ doP0eðDiÞ þ
do2

2
P00e ðDiÞ: ðA3Þ

By combining relations (A2) and (A3), one gets the second

order differential equation

2PeðDiÞP0eðDiÞ2 þ P00e ðDiÞð1� PeðDiÞ2Þ ¼ 0; ðA4Þ

whose general solution

Pe(Di) = �tanh(b(Di � c)) (A5)

was used in our treatment as a starting point for what we

called the ‘‘STT’’ process. The same parametric function has

been postulated in the derivation of the Borghini prediction

for the steady state.

Appendix B

Microscopic derivation of rate equations

The term proportional to 1/TISS and describing the ISS process,

used in the rate equations (eqn (18)), is here derived for the

electron polarization first and then for nuclear polarization.

1. Electron polarization. Be P+
e,i the fraction of electrons up

belonging to the packet i, P+
n the fraction of nuclei up, P�e,i the

fraction of electrons down belonging to the packet i and P�n the

fraction of nuclei down. When the ISS event depicted in Fig. 11

occurs, the fraction of electrons up in the i-th packet is reduced

by 1/(Nefi). The number of possible transitions is the product of:

� the number of the electrons up in the i-th packet: NefiP
+
e,i,

� the number of the electrons down in the (i + dnp)-th
packet: NefiþdnpP

�
e;iþdnp ,

� the number of nuclei down: NnP
�
n .

The rate of such a process is 1/(TISSNeNn), and the total

reduction of P+
e,i in the time interval dt is:

� dt

TISS
fiþdnpP

þ
e;iP

�
e;iþdnpP

�
n : ðB1Þ

The total variation of P+
e,i induced by all possible ISS transi-

tions, dP+
e,i, is given by:

dPþe;i ¼
dt

TISS
fiþdnpðP�e;iPþe;iþdnpP

þ
n � Pþe;iP

�
e;iþdnpP

�
n Þ

h

þ fi�dnpðP�e;iPþe;i�dnpP
�
n � Pþe;iP

�
e;i-dnpP

þ
n Þ
i
:

Using the relations:

Pþe;i ¼
ð1þ Pe;iÞ

2
; P�e;i ¼

ð1� Pe;iÞ
2

Pþn ¼
ð1þ PnÞ

2
; P�n ¼

ð1� PnÞ
2

;

the total variation of Pe,i induced by all possible ISS processes,

dPe,i = 2dP+
e,i, can be written as follows:

dPe;i ¼
dt

4TISS
fiþdnp ð1� Pe;iÞð1þ Pe;iþdnpÞð1þ PnÞ

��

�ð1þ Pe;iÞð1� Pe;iþdnpÞð1� PnÞ
	

þ fi�dnp ð1� Pe;iÞð1þ Pe;i�dnpÞð1� PnÞ
�

�ð1þ Pe;iÞð1� Pe;iþdnpÞð1� PnÞ
	

: ðB2Þ

The term proportional to 1/TISS in the first equation of set (18)

can be now easily derived from eqn (B2) by means of simple

algebraic calculations.

2. Nuclear polarization. When the event depicted in

Fig. 11 occurs, the fraction of nuclei up is increased by a

factor of 1/Nn. The number of possible transitions is the

product of:

� the number of the electrons up in the i-th packet: NefiP
+
e,i,

� the number of the electrons down in the (i + dnp)-th
packet: NefiþdnpP

�
e;iþdnp ,

� the number of nuclei down: NnP
�
n .

The rate of such process is 1/(TISSNeNn), and the relevant

increment of P+
n in the time interval dt is:

Nedt

NnTISS
fifiþdnpP

þ
e;iP

�
e;iþdnpP

�
n : ðB3Þ

Considering now all the possible processes, the total variation

of P+
n induced by the ISS process, dP+

n , is given by:

dPþn ¼
Nedt

NnTISS

X
i

fifiþdnp ½Pþe;iP�e;iþdnpP
�
n � P�e;iP

þ
e;iþdnpP

þ
n �:

ðB4Þ

Following the line previously described for Pe,i, one immedi-

ately arrives at the equations for Pn reported in the main text

(eqn (18)).

Appendix C

Borghini relation

To facilitate the reading of the manuscript, we report the

derivation of the Borghini relation in eqn (24) according to the

line proposed in ref. 3. The energy of the whole electron and

nuclear system is conveniently split into two reservoirs: the

Zeeman electron contribution

EZeðtÞ ¼
1

2
Ne�hoe

X
fiPe;iðtÞ ðC1Þ

and the non-Zeeman electron plus Zeeman nuclear term

ENZ�ZnðtÞ ¼
1

2
Nn�honPnðtÞ �

1

2
Ne�h

X
DifiPe;iðtÞ: ðC2Þ

Fig. 11 Schematic representation of one possible ISS event.
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The time evolution of the two energy reservoirs is described by

the following equations:

dEZeðtÞ
dt

¼ 1

2
Ne�hoe

X
fi
dPe;iðtÞ

dt

dENZ�ZnðtÞ
dt

¼ 1

2
Nn�hon

dPnðtÞ
dt

� 1

2
Ne�h

X
Difi

dPe;iðtÞ
dt

;

ðC3Þ

and since the spectral diffusion and the ISS process conserve

both EZe
(t) and ENZ�Zn

(t), one obtains:

dEZeðtÞ
dt

¼ 1

2
Ne�hoe

X
fi
P0 � Pe;iðtÞ

T1e
� f0

Pe;0

T1MW

� �

dENZ�ZnðtÞ
dt

¼ 1

2
Ne�h

X
Difi

Pe;iðtÞ
T1e

þ f0D0
Pe;0

T1MW

� �

� 1

2
Nn�hon

PnðtÞ
T1n

: ðC4Þ

It is important to observe that the evolution of the two energy

reservoirs depends on the time progression of all Pe,i(t) and

Pn(t), which is the full solution of the system of rate equations

reported in eqn (18). As far as only the steady state solution is

required, however, it is sufficient to impose the simultaneous

vanishing of both right-hand sides of eqn (C4). Thus, by

multiplying the first eqn (C4) by D0/oe and adding it to

the right-hand side of the second eqn (C4), one gets rid of

the microwave transition probability 1/T1MW and obtains the

celebrated Borghini relation given in eqn (24).
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