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On the role of electron–nucleus contact and
microwave saturation in thermal mixing DNP

Sonia Colombo Serra,*a Alberto Rossob and Fabio Tedoldia

We have explored the manifold physical scenarios emerging from a model of Dynamic Nuclear

Polarization (DNP) via thermal mixing under the hypothesis of highly effective electron–electron

interaction. When the electron and nuclear reservoirs are also assumed to be in strong thermal contact

and the microwave irradiation saturates the target electron transition, the enhancement of the nuclear

polarization is expected to be considerably high even if the irradiation frequency is set far away from

the centre of the ESR line (as already predicted by Borghini) and the typical polarization time is reduced

on moving towards the boundaries of the said line. More reasonable behaviours are obtained by

reducing the level of microwave saturation or the contact between electrons and nuclei in the presence

of nuclear leakage. In both cases the function describing the dependency of the steady state nuclear

polarization on the frequency of irradiation becomes sharper at the edges and the build up rate

decreases on moving off-resonance. Although qualitatively similar in terms of the effects produced on

nuclear polarization, the degree of microwave saturation and of electron–nucleus contact has a totally

different impact on electron polarization, which is of course strongly correlated to the effectiveness of

saturation and almost insensitive, at the steady state, to the magnitude of the interactions between the

two spin reservoirs. The likelihood of different scenarios is discussed in the light of the experimental

data currently available in the literature, to point out which aspects are suitably accounted for and

which are not by the declination of thermal mixing DNP considered here.

I. Introduction

In the last decade Dynamic Nuclear Polarization (DNP) has
established itself as a powerful technique to overcome the limited
sensitivity of Nuclear Magnetic Resonance (NMR).1 More recently,
as a consequence of the impressive experimental results obtained
over a wide area of applications, ranging from analytical2,3 to
potentially diagnostic methods,4–6 the scientific community has
started to deepen the existing theoretical knowledge about the
physics of the polarization process.7–9 Depending on the specific
conditions of the experiment, the transfer of magnetic order from
the electron to the nuclear system occurs by different mecha-
nisms, namely the solid effect,10,11 cross effect12–15 and thermal
mixing.11,16,17 The latter regime is believed to apply to those
samples and experimental conditions typically exploited in bio-
medical applications,18 which nowadays are attracting great interest.

The original theoretical description of low temperature
DNP via thermal mixing (TM) was provided by Borghini16 and

re-proposed in a slightly different fashion by Abragam and
Goldman in their famous review.11 The model is based on the
hypothesis of (i) very efficient spectral diffusion, (ii) complete
saturation of the irradiated Electron Spin Resonance (ESR)
isocromate and (iii) the existence of a perfect contact between
electrons and nuclei. The latter forces the establishment of a
common temperature between nuclear and electron reservoirs
at any time.

Despite the Borghini prediction qualitatively depicting some
aspects of the experimental scenario, no information about the
dynamics of the process is given, while the steady state nuclear
polarization is always overestimated. The quantitative agree-
ment is especially poor when moving from the centre to the
edges of the ESR spectrum. In order to reduce the discrepancies
between theory and experimental observations in the nuclear
steady state behaviour, Jannin et al.19 have recently proposed a
variant of the Borghini model where the irradiated ESR line
portion is only partially saturated. Again, the dynamical pro-
blem has not been tackled.

A general methodology to compute the full time evolution of
the nuclear polarization in the low temperature TM regime,
relying on a mean field approach and based on a proper system
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of rate equations, has been described in ref. 20. In this work
we exploited that mathematical treatment (briefly recalled
in Section II) for providing a comprehensive picture of the
electron and nuclear polarization dynamics (including the
relevant steady states), over the whole microwave spectrum,
for different choices of the five time constants describing the
basic interactions and relaxation mechanisms. In particular,
under the assumption of an optimal electron spin–spin contact,
the role of microwave power and electron–nucleus interaction
was investigated.

The numerical results presented in Section III point out how
the hypothesis of partial saturation introduced in ref. 19 not
only improves the agreement between TM theory and the
experimental data of steady state nuclear polarization but also
predicts a more realistic behaviour for the frequency depen-
dence of the nuclear build up time. A similar qualitative
agreement is obtained by maintaining the full saturation
assumption included in the original Borghini model and relaxing
the constraint of perfect electron–nucleus contact, in the
presence of a weak, electron independent, nuclear spin–lattice
relaxation term. The two options considered, both fairly good in
accounting for the behaviour of the nuclear reservoir, generate
a completely different scenario in respect of the electron
polarization, as widely discussed in Section IV in the light also
of the experimental observations available in the literature.

In order to make the reading of the manuscript more fluent,
three Appendices collecting most of the relevant mathematics
have been added at the end of the main text.

II. Model overview

A system of Nn nuclear spin I (I = 1/2, Larmor frequency on) and
Ne electron spin S (I = 1/2, mean Larmor frequency oe

(E103on)) is considered. The electron frequency distribution
(ESR line) is supposed to be inhomogeneously broadened21 and
can be conveniently decomposed into a sequence of Np narrow
individual spin packets of frequency oi = oe � Di, width do and
relative weight fi such that

P
fi = 1 and

P
fiDi = 0. The system is

assumed to be ruled by five processes: microwave irradiation
(with a characteristic time T1MW), spectral diffusion (T2e), ISS
process (TISS), electron spin–lattice relaxation (T1e) and nuclear
spin–lattice relaxation (T1n) (see ref. 20 for detailed descrip-
tion). The rate 1/TISS describes, as an effective parameter, both
the nuclear spin diffusion process and the interaction of two
generic electrons belonging to packets i and i + dnp (dnp being
the number of packets corresponding to on) and a generic
nucleus n. Electrons of the same packet are set identical by
definition and characterized by a local polarization Pe,i,
whereas a unique polarization Pn and inverse temperature bn

are assigned to the whole nuclear system:

Pn(t) = tanh[bn(t)dnp]. (1)

The system so defined is studied in the TM regime, where the
spectral diffusion processes, mediated by the electron dipolar inter-
action, are far more efficient than any other process (T2e - 0).

In this limit, even when the system is out of equilibrium
because of the MW irradiation, a unique spin temperature is
established at all times among the electron packets (Appendix A).
The electron polarization Pe,i(t) can thus be written as:

Pe,i(t) = tanh[be(t)(Di � c(t))], (2)

where c(t) and the unique inverse temperature be(t) are time-
dependent parameters.

The dynamics of Pe,i(t) and consequently of Pn(t) is deter-
mined not only by the highly efficient spectral diffusion but
also by the remaining four processes. Their effect is described
by the system of rate equations introduced in ref. 20 and here
reported for convenience of the reader (under the assumption
of finite rates for all the four processes).

dPe;iðtÞ
dt

¼ P0 � Pe;iðtÞ
T1e

� di;i0
Pe;0ðtÞ
T1MW

þ
fi�dnpP� þ fiþdnpPþ

2TISS

dPnðtÞ
dt

¼ P0n � PnðtÞ
T1n

� Ne

2TISSNn

X
fifiþdnpPn

(3)

where di,i0
is a Kronecker delta and P� = P�(i,t), P+ = P+(i,t),

Pn = Pn(i,t) are given by the expressions:

P� = Pe,i�dnp
(t) � Pe,i(t) � Pn(t)[1 � Pe,i�dnp

(t)Pe,i(t)]

P+ = Pn = Pe,i+dnp
(t) � Pe,i(t) + Pn(t)[1 � Pe,i+dnp

(t)Pe,i(t)]
(4)

For numerical computation a discrete time step dt is introduced:

dt ¼ 1

W1MW þWISS þWe þWn
; (5)

where W1MW = Nef0/T1MW, We = Ne/T1e, WISS = Ne
P

fi fi+dnP
/TISS

and Wn = Nn/T1n. After each elementary evolution step accord-
ing to eqn (3), the effect of spectral diffusion (acting on a typical
time scale dt E T2e o dt) is accounted for by imposing the
conditions that the polarizations Pe,i(t + dt) satisfy eqn (2) and
the conservation of the energy and total polarization:

P
fi[Pe,i(t + dt) � Pe,i(t)] = 0

P
fiDi[Pe,i(t + dt) � Pe,i(t)] = 0 (6)

In this work we investigate three distinct regimes where, in
addition to spectral diffusion, one or two more processes are
assumed infinitely efficient.

A. Regime I (‘Borghini’)

The evolution of the system is derived under the following
assumptions:
� TISS - 0: a perfect contact between the electron and the

nuclear reservoirs which allows us to establish a common
electron–nucleus inverse temperature b(t) = be(t) = bn(t) at all
times (see Appendix A);
� T1MW - 0: a full saturation of the irradiated packet

i0 which corresponds to the assumption Pe,0(t) = 0, so that
c(t) = D0.

Paper PCCP



8418 Phys. Chem. Chem. Phys., 2013, 15, 8416--8428 This journal is c the Owner Societies 2013

The steady state solution Pe,i(t - N) and Pn(t - N) can
be computed by solving numerically the known Borghini
relation:

X
fiðDi � D0ÞPe;i þ D0P0 � on

NnT1e

NeT1n
Pn ¼ 0; (7)

which can be easily obtained by solving the system of equations
describing the time evolution of the two energy reservoirs
(Zeeman electron and non-Zeeman plus Zeeman nuclear con-
tributions, reported in eqn (c4) of ref. 20) at the steady state,
under the condition c = D0.

The dynamics of electron and nuclear polarizations can be
obtained from the system of rate equations (eqn (3)), conveni-
ently adapted to this regime (Appendix B1). Moreover, it is
possible to write the rate equation for the inverse temperature
b(t) (Appendix B1), whose solution is not an exponential
function.

B. Regime II (‘partial MW saturation’)

The evolution of the system is derived under the following
assumptions:
� TISS - 0: a perfect contact between the electron and

the nuclear reservoirs which imposes, as in regime I,
b(t) = be(t) = bn(t);
� T1MW a 0: an incomplete saturation of the irradiated

packet i0.
The steady state solution is now a function of two variables b

and c and can be evaluated by numerically solving the following
system of two equations:

X
fi
P0 � Pe;i

T1e
� f0

Pe;0

T1MW
¼ 0

X
Di fi

Pe;i

T1e
þ f0D0

Pe;0

T1MW
�Nn

Ne
�hon

Pn

T1n
¼ 0 (8)

which is a generalized version of the Borghini relation, again
obtained as steady state solution of the system of rate equations
reported in eqn (c4) of ref. 20.

The evolution of Pe,i(t) and Pn(t) can be estimated by means
of the system of rate equations (eqn (3)) adapted for this regime
(Appendix B2).

C. Regime III (poor electron–nucleus contact)

The evolution of the system is derived under the following
assumptions:
� T1MW - 0: a full saturation of the irradiated packet i0

which imposes c = D0;
� TISS a 0: a poor contact between the electron and

the nuclear reservoirs, modulated by the corresponding para-
meter 1/TISS, which leads (in the presence of leakage) to
two different inverse temperatures for electrons and nuclei,
i.e. be(t) a bn(t).

The steady state solution is now a function of two vari-
ables be and bn and can be evaluated by numerically solving a
system composed by the Borghini relation (eqn (7), which holds
also in this regime, but it is not sufficient to determine

unambiguously be and bn) and the rate equation for Pn(t).
The latter, by imposing the stationary condition, is written as:

Pn ¼

Ne

2TISSNn

P
fi fiþdnp Pe;i � Pe;iþdnp

� �
þ P0n

T1n

Ne

2TISSNn

P
fi fiþdnp 1� Pe;iPe;iþdnp

� �
þ 1

T1n

(9)

The solution for Pe,i(t) and Pn(t) can be obtained from the
system of rate equations (eqn (3)), conveniently adapted for this
regime (Appendix B3).

In the limit TISS c T1e, the contact between the electrons
and the lattice is more efficient than the contact between
electrons and nuclei. The steady state polarization profile Pe,i

is then achieved in a typical time of the order of T1e indepen-
dently from any feature of the nuclear reservoir. As a conse-
quence, the nuclear system ‘sees’, through TISS, an electron
thermal bath at constant temperature and the rate equation for
Pn(t) assumes the linear form:

P0nðtÞ ¼ A� BPnðtÞ (10)

where A and B are constant terms defined as:

A ¼ � Ne

2TISSNn

X
fi fiþdnp Pe;iþdnp � Pe;i

� �
þ P0n

T1n

B ¼ Ne

2TISSNn

X
fi fiþdnp 1� Pe;iþdnpPe;i

� �
þ 1

T1n

Pe,i being given by the Borghini relation (eqn (7) in the absence
of nuclei). Its solution:

PnðtÞ ¼
A

B
1� exp �Btð Þ½ � (11)

is an exponential function with a steady state Pn = A/B and an
exponential time constant equal to 1/B.

III. Numerical results

The three regimes introduced in Section II have been explored by
computing a set of build up curves (i.e. polarization versus time)
for different values of the significant parameters: i0, T1MW, TISS

and T1n. All the other parameters of the rate equations, when not
differently stated, have been set as follows: Nn/Ne = 1000, T1e = 1 s,
Np = 15, dnp = 3 and fi defined according to a Gaussian function
with a full width at half maximum Doe = 63 MHz and truncated
at 3s. This set of parameters is chosen to represent a sample of
[1-13C]-pyruvic acid doped with the 15 mM trityl radical in a
magnetic field B0 = 3.35 T, at temperature T = 1.2 K. Such a well
known mixture is an ideal prototype to be tested against the
outcome of our calculations, since it was argued to polarize via
TM18 and has been studied experimentally in great detail.18,22,23

The build up curves obtained from the numerical simulation
have been fitted by the phenomenological law:

P(t) = P0[1 � exp(�t/Tpol)
a] (12)

where P0 is the steady state value of the polarization, Tpol is the
polarization time and a is a stretching exponent. For a = 1, the
usual exponential function is recovered.
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A. Regime I: the Borghini model

The physical scenario emerging under the assumptions defin-
ing the regime I is summarized in Fig. 1. Panel A shows the
steady state nuclear polarization Pn as a function of the micro-
wave frequency oMW in the absence of leakage and when T1n =
10 000 s. The same curve is obtained by solving eqn (7). The
calculated values are generally higher than those experimen-
tally observed especially when moving from the centre to the
edges of the ESR line. A maximum nuclear polarization of 0.85
is reached in the absence of leakage when the microwave
frequency is set to oMW,opt = oe � 43 MHz (corresponding to
the irradiation of the packet i0 = 4). Leakage has only a
moderate effect on the curve, leading to a 13% reduction in
the maximum polarization level for T1n = 10 000 s.

Another interesting quantity for comparison with experi-
ments (see Section IV) is the average electron polarization
hPe(t)i, defined as:

hPe(t)i =
P

fiPe,i(t) (13)

The steady state value hPei of this quantity is reported in
panel B of Fig. 1. When the irradiation frequency oMW is close
to oe, the ESR line is effectively saturated, i.e. hPei E 0.
Conversely when the irradiation frequency is set at the edges
of the ESR line, hPei - P0 because of the low weight fi of the
side packets.

The dynamical evolution of the spin systems can be derived
by means of eqn (B2) and (B1). The behaviour of the nuclear
polarization time as a function of oMW is shown in Fig. 1, panel C.

Fig. 1 Overview of nuclear and electron polarization in TM-DNP under the assumption defining regime I (T2e = 0 s, TISS = 0 s, T1MW = 0 s) at 3.35 T and 1.2 K. The
nuclei/electrons ratio has been set to Nn/Ne = 1000, whereas the electron longitudinal relaxation time is assumed to be T1e = 1 s. Panel A: steady state nuclear
polarization Pn as a function of the irradiating frequency oMW in the absence of leakage (squares) and with T1n = 10 000 s (circles). Panel B: average electron
polarization hPei as a function of oMW in the absence of leakage (squares) and with T1n = 10 000 s (circles). Panel C: nuclear polarization time Tpol as a function of
oMW in the absence of leakage (squares) and with T1n = 10 000 s (circles). Panel D: nuclear and average electron polarization build up curves Pn(t) (squares) and hPe(t)i
(circles) at oMW,opt in the absence of leakage. The growing curve of the inverse temperature b(t) (triangles) is represented in the inset. The non-linearity of the
differential equations which regulate this regime is reflected in the lack of agreement between the calculated trend of Pn(t) and b(t) and the exponential best fittings
(solid lines).
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The larger is the shift between oe and oMW, the shorter is Tpol

or, in other words, the steady state is achieved faster when the
edges of the ESR line are irradiated.

Finally, in panel D of Fig. 1 the nuclear and electron build up
curves are displayed for oMW,opt (i.e. with i0 = 4) in the absence
of leakage starting from the thermal Boltzmann equilibrium
condition Pn E 0 and Pe,i = P0, 8i. As introduced in the previous
section, the same inverse temperature b(t) (see inset) charac-
terizes both nuclear and electron reservoirs. The dynamics is
non-exponential as can be noticed by the mismatch between
the best fitting curve and the simulated data if a stretching
exponential a = 1 is assumed. The function describing the
dynamics of b(t) is computed in Appendix B1. Despite nuclei
and electrons share the same temperature over time, since the
hyperbolic tangent is a non-linear function, the nuclear and
electron polarization build up times are slightly different,

although both in the order of 103 s. The initial condition
b(t = 0) E 0 originates as follows:
� when MW is switched on the packet i0 is immediately

saturated (Pe,0 = 0) due to the assumption T1MW - 0;
� the fast spectral diffusion (T2e - 0) imposes: Pe,i(t = 0) =

tanh[b(t = 0)(Di � D0)];
� the effective contact between electrons and nuclei gives:

b(t = 0) = bn(t = 0) E 0.

B. Regime II: partial MW saturation

An overview of the regime characterized by a partial saturation
of the ESR line is presented in Fig. 2. In panels A and B, Pn and
hPei as a function of oMW are shown for T1MW = 0, 0.1 and 1 s,
i.e. moving from high to low MW power. The effect of a partial
saturation is twofold: on one side a significant reduction of the
maximum nuclear and electron polarization values is observed.

Fig. 2 Overview of nuclear and electron polarization in TM-DNP under the assumption defining regime II (T2e = 0 s, TISS = 0 s, T1MW a 0) at 3.35 T and 1.2 K, with Nn/
Ne = 1000, T1e = 1 s and in the absence of leakage. Panel A: steady state nuclear polarization Pn as a function of the irradiating frequency oMW with T1MW = 0 (squares),
0.1 s (circles) and 1 s (triangles). Panel B: average electron polarization hPei as a function of oMW with T1MW = 0 (squares), 0.1 s (circles) and 1 s (triangles). Panel C:
nuclear polarization time Tpol as a function of oMW with T1MW = 0 (squares), 0.1 s (circles) and 1 s (triangles). Panel D: nuclear polarization build up curve Pn(t) for
T1MW = 0.1 s at oMW,opt. The mismatch between numerical data and exponential best fitting (solid line) points out the non-linearity of the phenomenon. The inset
shows the corresponding growth of the inverse temperature b(t).
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On the other side a clipping of the wings of the steady state
nuclear polarization curve occurs, making the latter more
similar to the DNP spectrum experimentally observed in the
prototype trityl doped sample studied in ref. 18. That incom-
plete MW saturation can be invoked to better account for
nuclear steady state data was pointed out previously in
ref. 19. Thanks to this assumption the authors succeeded in
fitting the DNP spectrum of a [1-13C]-sodium acetate sample
doped with TEMPO, a free radical characterized by a much
shorter T1e with respect to trityls and by a higher anisotropy
of the g-tensor, resulting in turn in a wider ESR spectrum
(E200 MHz vs. 60 MHz of trityls).

The behaviour of the polarization time versus oMW (panel C)
is, interestingly, completely different from regime I. As long as
the irradiation frequency is close to oe, Tpol is relatively short,
becoming longer and longer on moving towards the edges of
the ESR line (from 1800 to 6800 s when T1MW = 0.1 s and from
4800 to 15 000 s when T1MW = 1 s). As expected, longer is T1MW,
less effective the polarization mechanism is.

The time evolution of Pn represented in panel D as well as
the build up curve of b (inset) are similar to those obtained in
regime I, with a non-exponential behaviour (a rigorous demon-
stration is not reported in this case) and a typical time constant
in the order of 103 s. The build up of the electron polarization
instead is somehow more complex and characterized by
two different time scales. The details of such behaviour are
analyzed in Appendix C.

C. Regime III: poor electron–nucleus contact

The third regime is characterized by a finite contact rate
between nuclei and electrons. Nuclear and electron polariza-
tion were computed for TISS = 0.1 and 1 s both in the absence of
leakage and with T1n = 10 000 s. The main results are shown in
Fig. 3, following the same scheme of the regimes discussed
above. Panel A shows the dependence of the nuclear polariza-
tion on oMW. In the absence of leakage, as already discussed
in ref. 20, the contact rate TISS does not affect the steady
state but only the dynamics and thus the two curves at different
TISS overlap. In the presence of leakage Pn is reduced. The
longer is TISS the higher the decrease is. Moreover, the
reduction is more significant at the edges of the DNP spectrum,
a behaviour that becomes clear in the light of panel C, where
Tpol is shown to be strongly increased at the wings of the
spectrum. As a consequence, nuclear relaxation (with rate
T1n = 10 000 s) becomes a strong competing mechanism with
respect to the ISS process, forcing Pn towards a lower steady
state value.

Panel B highlights a rather interesting feature of regime III:
the steady state electron polarization is almost unaffected
either by TISS and T1n. This indicates that the nuclear system,
for sufficiently high values of TISS, is only a spectator of the
electrons re-arrangement under MW irradiation, playing no
active roles in the evolution of the electron systems towards
their equilibrium. Evolution that proceeds through a two-step
process is discussed in Appendix C. Nuclei have a ‘delayed
response’ characterized by a time constant in the order of

Nn/(NeTISS) (about 104–105 s for the set of parameters used
here) and by an exponential shape as confirmed by the good
match between the fitting and the simulated data in panel D
and demonstrated in Section II. The exponential time course of
Pn(t) stems from the linear rate equation (eqn (10)) that further
remarks the passive role of the nuclear reservoir in the polari-
zation process of electrons. Correspondingly the nuclear
inverse temperature bn(t) builds up (inset of panel D) towards
a steady state value that, in the presence of leakage, is sub-
stantially different from the end value of be(t). One has, for
instance, bn = 1.84 � 108 s vs. be(t) = 3 � 108 s for TISS = 0.1 s and
T1n = 10 000 s.

IV. Discussion and conclusions

The original description of the TM mechanism proposed by
Borghini and here analyzed in depth in terms of electron and
nuclear polarization, polarization times and dynamics of the
inverse spin temperatures has only a partial qualitative overlap
with the experimental observations reported in the literature.
As, for example, pointed out in Fig. 8 of ref. 18, the Borghini
model overestimates the final values of Pn especially at the
edges of the ESR line, leading to an unsatisfactory shape of the
DNP spectrum (Pn versus oMW). Similarly, our computation of
the model, even when the MW frequency is 3s lower than oe

(approx. 80 MHz with our choice of parameters) and con-
sequently the electron population of the corresponding energy
levels is very low, predicts a very high enhancement of the
nuclear polarization which is quite unrealistic and – more
importantly – not experimentally observed. Conversely, by
relaxing either the constraint of a complete MW saturation or
the constraint of a perfect electron–nucleus contact, lower Pn

values and a sharper DNP spectrum are obtained (panels A in
Fig. 2 and 3).

Furthermore, in the Borghini regime, the dependence of the
efficiency of the polarization transfer on the microwave fre-
quency (Tpol vs. oMW, panel C in Fig. 1) disagrees with the
experimental observations reported for a sample of [1-13C]-
pyruvic acid doped with 10 mM of trityl. In Fig. 5 of ref. 22 in
fact Macholl et al. showed that Tpol is relatively short as long as
oMW is set between the two values corresponding to the positive
and negative maximum of nuclear polarization (DNP optimum
frequencies) whilst becoming longer and longer on moving
towards the edges of the ESR line. Remarkably, the correct
qualitative behaviour of the polarization time is recovered
under the assumptions underlying both regime II and regime III,
as shown in panels B of Fig. 2 and 3. This type of dependence of
Tpol on oMW seems not restricted to the reference sample and
the magnetic field value considered so far, but rather general
for DNP experiments performed at very low temperature.
Similar behaviours have been reported in fact for a sample
of [1-13C]-pyruvic acid doped with trityl 18.5 mM at 1.2 K and
4.64 T, corresponding to an electron Larmor frequency of
130 GHz (Fig. 3 in ref. 23), as well as for [1-13C]-labelled acetate
doped with TEMPO 50 mM at both 3.35 T (Fig. 1 of ref. 24) and
at 5 T (corresponding to oe E 140 GHz, Fig. 2 of ref. 24) at a
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temperature of 1.2 K. The robustness of the predictions of
the model analyzed here against magnetic field strength
has been verified for both regime II (data not shown) and
regime III (Fig. 4) by repeating the computation for our refer-
ence sample at higher field (parameters were set as follows,
according to ref. 23: B0 = 4.64 T, T = 1.2 K, T1e = 1 s, Doe =
63 MHz). The extension of our calculations to a model repre-
senting different radicals and eventually higher temperatures,
for comparison with the experimental observations achieved
under such conditions,24–27 will be performed in a next dedi-
cated study.

As long as only the nuclear parameters (Pn and Tpol) are
considered, regimes II and III are both in qualitative agreement with
the experimental observations and nearly superimposable.22–24

Actually the two regimes are very different, as can be under-
stood from panels B and D of Fig. 2 and 3. For limited MW

power and TISS = 0, the nuclear system and the electron system
share always the same inverse temperature, generally lower
than the achieved b in the case of full saturation. In fact, as
shown in panel B of Fig. 2, hPei tends to the frequency-
independent equilibrium value P0 when T1MW increases, as
the competition between the MW pumping and the electron
spin–lattice relaxation unbalances the steady state towards the
Boltzmann equilibrium. The electron system being weakly
affected by MW irradiation, it is not anymore a forceful source
of polarization for nuclei.

On the other hand, in the case of finite electron–nucleus
contact and T1MW = 0, the electron system under the effect of
the saturating MW pumping reaches in a short time a quasi-
stationary polarization profile, characterized by an inverse
temperature be that slowly evolves while cooling the nuclear
reservoir. In the absence of leakage the nuclear system sees

Fig. 3 Overview of nuclear and electron polarization in TM-DNP under the assumption defining regime III (T2e = 0 s, T1MW = 0 s, TISS a 0 s) at 3.35 T and 1.2 K, with
Nn/Ne = 1000, T1e = 1 s. Panel A: steady state nuclear polarization Pn as a function of the irradiating frequency oMW with TISS = 0.1 s (squares) or 1 s (circles) and in the
absence of leakage (empty symbols) or with T1n = 10 000 s (filled symbols). Panel B: average electron polarization hPei as a function of oMW with TISS = 0.1 s (squares) or
1 s (circles) and in the absence of leakage (empty symbols) or with T1n = 10 000 s (filled symbols). Panel C: nuclear polarization time Tpol as a function of oMW with
TISS = 0.1 s (squares) or 1 s (circles) and in the absence of leakage (empty symbols) or with T1n = 10 000 s (filled symbols). Values represented with empty circles are

scaled of a factor of
1

10
. Panel D: nuclear polarization build up curves Pn(t) (squares) at oMW,opt, TISS = 0.1 s and T1n = 10 000 s. The solid line represents the best fit to an

exponential function, while the inset displays the corresponding growth of the inverse temperature bn(t).
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only the pre-thermalized electron reservoir and, with a char-
acteristic time dependent on the contact ratio 1/TISS reaches a
final inverse temperature bn = be. In the presence of leakage the
nuclear reservoir is on one side in thermal exchange with the
electron system at be and, on the other side, with the lattice at
bL p 1/T. The final nuclear inverse temperature bn is a trade-off
value between be and bL and, as well as nuclear build up time,
depends on the two contact parameters TISS and T1n.

In order to discriminate which scenario fits better with the
experimental observations, data for the behaviour of electrons
must be considered. A valid attempt to characterize the electron
system was made by Ardenkjaer-Larsen and collaborators and
it is reported in ref. 18 and 23. By measuring the shift of the
13C resonance line (M1) caused mainly by the dipolar fields
associated to the polarized paramagnetic centres, the authors
indirectly estimated the average electron polarization hPei
according to ref. 11:

M1 = 2
3pxgegn�hNehPei (14)

where x is a coefficient which depends on the shape of the
sample, ge is the electron gyromagnetic ratio, gn is the nuclear
gyromagnetic ratio and Ne is the number of electrons per unit
volume.

In particular, in ref. 23 (Fig. 4–6) the dependence of the
nuclear shift, and thus indirectly of hPei, on the MW frequency
and power was measured.28

The average electron polarization hPei at a fixed MW power
(Fig. 5 and 6 of ref. 23) was found to depend on oMW with a
behaviour similar to that reported in panel B of Fig. 1–3, where
the degree of electron saturation is higher for oMW = oe � do
and lower when moving towards the edges of the ESR line and,
as expected, when the MW power is reduced. It is worth noting
that M1 increases rapidly at low microwave power and then
reaches a plateau for power on the order of 40–60 mW. For a
direct comparison of experimental (Fig. 4 of ref. 23) and
computational data, the dependence of simulated levels of Pn

and hPei as a function of the MW power, expressed by T1MW, for
different values of oMW is reported in Fig. 5. The same
qualitative behaviour is obtained in experimental and calcu-
lated data. In numerical simulations the plateau is reached for
T1MW r 0.05–0.1 s, whereas experimentally a plateau of M1 is
reached above a few tens of mW. Such values are lower than the
power level commonly used in DNP experiments at low tem-
perature (T E 1.2 K), thus suggesting that the assumption of
full saturation is more appropriate than the hypothesis of
partial saturation in interpreting DNP results collected on trityl

Fig. 4 Steady state nuclear polarization (panel A), nuclear polarization time (panel B) and steady state electron polarization (panel C) as a function of the microwave
frequency at B0 = 4.64 T and T = 1.2 K in the Borghini regime (empty circle) and in the finite electron nucleus contact regime (TISS = 0.1 s, without leakage (empty
squares) and with T1n = 10 000 s (filled squares)). Remaining parameters are set as follows doe = 63 MHz, T1e = 1 s, T1n = N, Nn/Ne = 1000, dnp = 3, Np = 15.

Fig. 5 Steady state polarization of the electron (panel A) and nuclear (panel B) spin systems as a function of the microwave power, expressed by the parameter T1MW,
for oMW = oMW,opt (circles) and oMW = oe � do (squares). Remaining parameters are set as follows: T2e = 0 s, TISS = 0, T1e = 1 s, T1n = N, Nn/Ne = 1000, dnp = 3, Np = 15.
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doped samples in this temperature range. In ref. 19, Jannin et al.
argued that the increase of the microwave power could lead, in the
TEMPO doped sample considered, to a heating of the thermal bath
which competes with the polarizing action of the MW themselves,
affecting the equilibrium nuclear polarization and ending up in
lower steady state Pn values. Such an argument cannot be extended
to explain the observations on trityl doped samples, as the heating
effect would also affect the equilibrium electron polarization,
contributing positively to the total saturation of the ESR line. In
that case, hPei should go to zero upon increasing the MW power
(1/be - N), instead of going to the low temperature plateau
observed in ref. 23. Thus, the assumption of partial MW saturation,
although successful in improving the description of DNP from the
nuclear point of view, shows an intrinsic weakness in accounting
for the electron behaviour of trityl doped samples (different con-
clusions may apply to DNP samples doped with different radicals,
such as TEMPO, provided that hPei - 0 upon increasing the
irradiation power). The model of finite electron–nucleus contact on
the other hand, has similar capability in describing the nuclear
system, but without explicitly contradicting the experimental beha-
viour of electrons. Overall, given the low temperature DNP experi-
mental data available so far on the target compound considered
here, relaxing the condition TISS = 0 appears more promising than
removing the saturation condition T1MW = 0.

An elegant experimental test for better judging the physical
meaningfulness of regimes II and III would consist in measur-
ing the electron polarization profiles fiPe,i(oMW). The expected
trends for the two regimes are shown in Fig. 6 for oMW =
oMW,opt (panels A and C) and for oMW = oe � do (panels B and D)
and described by eqn (2): under the assumption of regime II
be = bn and no packets are fully saturated, whereas in regime III
in the absence of leakage be a bn and the irradiated packet is
characterized by Pe,0 = 0. Especially when oMW is set close to oe

the electron profile of the two regimes is considerably different.
In summary we have presented the articulated picture of

thermal mixing DNP generated by the five parameter model
introduced in ref. 20, in the limit where T2e = 0. Three cases in
particular have been discussed in detail: the Borghini regime,
characterized by a strong saturation of the ESR line and by a
perfect contact between electrons and nuclei (T1MW and TISS = 0),
the regime of partial saturation of the ESR line (T1MW a 0 and
TISS = 0) and the regime of finite electron–nucleus contact
(T1MW = 0 and TISS a 0). The former regime has been shown
to be less accurate in accounting for the available experimental
observations, whereas the latter two are both capable of prop-
erly capturing more features of the nuclear spin dynamics,
whilst predicting different behaviour for the electron system.
Additional dedicated experiments would be desirable in order

Fig. 6 Steady state electron polarization Pe,i(t - N) as a function of the electron frequency o in the regime of partial saturation (T1MW = 1 s, solid line) and of non-
perfect electron–nucleus contact (TISS = 1 s, dashed line) for oMW = oMW,opt (panel A) and for oMW = oe� do (panel B). Weighted electron polarization fiPe,i(t -N) as a
function of the electron frequency o in the regime of partial saturation (T1MW = 1 s, solid line) and of non-perfect electron–nucleus contact (TISS = 1 s, dashed line) for
oMW = oMW,opt (panel C) and for oMW = oe � do (panel D). Remaining parameters are set as follows: T2e = 0 s, T1e = 1 s, T1n = N, Nn/Ne = 1000, dnp = 3, Np = 15.
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to clarify which of the two predictions gives a better picture of
the physical reality, although the finite electron–nucleus con-
tact regime looks more consistent than partial saturation in
describing the behaviour of trityl doped samples on varying the
MW irradiation power.

The theoretical picture provided in this work cannot capture
by definition those polarization phenomena driven by the solid
effect or by the cross effect. Moreover it is still unable to
describe some facts observed in experiments where the thermal
mixing mechanism is expected to dominate, such as the inverse
dependence of the nuclear steady state polarization on electron
concentration, observed systematically when the ratio Ne/Nn

exceeds a certain value. The statistical approach introduced in
ref. 20 however, can be extended to explore regimes with
limited efficiency of the electron–electron interaction or, in
other words, with limited thermal contact between different
electronic packets. Moreover, the approach is flexible enough to
allow the introduction of additional interaction terms. By
exploiting these residual opportunities, we are confident that
also the still unexplained behaviours will find suitable inter-
pretation within the general framework of thermal mixing.

Appendix A: spin temperature in the thermal
mixing regime

Abragam and Goldman11 gave a description of TM DNP based
on the separation between electron Zeeman and non-Zeeman
contributions in the magnetic Hamiltonian of the system.

Starting from such Hamiltonian one may derive the energy of a
single electron spin Si (belonging to packet i) associated to its two
possible states: up (m) of energy Em

i = �h/2(oe� Di) and down (k), Ek
i =

��h/2(oe � Di). When MW is off, the system is at thermal equili-
brium with the lattice, at an inverse temperature bL = �h/(2kBT)
(where kB is the Boltzmann constant) and the probability for the
spin Si to be in the state up is given by the Boltzmann weight:

pmi p exp[�bL(oe � Di)].

When MW is on, the system is out of equilibrium. If now the
existence of a unique temperature among the different packets
is postulated as in ref. 11, the probability pmi can be expressed in
terms of a generalized Boltzmann weight:

p"i / exp � �hoe

2kBTa
� �hDi

2kBTb

� �� �
¼ exp �ðaoe � bDiÞ½ �

where the two parameters a = �h/(2kBTa) and b = �h/(2kBTb) are
normally referred to as Zeeman and non-Zeeman inverse tem-
perature respectively. The polarization of the spin Si can be
then written as:

Pi ¼
p"i � p#i
p"i þ p#i

¼ � tanh aoe � bDi½ �:

The same expression can be derived by observing that, when-
ever a process much faster than the other events ruling the system
exists, the detailed balance for such a process must be satisfied at

any point in time. In all the TM scenarios considered in this work,
the ‘spectral diffusion’ mechanism depicted here below

#
oi�d

"
oi

"
oj

#
ojþd
Ð
T2e

"
oi�d

#
oi

#
oj

"
ojþd

has been always assumed to be a fast process. Its corresponding
detailed balance condition can be written in terms of the
fraction of electrons up – Pe,i

+(t) – and of the fraction of
electrons down – Pe,i

�(t) – at time t:

Pe;i�d
þðtÞPe;i

�ðtÞ
Pe;i�d

�ðtÞPe;i
þðtÞ ¼

Pe; j
þðtÞPe; jþd

�ðtÞ
Pe; j

�ðtÞPe; jþd
þðtÞ:

Then, by using the relation

Pe;i
þðtÞ ¼ 1þ Pe;iðtÞ

2
; Pe;i

�ðtÞ ¼ 1� Pe;iðtÞ
2

one comes to an equation for the electron polarization

1� Pe;i

� �
1þ Pe;i�d
� �

1þ Pe;i

� �
1� Pe;i�d
� � ¼ 1þ Pe; j

� �
1� Pe; jþd
� �

1� Pe; j

� �
1þ Pe; jþd
� �

which is satisfied if

Pe,i(t) = tanh[be(t)(Di � c(t))],

qed.
Repeating the same procedure for the ISS process one

obtains the following equation for the nuclear polarization:

PnðtÞ ¼
Pe;iðtÞ � Pe;iþdnpðtÞ
1� Pe;iþdnpðtÞPe;iðtÞ

(A1)

which, being Pe,i(t) = tanh[b(t)(Di � c(t))], can be rewritten as:

Pn(t) = tanh[b(t)dnp]. (A2)

Eqn (A2), valid when TISS is as fast as spectral diffusion, defines
the existence of a unique common temperature between the
nuclear spin system and the electron non-Zeeman reservoir.

Appendix B: electron and nuclear spin
dynamics

The numerical procedure described in the main text to evaluate Pe,i(t)
and Pn(t), when all the processes but the spectral diffusion have a
finite transition rate, has been conveniently adapted for the three
regimes considered. The strategy consists in using conservation laws
to manage all mechanisms assumed to be infinitely efficient, while
computing rate equations only for processes with a finite rate.

1. Regime I: ‘Borghini’ (TISS and T1MW - 0)

Rate equations are used to account only for the effect of the
electron and nuclear spin–lattice relaxation:

dPe;iðtÞ
dt

¼ P0 � Pe;iðtÞ
T1e

dPnðtÞ
dt

¼ P0n � PnðtÞ
T1n

(B1)

Fast processes (spectral diffusion, electron–nucleus contact
and MW saturation) are accounted for by the conservation of
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the total polarization (for variations induced by spectral diffu-
sion or ISS) and of the total electron non-Zeeman plus nuclear
Zeeman energies:

P
fi[Pe,i(t + dt) � Pe,i(t) � di,i0

dPMW] = 0

X
fiDi Pe;iðtþ dtÞ � Pe;iðtÞ
� 	

�Nn

Ne
on Pnðtþ dtÞ � PnðtÞ½ � ¼ 0

where dPMW indicates the variation due to MW irradiation and the
time step dt - 0 being the characteristic time of the transitions
T2e, TISS and T1MW. These equations are conveniently written as:

�
X
iai0

fi Pe;iðtþ dtÞ � Pe;iðtÞ
� 	

¼ f0 Pe;0ðtþ dtÞ � Pe;0ðtÞ � dPMW
� 	

X
iai0

fiDi Pe;iðtþ dtÞ � Pe;iðtÞ
� 	

þ f0D0 Pe;0ðtþ dtÞ � Pe;0ðtÞ � dPMW
� 	

�Nn

Ne
on Pnðtþ dtÞ � PnðtÞ½ � ¼ 0

so that, by means of simple algebra, the condition:X
fi Di � D0ð Þ Pe;iðtþ dtÞ � Pe;iðtÞ

� 	

�Nn

Ne
on Pnðtþ dtÞ � PnðtÞ½ � ¼ 0

(B2)

is obtained. By solving this equation one derives b(t + dt) and
computes Pe,i(t + dt) = �tanh[b(t + dt)(Di � D0)] and Pn(t + dt) =
tanh[b(t + dt)dnp].

It is interesting to study also the evolution of the inverse
temperature b(t) that in regime I, as demonstrated in the
Appendix A, is the same for both the electron non-Zeeman
and the nuclear Zeeman reservoirs: b(t) = be(t) = bn(t). Moreover,
since full saturation imposes c = D0, b(t) is the only unknown
variable of the problem. Hence, by means of eqn (B2) and (B1),
it is possible to describe analytically the time behaviour of b(t).
At a generic time t + dt, by assuming dt - 0, eqn (B2) writes:X

fi � tanh bðtþ dtÞ Di � D0ð Þ½ � � Pe;iðtþ dtÞ

 �

Di � D0ð Þ �Nn

Ne
on tanh bðtþ dtÞonð Þ � Pnðtþ dtÞ½ � ¼ 0

Now, using eqn (B1) for replacing Pe,i(t + dt) and Pn(t + dt)
one obtains:

X
fi

�
� tanh bðtþ dtÞ Di � D0ð Þ½ � þ tanh bðtÞ Di � D0ð Þ½ �:

� dt

T1e
P0 � tanh bðtÞ Di � D0ð Þ½ �


Di � D0ð Þ

�Nn

Ne
on tanh bðtþ dtÞonð Þ � tanh bðtÞonð Þ½ � ¼ 0

Then, with the first order expansions:

b(t + dt) E b(t) + b0(t) dt

tanh[b(t + dt)x] E tanh[b(t)x] + b0(t)x{1 � tanh2[b(t)x]}

and some algebraic calculations, the following equation for b(t)
is achieved:

b0ðtÞ
�X

fi Di � D0ð Þ2 1� tanh2 bðtÞ Di � D0ð Þ½ �
� 	

:

þNn

Ne
on

2 1� tanh2 bðtÞon½ �
� 	

þ 1

T1e

X
fi Di � D0ð Þ P0 þ tanh bðtÞ Di � D0ð Þ½ �f g ¼ 0

(B3)

Eqn (B3) is conveniently rewritten as:

b0ðtÞ ¼ �
P

fi Di � D0ð Þ tanh bðtÞ Di � D0ð Þ½ � � D0P0

Nn

NeT1e
on

2 1� tanh2 bðtÞon½ �
� 	 ; (B4)

after neglecting with good approximation the termP
fi(Di � D0)2 [1 � tanh2[b(t)(Di � D0)]].
Although no attempt to solve analytically eqn (B4) is made

here, it is clear that the solution cannot be an exponential
function, as already anticipated in the main text.

2. Regime II: partial MW saturation (T2e, TISS - 0)

The system of rate equations is used to describe the effect of
partial MW saturation as well as electron and nuclear spin–
lattice relaxation:

dPe;iðtÞ
dt

¼ P0 � Pe;iðtÞ
T1e

� di;i0
Pe;0

T1MW

dPnðtÞ
dt

¼ P0n � PnðtÞ
T1n

whereas spectral diffusion and electron–nucleus interaction are
accounted for by the following conservation laws:

P
fi[Pe,i(t + dt) � Pe,i(t)] = 0

X
fiDi Pe;iðtþ dtÞ � Pe;iðtÞ
� 	

�Nn

Ne
on Pnðtþ dtÞ � PnðtÞ½ � ¼ 0

with dt - 0 being the characteristic time of the transitions
T2e and TISS. By solving this system one obtains b(t + dt) and
c(t + dt) and computes Pe,i(t + dt) = �tanh[b(t + dt)(Di � c(t))] and
Pn(t + dt) = tanh[b(t + dt)dnp].

3. Regime III: poor electron–nucleus contact (T2e and T1MW - 0)

The system of rate equations takes into account the effect of
the electron–nucleus contact and of the electron and nuclear
spin–lattice relaxation:

dPe;iðtÞ
dt

¼ P0 � Pe;iðtÞ
T1e

þ
fi�dnpP� þ fiþdnpPþ

2TISS

dPnðtÞ
dt

¼ P0n � PnðtÞ
T1n

� Ne

2TISSNn

X
fi fiþdnpPn

The effect of the other processes (spectral diffusion and full
MW saturation) is accounted for by the conservation of the total
polarization (when the variation is induced by spectral diffusion)
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and of the total electron non-Zeeman plus nuclear Zeeman
energies:

P
fi[Pe,i(t + dt) � Pe,i(t) � di,i0

dPMW] = 0

P
fiDi[Pe,i(t + dt) � Pe,i(t)] = 0

where dPMW indicates the variation due to MW irradiation and the
time step dt - 0 being the characteristic time of the transitions
T2e and T1MW. These equations are conveniently written as:

�
X
iai0

fi Pe;iðtþ dtÞ � Pe;iðtÞ
� 	

¼ f0 Pe;0ðtþ dtÞ � Pe;0ðtÞ � dPMW
� 	

X
iai0

fiDi Pe;iðtþ dtÞ � Pe;iðtÞ
� 	

þ f0D0 Pe;0ðtþ dtÞ � Pe;ið0Þ � dPMW
� 	

¼ 0

so that, after simple algebraic calculations, the following con-
dition is obtained:

P
fi(Di � D0)[Pe,i(t + dt) � Pe,i(t)] = 0,

that allows deriving b(t + dt) and thus computing Pe,i(t + dt) =
�tanh[b(t + dt)(Di � D0)].

Appendix C: dynamical behaviour of the
electron average polarization

The evolution of the average electron polarization hPei in
regimes II and III shows a peculiar behaviour characterized
by two different time scales, as sketched in Fig. 7.

1. Partial MW saturation

In this regime, due to the hypothesis T2e = 0 and TISS = 0,
one has Pe,i(t) = tanh[be(t)(Di � c(t))] and be(t) = bn(t) = b(t).

The evolution of hPei is determined both by b(t) (panel D, Fig. 2)
and c(t).

At short times (t E T1e) the inverse temperature b is
determined by the large nuclear system for which bn(t = 0) =
bL E 0. When T1MW = 0, the only solution is c(t = 0) = D0 and
consequently Pe,i(t = 0) = 0, 8i. For partial saturation (T1MW > 0)
the profile of Pe,i becomes a flat function (corresponding to the
condition c(t = 0) - N), which quickly evolves with a char-
acteristic time T1e towards an intermediate level between 0 and
P0, that can be calculated using the first equation of system (8):

Pe;i ¼ P0
T1MW

f0T1e þ T1MW
:

At longer times (t E Tpol) the evolution of hPei is mainly due
to b(t) dynamics (c(t) being approximately constant) and it is
thus characterized by a time constant in the order of 103 s.

2. Poor electron–nucleus contact

The dynamics of both be(t) and hPe(t)i is characterized by two
time scales: a first rapid component with a characteristic time
in the order of T1e and a second slow component with a
characteristic time in the order of Tpol.

In this regime, due to the hypothesis T2e = 0 and T1MW = 0,
one has Pe,i(t) = tanh[be(t)(Di � D0)], with be(t) a bn(t). Depend-
ing on the time scale considered, the system can be qualita-
tively depicted and be estimated accordingly.
� At very short times (t - 0), being the contact between

electrons and nuclei finite, the electron system is unaffected by
the presence of the nuclear reservoir and reaches immediately
the inverse temperature bB predicted by Borghini and defined
by eqn (B2) after setting Nn = 0.
� After this initial ‘thermalization’ phase, at times t E T1e,

the electron reservoir is on one side in contact with a thermal
bath at temperature 1/bB (determined by interaction with the lattice,

Fig. 7 Panel A: build up curve of the average electron polarization hPe(t)i in the regime of partial saturation (regime II) for T1MW = 0 s (Borghini limit, thick solid line),
0.1 s (small-dashed line) and 1 s (large-dashed line). Remaining parameters are set as follows: T1e = 1 s, T1n = N, Nn/Ne = 1000, i0 = 4, dnp = 3, Np = 15. Panel B: build up
curve of the average electron polarization hPe(t)i and of the inverse electron spin temperature be(t) (inset) in the regime of poor electron–nucleus contact for TISS = 0 s
(Borghini limit, thick solid line), 0.01 s (dotted line), 0.1 s (small-dashed line) and 1 s (large-dashed line). Remaining parameters are set as follows: T1e = 1 s, T1n = 10 000 s,
Nn/Ne = 1000, i0 = 5, dnp = 3, Np = 15.
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by spectral diffusion and by the highly effective MWs), while
feeling on the other side the nuclear ensemble having an initial
temperature bn = bL E 0. Thus, on a time scale of a few T1e, the
inverse temperature be moves towards a target value between bB

and bL, depending on the strength of the two contact times T1e

and TISS. When the electron–nucleus contact is poorly efficient
be - bB; conversely be - bL E 0 for strong electron–nucleus
contact.
� At large times (t E Tpol), bn(t) evolves from bL towards its

final steady state bn and be(t) evolves as well, reaching an
intermediate value between bn and bB.

In summary, as long as the electron–nucleus contact is
poorly efficient, the electron inverse temperature be is only
slightly affected by the nuclear reservoir and it is thus seen by
the latter as a constant value equal to bB. As discussed in
Sections II and IV this behaviour leads straightforwardly to an
exponential build up curve for nuclear polarization.
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