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Abstract. We address the effect of disorder geometry on the critical force
in disordered elastic systems. We focus on the model system of a long-range
elastic line driven in a random landscape. In the collective pinning regime, we
compute the critical force perturbatively. Not only does our expression for the
critical force confirm previous results on its scaling with respect to the microscopic
disorder parameters, but it also provides its precise dependence on the disorder
geometry (represented by the disorder two-point correlation function). Our results
are successfully compared with the results of numerical simulations for random
field and random bond disorders.
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1. Introduction

Disordered elastic systems [1]–[4] are ubiquitous in Nature and condensed matter physics;
they encompass a wide range of systems going from vortex lattices in superconductors [5]
to ferromagnetic domain walls [6], wetting fronts [7], imbibition fronts [8, 9] or crack fronts
in brittle solids [10, 11]. In simple models for these phenomena, an elastic object struggles
to stay flat while its random environment tries to deform it, in or out of equilibrium. An
example is given by an elastic line in a random landscape, which is pictured in figure 1.
As a result of the competition between disorder and elasticity, the elastic object becomes
rough and is characterized by a universal roughness exponent [12, 13] that depends on the
dimension of the problem, the range of the elastic interaction and the type of disorder,
but not on the microscopic details of the system [2, 4].

This coupling between disorder and elasticity also has an important consequence on
the response of the elastic object to an external force [5]. At zero temperature, there
exists a critical force below which it does not move and remains pinned by the disorder.
If the applied force is larger than this threshold, the elastic object unpins and acquires
a non-zero average velocity. This describes the depinning transition of the elastic line.
A finite temperature rounds this behaviour for forces close to the threshold [14] and
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Figure 1. An elastic line pulled by a spring of stiffness κ and position w in a
random landscape. The bottom grey surface is the potential σV (x, u). The top
blue surface is the effective potential seen by the line, i.e. the bare potential plus
the parabolic potential κ(w − u)2/2 exerted by the spring.

allows the object to move at a finite velocity for forces well below the threshold, by a
thermally activated motion called creep [15]–[19]. The critical force plays a crucial role
in applications. In type-II superconductors, it corresponds to the critical current above
which the vortex lattice starts moving, leading to a superconductivity breakdown [20]. In
brittle solids, it determines the critical loading needed for a crack to propagate through
the sample and break it apart [10].

In contrast to roughness and depinning exponents, the critical force is not a universal
quantity and its value depends in general on the details of the model. Powerful techniques
such as the functional renormalization group allow the determination of universal
exponents [21]–[23], but one has to resort to other approaches for the critical force.
Scaling arguments allow one to find its dependence on the disorder amplitude and the
different length scales present in the system, such as the size of the defects and the
typical distance between them [5, 24]. Unfortunately this approach gives the critical
force only up to a numerical prefactor, whose value depends on microscopic quantities
such as the geometrical shape of the impurities, and which is essential to determine in
view of applications. Recently, a numerical self-consistent scheme [25, 26] and numerical
simulations have focused on a precise determination of the critical force [27, 28] in the
context of brittle failure. Notably, is has been shown that in the collective regime, occurring
at weak disorder amplitude, the critical force does not depend on the disorder distribution
but only on the disorder amplitude and correlation length [27]. Still, the effect of the
disorder geometry, which is partly encoded in its two-point correlation function, remains
to be determined.

In this paper, we address the question of the dependence of the critical force on the
disorder geometry. We focus on the case of a long-range elastic line in a random potential,
which is the relevant model for wetting fronts and crack fronts in brittle failure. We restrict
ourselves to the collective pinning regime, which appears when the disorder amplitude is
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small. The line is driven by a spring pulled at constant velocity, and the drag force needed
to move the spring is computed perturbatively in the disorder amplitude. In the limit
of zero spring stiffness and zero velocity, this force is the critical force and we derive its
analytic expression.

Our expression depends explicitly on the two-point correlation function of the disorder,
and thus on the disorder geometry. Moreover, our computation is valid for a random bond
disorder as well as a random field disorder [18]. Numerical simulations are performed for
both types of disorder and various disorder geometries. They provide a successful check
of our analytical result and show that two systems with the same disorder amplitude and
correlation length can have different critical forces if their disorder two-point correlation
functions are different.

The paper is organized as follows. In section 2, we introduce the model of a long-
range elastic line driven in a random landscape. In section 3, we summarize our results.
Section 4 is devoted to the analytical computation of the drag force, from which we deduce
the critical force. Numerical simulation details and results are presented in section 5. We
conclude in section 6.

2. Model

We consider a 1 + 1 dimensional elastic line of internal coordinate x and position u(x, t),
pulled by a spring of stiffness κ located at position w(t) in a random energy landscape
σV (x, u); this system is represented in figure 1. The parameter σ represents the disorder
amplitude. The equation of evolution of the line position at zero temperature is [2, 29]

∂tu(x, t) = κ[w(t)− u(x, t)] + fel[u(·, t)](x)− σ∂uV (x, u(x, t)). (1)

The elastic force fel[u(·, t)](x) is linear in u(x, t) and we consider the case of a long-range
elasticity

fel[u(·, t)](x) =
c

π

∫
u(x′, t)− u(x, t)

(x− x′)2
dx′. (2)

The disorder has zero mean (V (x, u) = 0) and two-point correlation function

V (x, u)V (x′, u′) = Rx(x− x′)Ru(u− u′). (3)

The overline represents the average over the disorder. Alternatively, one can also use the
force correlation function,

∂uV (x, u)∂u′V (x′, u′) = −Rx(x− x′)∂2uRu(u− u′) (4)

= ∆x(x− x′)∆u(u− u′), (5)

with ∆u = −∂2uRu. We do not assume that the disorder is Gaussian distributed. For the so-
called random bond (RB) case, the potential V (x, u) is short-range correlated in both the
variables x and u; this implies a global constraint on the force correlation function, namely∫

∆u(u) du= 0. For the random field (RF) case, V (x, u) is, for instance, a Brownian motion
as a function of u, with diffusion constant

∫
∆u(u) du > 0 [18].

doi:10.1088/1742-5468/2014/03/P03009 4
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Finally, we impose a constant velocity v on the spring,

w(t) = vt. (6)

The drag fdr is defined to be the average force exerted on the line by the spring,

fdr(κ, v) = κ
[
w(t)− 〈u(x, t)〉

]
, (7)

where 〈·〉 denotes the average along the internal coordinate x. Since the landscape is
statistically translation invariant, this quantity is expected to not depend on time. Besides,
it is expected that both the drag force and the critical force, which depend on the
realization of the disorder, will tend to a limit at large system size which is independent
of the particular realization—hence equal to its average over disorder, which we make use
of in (7). These averages are the so-called thermodynamic drag and critical forces.

We focus on the computation of the drag as a function of the spring stiffness κ
and velocity v. We then show how to extract the critical force from these force–velocity
characteristics, fixing the velocity instead of the force.

3. Main result

Our main result is the following expression for the critical force, valid in the collective
pinning regime (when the disorder amplitude σ is small):

fc '
σ2∆̃x(0)

4πc

∫
|ku|∆̃u(ku) dku, (8)

where ∆̃x,u are Fourier transforms of ∆x,u. The expression of fc holds for a long-range
elastic line for both random bond and random field disorders. It is compared to simulation
results in figure 2, which shows a very good agreement in the collective pinning regime
Σ� 1. The dimensionless disorder amplitude Σ is defined later (40).

This analytic result is derived in section 4 and the numerical simulations are detailed
in section 5.

4. Analytical computation

In this section, we start by computing the average force required to drive the line at
an average speed v with a spring of stiffness κ. This provides us with a force–velocity
characteristic curve that depends on the spring stiffness. From these characteristic curves,
we deduce that sending the velocity and stiffness to zero in the appropriate order allows
us to extract the critical force.

4.1. Drag force

The line evolution equation (1) is highly non-linear due to the presence of the random
potential; it is thus very difficult to handle. To evaluate the average drag, we resort to a
perturbative analysis in the disorder amplitude σ.

doi:10.1088/1742-5468/2014/03/P03009 5
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Figure 2. Critical force as a function of the dimensionless disorder amplitude
Σ, defined in (40): comparison between numerical simulations and analytical
prediction (8) for random field (models A and B) and random bond (model C)
disorders (the disorders are defined precisely in section 5.1). The points are the
results of the simulations and the line is the analytical prediction, valid in the
small Σ limit.

We expand the line position in powers of σ as

u(t) =
∑
n

σnun(t). (9)

At order 0, the solution of (1) is independent of disorder,

u0(x, t) = vt− v

κ
, (10)

leading from (7) to the average drag

f
(0)
dr (κ, v) = v. (11)

The computation at higher orders is carried out in Fourier space, with the convention
g̃(kx) =

∫
g(x)e−ikxx dx (and similarly along direction u). We start by Fourier transforming

the elastic force,

fel[u(·, t)](x) = −c
∫
|kx|ũ(kx, t)e

ikxx
dkx
2π

, (12)

and the disorder correlator,

Ṽ (kx, ku)Ṽ (k′x, k
′
u) = (2π)2δ(kx + k′x)δ(ku + k′u)R̃x(kx)R̃u(ku). (13)

We also define, corresponding to (4) and (5),

∆̃x(kx) = R̃x(kx), (14)

∆̃u(ku) = k2uR̃u(ku). (15)

doi:10.1088/1742-5468/2014/03/P03009 6
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The first order contribution to the line position satisfies

∂tu1(x, t) + κu1(x, t)− fel[u1(·, t)](x) = −∂uV (x, u0(t)). (16)

Fourier transforming this equation in directions x and u gives the solution in Fourier
space,

ũ1(kx, t) = −
∫

iku
ikuv + ω(kx)

eikuu0(t)Ṽ (kx, ku)
dku
2π

, (17)

where we have introduced the damping rate

ω(kx) = κ+ c|kx|, (18)

which fully encompasses the effect of the elasticity. Since the first order correction is linear
in the potential V , its average over disorder is 0 and it does not contribute to the drag:
f
(1)
dr = 0.

At second order, the evolution equation reads

∂tu2(x, t) + κu2(x, t)− fel[u2(·, t)](x) = −σ−1[∂uV (x, u0(t) + σu1(x, t))− ∂uV (x, u0(t))].

(19)

Following an idea introduced by Larkin [30], we expand the potential around u0(t), getting

∂tu2(x, t) + κu2(x, t)− fel[u2(·, t)](x) = −∂2uV (x, u0(t))u1(x, t). (20)

It reads in Fourier space

∂tũ2(kx, t)+ ω(kx)ũ2(kx, t) =

∫
k2ue

ikuu0(t)Ṽ (k′x, ku)ũ1(kx − k′x, t)
dk′x dku
(2π)2

. (21)

Inserting the first order result (17) and solving gives

ũ2(kx, t) =

∫
ik′2u (k′u − ku)eikuu0(t)

[ikuv + ω(kx)][i(ku − k′u)v + ω(kx − k′x)]

× Ṽ (kx − k′x, ku − k′u)Ṽ (k′x, k
′
u)

dk′x dkudk
′
u

(2π)3
. (22)

Averaging over disorder with (13) leads to

ũ2(kx) = 2πδ(kx)

∫
iku∆̃x(k

′
x)∆̃u(ku)

κ[−ikuv + ω(k′x)]

dk′x dku
(2π)2

. (23)

doi:10.1088/1742-5468/2014/03/P03009 7
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Figure 3. Force–velocity curve using the drag (27) computed to the second order
in σ, for different values of the parabola curvature κ, indicated by the colour
scale. The two-point functions ∆x and ∆u of the disorder are centred Gaussian
functions of unit variance, encoding a random field disorder.

The proportionality to δ(kx) signifies that, in direct space, the average second order
correction does not depend on the internal coordinate x. It reads

u2 = −
∫
vk2u∆̃x(kx)∆̃u(ku)

κ[k2uv
2 + ω(kx)2]

dkx dku
(2π)2

. (24)

The second order drag is thus

f
(2)
dr (v, κ) = σ2

∫
vk2u∆̃x(kx)∆̃u(ku)

k2uv
2 + (κ+ c|kx|)2

dkx dku
(2π)2

. (25)

Adding this result to the zeroth order drag (11) provides the drag up to the order σ2,

fdr,2(v, κ) = f
(0)
dr (v, κ) + f

(1)
dr (v, κ) + f

(2)
dr (v, κ) (26)

= v + σ2

∫
vk2u∆̃x(kx)∆̃u(ku)

k2uv
2 + (κ+ c|kx|)2

dkx dku
(2π)2

. (27)

This drag gives us access, at the perturbative level, to the crucial force–velocity
characteristic. It is plotted in figure 3 for a random field disorder with Gaussian two-
point functions, at different values of the spring stiffness. When the spring stiffness κ goes
to zero, the depinning transition appears clearly and becomes sharp when κ = 0. The
picture is qualitatively similar for a random bond disorder. Any positive stiffness rounds
the transition, analogously to the temperature [4, 14, 31].

4.2. Critical force

As noted above, the usual force–velocity characteristic at zero temperature is recovered
in the limit κ→ 0; its equation is given by

fκ=0,2(v) = v +
σ2

c

∫
k2u∆̃x(vq/c)∆̃u(ku)

k2u + q2
dq dku
(2π)2

. (28)

doi:10.1088/1742-5468/2014/03/P03009 8
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We have performed the variable substitution ckx = vq in order to eliminate the velocity
in the denominator. Taking the small velocity limit in this expression gives the critical
force (8)

fc,2 =
σ2∆̃x(0)

4πc

∫
|ku|∆̃u(ku) dku. (29)

This expression is our main result, announced in equation (8). The index 2 indicates that
this critical force comes from a second order perturbative computation in the disorder
amplitude σ. The two limits do not commute: since any non-zero stiffness rounds the
transition, taking the limit of zero velocity first would give a zero critical force (see
figure 3). To get the depinning exponent β defined by v ∼f→f+c (f − fc)

β, we have to
go one step further in the Taylor expansion of (28) around v = 0. This can be done
analytically for simple correlators ∆̃x(kx) and ∆̃u(ku), or numerically in the general case
(see figure 3 for an example). We get

v ∼ f − fc, (30)

which corresponds to the mean field behaviour β = βMF = 1 [32] valid above the upper
critical dimension duc (for the long-range elasticity duc = 2). Below duc, the mean field value
βMF = 1 is an upper bound of the exact value of β which can be estimated by a functional
renormalization group ε-expansion [21]–[23] or evaluated numerically to β = 0.625±0.0005
for the long-range elastic line [33].

5. Numerical simulations

We now turn to the comparison of our analytical prediction with numerical simulations
of the line. Since our computation remains valid for both random bond and random field
disorder, we perform numerical simulations for both cases.

5.1. Numerical model

In our model a line of length L is discretized with a step a and its elasticity is given by

fel[u(·, t)]n =
c

πa

∑
n′ 6=0

un′(t)− un(t)

(n− n′)2
. (31)

Each point of the line moves on a rail with a disordered potential that is uncorrelated
with the other rails, so that ∆x(x − x′) = δx,x′ . Three different models of disorder are
considered:

• model A: random field disorder obtained by the linear interpolation of the random
force drawn at the extremities of segments of length 1;

• model B: random field disorder obtained in the same way as model A, but the
segments have length 0.1 with probability 1/2 and 1.9 with probability 1/2;

• model C: random bond disorder obtained by the spline interpolation of the random
energies drawn at the extremities of segments of length 1.

doi:10.1088/1742-5468/2014/03/P03009 9
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5.2. Analytical prediction

A prediction of the critical force for the three models can be obtained by observing that
for a discrete line the damping rate (18) changes to

ω(kx) = κ+ c

(
|kx| −

ak2x
2π

)
, (32)

where the wavevector kx is restricted to [−π/a, π/a]. The limits κ → 0 and v → 0 give
exactly the same result as (8),

fc,2 = lim
v→0

lim
κ→0

ftot,2(v, κ) =
σ2∆̃x(0)

4πc

∫
|ku|∆̃u(ku) dku. (33)

It is remarkable that discretizing the line does not change the critical force. In all models
we set a = 1 so that ∆̃x(0) = 1 and the functional of ∆u(u) appearing in our expression (8)
for the critical force is computed in appendix A for the three models. The final prediction
for model A is

fc,2 =
2 log(2)

π

σ2

c
' 0.44

σ2

c
, (34)

while for model B a numerical computation gives

fc,2 ' 0.55
σ2

c
, (35)

and for model C we have

fc,2 ' 2.83
σ2

c
. (36)

5.3. Measurement of the critical force

We start our numerical procedure with a flat configuration u(x) = 0 and w = 0. Then the
interface moves to a state uw=0(x) that is stable with respect to small deformations.
Increasing w, the interface position increases and a sequence of stable states can be
recorded. For each w, the stable state uw(x) can be found using the algorithm proposed
in [34] and we measure the pinning force

fw(κ) = κ[w − 〈uw(x)〉]. (37)

This pinning force depends on the realization of the disordered potential (its fluctuations
have been studied in [35]). An example of the evolution of the pinning force with w is shown
in figure 4. The pinning force is in general dependent on the initial condition; however,
due to the Middleton no-passing rule [36], we can prove that there exists a w∗ > 0 such
that the sequence of stable states uw>w∗(x) becomes independent of the initial condition.
A stationary state is thus reached, where the pinning force oscillates around its average
value f(κ) and displays correlation in w. Thus, in order to estimate f(κ) correctly we
sample fw(κ) far enough from the origin w = 0 and for values of w far enough from each
other.

doi:10.1088/1742-5468/2014/03/P03009 10
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Figure 4. The pinning force (37) as a function of the position w of the parabola,
for different values of the spring stiffness κ. The dashed vertical lines represent
approximate values w∗ after which the pinning force becomes independent of the
initial condition. Model A disorder with σ = 1 is used here.

An exact relation (the statistical tilt symmetry [37]) assures that the quadratic part of
the Hamiltonian (and thus the constant κ) is not renormalized. This means that the length
associated by a simple dimensional analysis to the bare constant κ, namely Lκ = c/κ,
corresponds to the correlation length of the system: above Lκ the interface is flat and feels
the harmonic parabola only, while below Lκ the interface is rough with the characteristic
roughness exponent at depinning ζ ' 0.39 [34].

The separation from the critical depinning point (located exactly at the critical driving
force fc) is described by the power law scaling [38] f−fc ∼ ξ−1/ν , where ξ is the correlation
length, given in our case by Lκ. When κ→ 0 (while keeping L� Lκ), the pinning force
tends to the thermodynamical critical force fc. Gathering the previous scalings, we thus
have that the finite size effects on the force take the form

f(κ) = fc + c1κ
1/ν + · · · . (38)

The fluctuations around this value, δf(κ)2, depend on L and κ. In the limit L� Lκ = 1/κ,
the interface can be modelled as a collection of independent interfaces of size Lκ and the
central limit theorem assures that the variance δf(κ)2 should scale as ∼ κ2/ν , but with
an extra factor Lκ/L. This allows us to write an extrapolation formula for fc that is
independent of the critical exponent ν,

f(κ) = fc + c1

√
κLδf(κ)2 + · · · . (39)

Our determination of fc is performed using this relation, by extrapolating the numerical
measurements of f(κ) for different values of κ to the limit κ → 0, as shown in figure 5.
It is worth noticing that most of the details of the finite size system such as the
boundary conditions or the presence of the parabolic well do not affect the thermodynamic
value of fc, which depends only on the elastic constant c and on the disorder statistics

doi:10.1088/1742-5468/2014/03/P03009 11
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Figure 5. The pinning force averaged over the parabola position w, versus a
function of the spring stiffness. A fit of the linear part gives the critical force,
see equation (39). This plot is for model A disorder with σ = 0.8 and we found
fc = 0.285.

[39, 40]. Our extrapolation of fc, shown in figure 5, has been performed on samples of size
L = 1000, 4000 (depending on the value of sigma) and for parabola curvatures down to
κ = 10−4.

5.4. Results

The dimensionless critical force Fc = fc/σ is plotted versus the dimensionless disorder
parameter

Σ =
σ∆̃x(0)

4πc

∫
|ku|∆̃u(ku) dku (40)

in figure 2. In all three cases, the results are very close to the theoretical prediction Fc = Σ
(equivalent to equation (8)) when the disorder parameter is small.

6. Conclusion

We have shown that the critical force for a long-range elastic line in a random landscape
can be computed perturbatively in the collective pinning regime, yielding the expression
(8). Our result for the critical force gives, together with its scaling with respect to the
microscopic parameters, its dependence on the disorder geometry. Indeed, we have shown
that two disorders that can be attributed the same correlation lengths (as in models A
and B) may present different critical forces that are precisely predicted by our theory.

Some previous works have studied the scaling of the critical force with respect to
microscopic parameters such as the disorder amplitude σ, the elastic constant c and the
disorder correlation lengths ξx and ξu in the directions x and u [5, 24, 27]. In particular,
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for the long-range elastic line, the following scaling has been found for the critical force
in the collective pinning regime [27]:

fc ∼
σ2ξx
cξu

. (41)

The lengths ξx and ξu characterize the typical scale of the disorder correlation along x
and u, but these scales cannot be uniquely defined. Different definitions lead to correlation
lengths that differ only by a numerical factor, so the scaling law (41) holds independently
of the chosen definitions. However, this prevents the use of this scaling law to make a
quantitative prediction. Our formula allows us to overcome this problem. In particular,
starting from equation (8) and writing

∆x(x) = ∆x1(x/ξx), (42)

where ∆x1 is a function of the dimensionless variable x/ξx and a similar relation defines
∆u1, one gets

fc =

(
∆̃x1(0)

4π

∫
|qu|∆̃u1(qu) dqu

)
× σ2ξx

cξu
. (43)

This shows that our analytical prediction (8) allows us to recover the scaling law (41) and
gives additionally the prefactor as a function of the correlation functions, i.e. it yields the
explicit dependence of the critical force on the disorder geometry.

The present work is not the first attempt to compute the critical force perturbatively:
expansions have been performed at weak disorder [18, 41], low temperature [31] or large
velocity [42, 43]. Weak disorder expansions are valid up to the Larkin length [5], Lc, defined
as the distance at which the line wanders enough to see the finite disorder correlation
length ξu (namely |u(Lc)−u(0)| ' ξu). Above the Larkin length, however, they predict an
incorrect roughness exponent [44]. Lastly, large velocity expansions give an estimation of
the critical force that is obtained by continuing a large-velocity asymptotic result, which
lies very far from the depinning regime, to zero velocity. Our computation does not need
such continuation, and is compatible with the fact that perturbative expansions in the
disorder amplitude are incorrect above the Larkin length, since the critical force can be
evaluated from the line behaviour at the scale of the Larkin length [5].

Our analysis is a first step towards a more general understanding of the critical force
dependence, and it can be extended in several directions. Firstly, the opposite individual
pinning regime occurring at a high disorder amplitude is worthy of investigation. The
perturbative analysis used here is not suited for its study, but a few comments can be
made on the grounds of former numerical studies [27, 28]. Its scaling with respect to the
disorder amplitude and correlation length has been elucidated for a long-range elastic line,
giving [27]

fc ∼ σ; (44)

thus the critical force is now proportional to the disorder amplitude and does not depend
on the disorder correlation lengths. Moreover, we have shown in a previous study [27] that
the critical force is given by the strongest pinning sites if the pinning force is bounded.

doi:10.1088/1742-5468/2014/03/P03009 13

http://dx.doi.org/10.1088/1742-5468/2014/03/P03009


J.S
tat.M

ech.(2014)P
03009

The effect of disorder geometry on the critical force in disordered elastic systems

In this case, it is likely that the dependence on the disorder geometry is very weak. The
case of unbounded pinning force requires further investigation.

Another issue arising from our study is the question of the landscape smoothness. Our
analysis requires an expansion of the potential to second order around the position of
the unperturbed line (see equation (20)): the force generated by the potential must be
continuous. When one tries to apply the analytical prediction (8) to a discontinuous force
landscape, it diverges because of a cusp present in the correlation function ∆u(u). On the
other hand, our previous numerical study [27] used a discontinuous force landscape and did
not reveal any divergence, while the dependence on the disorder amplitude, fc ∼ σ2, was
the same as the one observed here. This suggests that the divergence obtained when we
try to apply our result to a discontinuous force landscape is regularized by a mechanism
that is out of reach of the present perturbative computation. An understanding of the
behaviour of the elastic line and the critical force in a rougher force landscape would be
an important advance from a theoretical point of view, but also for experiments where
discontinuous force landscapes are ubiquitous [8, 11].

Lastly, the case of a short-range instead of long-range elasticity remains to be
understood within our approach; interesting comparison could be established with the
characteristic force of the creep regime, whose dependence on the details of the disorder
correlator (for RB disorder) has been examined recently [45]–[47].
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Appendix. Disorder generation and correlation

We detail here the procedures used to generate the different models of disorder, and how
to compute the disorder correlation function, which is needed to evaluate the critical
force (8).

A.1. Random field disorder: models A and B

For a random field disorder, the disorder is generated on each rail using the following
procedure (see figure A.1).

• The rail is divided into segments of random length l drawn in the distribution P (l).

• At the point linking the segment j−1 and the segment j, a random force fj is drawn
from a Gaussian distribution with zero mean and unit variance.

• Inside the segment j, at a generic point u, the force f(u) is obtained by a linear
interpolation such that f(uj) = fj and f(uj+1) = fj+1.
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Figure A.1. Random field disorder on a rail: the force is continuous and piecewise
linear.

We want to know the correlation of the forces at two points separated by a distance
u ≥ 0, say f(0) and f(u). This correlation is non-zero if the two points lie on the same
segment or on neighbouring segments. We introduce the length l of the segment where the
point 0 lies, the length l′ of its right neighbour, and the left end u0 of the first segment.
The probability distribution for l is Q(l) = lP (l)/l̄, where l̄ =

∫∞
0 P (l) dl; the probability

distribution for l′ is simply P (l′) and the one of u0 is l−1χ[−l,0](u0) (meaning that the point
0 is uniformly distributed in its segment). Putting these probabilities together, we get the
probability distribution for (l, l′, u0),

P(l, l′, u0) = l̄−1P (l)P (l′)χ[−l,0](u0). (A.1)

The points 0 and u are on the same segment if u ≤ u0 + l. The force at u0 is f0 and
the force at u0 + l is f1; f0 and f1 are uncorrelated random variables with zero mean and
unit variance. The forces at 0 and u are

f(0) = f0
u0 + l

l
+ f1
−u0
l
, (A.2)

f(u) = f0
u0 + l − u

l
+ f1

u− u0
l

. (A.3)

The correlation between these two forces is

f(0)f(u) =
2u20 + 2(l − u)u0 + l2

l2
. (A.4)

Here, the average is restricted to the forces f0 and f1; the other variables l, l′ and u0 are
fixed. On the other hand, when u0 + l ≤ u ≤ u0 + l+ l′, the two points lie on neighbouring
segments. The same argument gives for the force correlation

f(0)f(u) =
−u20 − (l + l′ − u)u0

ll′
. (A.5)
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Gathering the results (A.1), (A.4) and (A.5) and integrating over u0 gives for the
correlation function

∆u(u) =
1

l̄

∫ ∞
0

dl P (l)

(
χ[0,l](u)

u3 − 3l2u+ 2l3

3l2

+

∫ ∞
0

dl′P (l′)χ[0,l+l′](u)

[
−2u30 − 3(l + l′ − u)u20

6ll′

]min(u−l,0)

max(u−l−l′,−l)

)
, (A.6)

where we have used the notation [g(u0)]
b
a = g(b)− g(a).

For the model A, all the segments have the same length l = 1, corresponding to the
probability density

P (l) = δ(l − 1). (A.7)

For the model B, the segment lengths can take two values, 0.1 and 1.9, with probability
1/2 each,

P (l) = 1
2
δ(l − 0.1) + 1

2
δ(l − 1.9). (A.8)

For the model A, inserting the probability density (A.7) into the general formula (A.6)
gives the correlation function for u ≥ 0,

∆u(u) = χ[0,1](u)
3u3 − 6u2 + 4

6
+ χ(1,2](u)

(2− u)3

6
. (A.9)

It is plotted in figure A.2. To compute the critical force (8), we need the following quantity:∫
|ku|∆̃u(ku) dku = 4

∫ ∞
0

∆u(0)−∆u(u)

u2
du

= 8 log(2). (A.10)

For the model B, the correlation function is more complex and is plotted in figure A.2.
The integral entering the expression (8) of the critical force has to be computed
numerically; we get∫

|ku|∆̃u(ku) dku ' 6.91. (A.11)

A.2. Random bond disorder: model C

A random bond disorder can be generated on a rail by drawing random energies for points
on a grid of step l. A spline interpolation of these energies then allows one to get a smooth
landscape of potential. We determine here the two-point correlation function of such a
disorder (see [47] for a similar study for a two-dimensional spline). Specifically, let us
consider a grid of spacing l with 2n + 1 points indexed from −n to n. A random value
Vi is attached to each site ui = il of the grid. The function V (u) is a cubic spline of the
(Vi)−n≤i≤n, that is
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Figure A.2. The two-point correlation function of the force ∆u(u) =
∂uV (0)∂uV (u) for the disorder models A, B and C. The model C correlation
function has been rescaled by a factor of 0.25.

• V (u) is a cubic polynomial on each lattice segment [ui, ui+1] for −n ≤ i < n,

• V (u) is continuous on each lattice site ui, and equal to Vi, V (u+i ) = V (u−i ) = Vi,

• the first and second derivatives of V (u) are continuous, V ′(u+i ) = V ′(u−i ) and
V ′′(u+i ) = V ′′(u−i ).

One defines the coefficients A0
i , . . . , A

3
i (−n ≤ i < n) of the polynomials as

V (u) = A0
i + A1

i (u− ui) +
A2
i

2
(u− ui)2 +

A3
i

3!
(u− ui)3 (A.12)

for ui ≤ u < ui+1. One has A0
i = Vi.

Denoting li = ui+1 − ui (it does not need to be constant, we will keep it generic for a
while), the continuity conditions are written as

A0
i+1 = A0

i + liA
1
i +

1

2
l2iA

2
i +

1

3!
l3iA

3
i , (A.13)

A1
i+1 = A1

i + liA
2
i + 1

2
l2iA

3
i , (A.14)

A2
i+1 = A2

i + liA
3
i . (A.15)

There are 6n unknown variables and 6n− 2 bulk equations (A.13)–(A.15). They have
to be complemented by boundary conditions (e.g. fixing the values of the derivatives at
extremities, or imposing periodic boundary conditions). The simplest way to solve the set
of equations is to eliminate the A1

i s and the A3
i s to obtain equations on the A2

i s only,
as a function of the parameters li and A0

i = Vi. From (A.15) one has A3
i = (A2

i+1 − A2
i )/li

and substituting into (A.13) one obtains A1
i ,

A1
i =

A0
i+1 − A0

i

li
− li

2A2
i + A2

i+1

6
. (A.16)
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Using these expressions in (A.14) one gets the equations on the A2
i s,

liA
2
i + 2(li + li+1)A

2
i+1+ li+1A

2
i+2 = 6

A0
i+2 − A0

i+1

li+1

− 6
A0
i+1 − A0

i

li
. (A.17)

These are quite complex to solve in general but simplifications occur for an uniform spacing
li = l and in the infinite grid size limit n→∞.

Solution for constant li = l: the equations are written as

A2
i + 4A2

i+1 + A2
i+2 =

6

h2
(
A0
i − 2A0

i+1 + A0
i+2

)
. (A.18)

They take the form M ~A2 = (6/h2)∆ ~A0, where ∆ is the discrete Laplacian and M is a
tridiagonal (2n+ 1)× (2n+ 1) matrix. It is best represented as M = 6(1 + ∆/6) with

∆ =


−2 1 0 0 . . .
1 −2 1 0 . . .
0 1 −2 1
...

. . . . . . . . .

 , (A.19)

which allows us to invert M by writing

M−1 =
1

6

∑
p≥0

(−1)p

6p
∆p. (A.20)

Hence, the vector ~A2 of the A2
i s is obtained as

~A2 =
1

l2

∑
p≥0

(−1)p

6p
∆p+1 ~A0. (A.21)

Each of the A2
i s is a linear combination of all the fixed potentials A0

i = Vi. It is known
that the coefficients of ∆p are given in the infinite size limit n → ∞ by the binomial
coefficients, up to a sign. For instance, the diagonal and subdiagonal elements are

(
∆p)ii = (−1)p

(
2p

p

)
,

(
∆p)i,i+1 = (−1)p+1

(
2p

p− 1

)
. (A.22)

One is now ready to determine the correlator of the potential. On a generic interval
il ≤ y ≤ (i+ 1)l (i > 0) one has

V (u+ η) =
(
i+ 1− u

l

)
A0
i −

(
i− u

l

)
A0
i+1 +

(u− il)(u− (i+ 1)l)

6l
×
[
((2 + i)l − u)A2

i + (u− (i− 1)l)A2
i+1

]
, (A.23)

where η is uniformly distributed on [0, l] and allows one to implement the statistical
invariance by translation of the disorder (and generalizes the result of [47]). To determine
the correlation function V (u)V (u′), one thus has to identify the segments to which u and
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u′ belong, and, expanding (A.23), to determine averages of the form A0
iA

2
j . These are

obtained from the large-n limit explicit form of (A.21), which reads

A2
j = · · ·+ (−1)i

1

l2

∑
p≥0

1

6p

(
2p+ 2

p− i+ 1

)
A0
j+i + · · ·

= · · ·+ (−1)i+16
√

3

l2

(
2−
√

3
)i
A0
j+i + · · · , (A.24)

which yields for instance A0
0A

2
i = (−1)i+16

√
3/l2(2 −

√
3)i. One obtains a cumbersome

expression in real space, defined piecewise, which we do not reproduce here for clarity.
After Fourier transformation, the correlator R̃u is found to take a simple form

R̃u(ku) =
9 sinc(ku/2)8

(2 + cos(ku))2
, (A.25)

which we have checked numerically. The force correlation function is shown in figure A.2;
unlike the random field correlation functions, it presents negative parts indicating
anticorrelations of the disorder (due to the spline continuity constraints).
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