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Abstract – The relevant parameters at the microstructure scale that govern the macroscopic
toughness of disordered brittle materials are investigated theoretically. We focus on a crack
propagation that is planar and describe it as the motion of an elastic line within a plane with
random distribution of toughness. Our study reveals two regimes: in the collective-pinning regime,
the macroscopic toughness can be expressed as a function of a few parameters only, namely the
average and the standard deviation of the local toughness distribution and the correlation lengths
of the heterogeneous toughness field; in the individual-pinning regime, the passage from micro- to
macro-scale is more subtle and the full distribution of local toughness is required to be predictive.

Copyright c© EPLA, 2014

Bridging microscale features of materials with their
macroscopic behavior is a major challenge for properties
governed by the motion of interfaces. In brittle solids [1],
ferromagnets [2], superconductors [3], thin film adhe-
sives [4], or wetting films [5], impurities or defects present
at the microstructure scale can produce dramatic macro-
scopic effects. They may also have interesting benefits:
for example, large precipitate particles trap dislocations
in metallic alloys, increasing their overall strength [6].

In this study, we address the deduction of the effective
toughness of brittle solids from the variations of toughness
at their microstructure scale. Failure processes involve in
general complex mechanisms, such as damage and plastic
deformations due to the high level of tensile stress in the
crack tip vicinity, that are localized in the so-called process
zone. A major simplification occurs in brittle solids where
this zone is much smaller than the typical size of hetero-
geneities in the material. Assuming that the crack propa-
gation is planar, it can be modeled as the overdamped
motion of a line u(r, t) in a two-dimensional heteroge-
neous medium [7–9], as represented in fig. 1. Previous
works have investigated the effect of tough inclusions on
the propagation of brittle cracks and were able to quantify

(a)E-mail: vincent.demery@polytechnique.edu

Fig. 1: (Color online) Crack front moving upwards in a disor-
dered medium: red stands for tougher areas. The defects have
characteristic sizes ξr and ξu in the r and u directions.

the toughening induced by a periodic distribution of these
obstacles [7,10]. Here, we focus on disordered microstruc-
tures, like randomly distributed impurities.

Earlier studies devoted to the propagation of an elastic
line driven in a random medium have revealed a size-
dependent crossover between a weak-pinning regime rel-
evant for small systems and a strong-pinning regime
that describes the thermodynamic limit [11–14]. For
weak pinning, the macroscopic toughness is essentially
the spatial average of the local toughness with a small,
size-dependent, correction. For strong pinning, the failure
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process is highly intermittent [15,16], and the avalanche-
like dynamics results into a selection of some particularly
strong regions within the fracture plane. The macroscopic
toughness is thus larger than its spatial average.

We focus on the second case, and consider in-
finitely large specimens. Our study reveals two regimes,
depending on the disorder amplitude: strongly disordered
materials are in the individual-pinning regime, and their
behavior depends on many microscopic parameters; the
macroscopic toughness is shown to be dominated by the
toughest obstacles. A regime of collective pinning occurs
for a lower level of disorder, where the effective tough-
ness is shown to depend on a few measurable microscopic
parameters: the average and standard deviation of the lo-
cal toughness distribution and the correlation lengths of
the heterogeneous toughness field.

Our theoretical description of the crack evolution relies
on two competing mechanisms: the material elasticity that
tends to keep the front flat and the impurities that deform
it. They reflect on the evolution equation of the front:

∂u

∂t
(r, t) = Kext+

c

π

∫
u(r′, t) − u(r, t)

(r′ − r)2
dr′ −Kc(r, u). (1)

The time has been rescaled by the front effective mobility.
The macroscopic stress intensity factor Kext is prescribed
by the loading conditions of the sample; it will also be
referred to as the driving force. The second term describes
the distribution of stress intensity factor along the front
resulting from its perturbed geometry [17]. This integral
term represents long-range elastic interactions along the
fracture line and also describes the behavior of wetting
fronts [18]. The elastic constant is equal to c = 〈Kc〉/2
for fracture fronts, but we keep it as a free parameter to
make our study applicable to a broader class of systems.
Finally, Kc(r, u) is the fluctuating local toughness.

The interplay between disorder and line elasticity deter-
mines the response of the line to an external force Kext:
as long as the external force stays below a threshold Keff,
the line remains pinned by the heterogeneities; when it ex-
ceeds Keff, the line unpins and acquires a non-zero asymp-
totic velocity [19]. To describe this behavior, it has been
fruitful to consider the depinning transition as a critical
phenomenon, with the velocity playing the role of an or-
der parameter [19]. This analogy suggests that close to
Keff the front displays an universal behavior with critical
exponents and scaling laws that have been extensively in-
vestigated [5,19–22]. If the test of these predictions in ex-
periments has been rather successful [15,23,24], the most
relevant quantity from an applied science perspective is
the depinning threshold value Keff which identifies with
the macroscopic toughness. Analogously to the critical
temperature in equilibrium phase transitions, Keff is not
universal and depends on the microscopic details of the
system. The key point is what features at the microscopic
scale affect the value of the critical driving force. To gain
insight into this transition, we also study the front shape

via its height-height correlation function, or roughness,

B(δr) = 〈[u(r) − u(r + δr)]2〉, (2)

where 〈·〉 and · denote averages over the position r and
the disorder realization, respectively.

We describe the material microstructure by rectangular
domains of constant toughness. Their length is ξr in the
r-direction; in the u-direction, it is drawn in an exponen-
tial distribution of average ξu. These rules set a particular
disorder geometry; the effect of different spatial correla-
tions along u will be discussed elsewhere. On each rect-
angular domain, the local toughness is Kc = 〈Kc〉 + σkc,
where kc is drawn from a symmetric probability distri-
bution P (kc) of unit variance and zero mean value. The
disorder is thus described by the standard deviation σ of
the toughness distribution, the correlation lengths ξr and
ξu and the probability distribution P (kc). The average
toughness 〈Kc〉 can be absorbed in the driving force and
does not play any role in the study of eq. (1). In real ma-
terials, these parameters may be estimated. For instance,
in a two-phase material with toughnesses K1

c and K2
c and

densities n1 and n2 = 1 − n1, the disorder amplitude is
σ =

√
n1n2|K1

c − K2
c |. The lengths ξr and ξu are given by

the typical size of phase domains, as shown in fig. 1.
To identify the relevant parameters, we introduce the

rescaled variables r̃ = r/ξr , ũ = u/ξu and kext = (Kext −
〈Kc〉)/σ. With these variables, eq. (1) reads, for a station-
ary state where ∂u/∂t = 0,

0 = kext − kc(r̃, ũ(r̃)) +
1
π

cξu

σξr

∫
ũ(r̃′) − ũ(r̃)

(r̃′ − r̃)2
dr̃′. (3)

Thus, besides the disorder distribution P (kc), the behavior
of eq. (3) depends only on the dimensionless parameter

Σ =
σξr

cξu
, (4)

hereafter referred to as the disorder parameter. The ob-
servables can then be written as functions of the disorder
parameter and the disorder distribution multiplied by a
numerical prefactor:

B(r) =
(

σξr

c

)2

b

(
r

ξr
; Σ, P (kc)

)
, (5)

K̃eff = Keff − 〈Kc〉 = σkeff(Σ, P (kc)). (6)

To perform numerical simulations of eq. (1), the system
is discretized in the r-direction with a step ξr and put on a
strip of finite width L, with periodic boundary conditions.
The driving force is replaced by a parabolic drive centered
at w and of curvature κ: Kext = κ[w − u(r, t)]. We start
with a flat configuration u(r) = 0 and set w = w0 > 0.
The line advances to a stable state uw0(r) that can be
found using the algorithm proposed in [25]. The stable
configuration does not depend on the dynamics as soon as
it satisfies the Middleton no-passing rule [26]; our dynam-
ics, detailed in [25], satisfies this rule and is designed to
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Fig. 2: (Color online) Stable front configurations for bivalued
and rare disorder distributions and two values of the disorder
parameter Σ, for L = 1000. The fronts propagate upwards.

converge rapidly to the first stable configuration. Accord-
ing to the no-passing rule [26], this stable configuration is
independent of the initial configuration as soon as i) these
configurations do not cross, if they do w0 is increased; ii)
there is no stable configuration u∗(r) with u∗(r) < 0 for
some r, this is satisfied if κw0 � σ. The pinning force
acting on a stable line is measured as

Kw0(κ) = κ [w0 − 〈uw0(r)〉] . (7)

Moving the parabola, we have computed 1000 stable con-
figurations separated by several correlation lengths ξu so
that their respective pinning forces are uncorrelated vari-
ables of average K(κ) and variance δK(κ)2.

The statistical tilt symmetry assures that the linear part
of the equation of motion (and thus the curvature κ) is
not renormalized [27]. This means that the length as-
sociated with the curvature Lκ = c/κ fixes the distance
from the critical point (located at Keff) as κ1−ζ . When
κ → 0 while L � Lκ, the average pinning force tends to
the thermodynamical value, Keff, with finite-size effects of
the form K(κ) = Keff + c1κ

1−ζ + · · · [28]. In the limit
L � Lκ = c/κ, the interface can be modeled as a col-
lection of independent interfaces of size Lκ and the cen-
tral limit theorem assures that the variance δK(κ)2 should
scale as ∼ (Lκ/L)κ2(1−ζ). This allows to write the finite-
size effects without the exponent ζ,

K(κ) = Keff + c1

√
κLδK(κ)2 + · · · . (8)

The value Keff is extrapolated using eq. (8) and samples
of size L = 1000 with κ ranging from 10−1 to 10−3. The
roughness B(r) is obtained by averaging over 100 stable
configurations with L = 104 and κ = 10−3. Note that
other finite-size procedures allow to extrapolate Keff. For
example, one can compute the value of the critical force
in samples of size L × Lζ and then take the limit L →
∞. It has been shown recently that all these methods
converge to the same value of Keff [29], that is an intrinsic
feature of the material. Here we use four different disorder

Fig. 3: (Color online) Crack front roughness: comparison be-
tween a bivalued (open symbols) and a rare distribution (full
symbols), at low (circles) and high (squares) disorder. The av-
erage is performed over 100 fronts with L = 104 and κ = 10−3.
The solid line is the prediction (13) using Larkin’s approxima-
tion and the dashed line the long-distance approximation (15).

distributions P (kc): bivalued, “rare” (with density n =
0.1)1, Gaussian, and exponential. ξu is varied from 0.001
to 30 and σ from 1 to 8, and we set c = 1 and ξr = 1.

Examples of stable front configurations are shown in
fig. 2, for bivalued and rare disorder distributions. The
front amplitude does not depend on the disorder distribu-
tion P (kc) at low disorder (Σ = 0.1); on the contrary, it is
larger for the rare distribution at high disorder (Σ = 1).
These observations reflect in the roughness function given
in fig. 3.

The disorder-induced toughening (or net critical driving
force) K̃eff = Keff − 〈Kc〉 is plotted vs. the disorder pa-
rameter Σ in fig. 4; two regimes can be distinguished. At
low disorder (Σ < 1), we observe a beautiful collapse be-
tween different disorder distributions: this is the collective-
pinning regime. The net critical driving force follows the
phenomenological law

K̃eff 	 σ2ξr

cξu
= σΣ. (9)

This is our main result, justified later with physical ar-
guments. On the contrary, at high disorder (Σ > 1), the
net critical driving force depends strongly on the disorder
distribution: this is the individual-pinning regime. In the
limit Σ → ∞, that can be interpreted as the limit c → 0,
the front is softer and has access to more and more disor-
der realizations. It may thus “choose” the most pinning
one. As a result, when the disorder is a bounded distribu-
tion, the net critical driving force gets close to the bound.
It is indeed what is observed for the bivalued distribu-
tion, whose maximum is 1, and for the “rare” distribu-
tion, whose maximum is 1/

√
n 	 3.16. If the disorder is

not bounded, the critical driving force is likely to diverge,
as observed in the simulations. The fatter the distribution

1The rare distribution with a density n is defined by Prare,n(kc) =
(1 − n)δ(kc) + n

2 [δ(kc + 1√
n

) + δ(kc − 1√
n

)].
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tail is, the faster the divergence is expected; indeed, the
divergence is faster for the exponential distribution than
for the Gaussian one.

We now show that physical arguments adapted from the
Larkin and Ovchinnikov study of vortex pinning in super-
conductors [3,30] allow for an intuitive interpretation of
our results. The main difficulty in dealing with eq. (1) is
its non-linearity coming from the disorder term. The first
Larkin assumption is that this difficulty can be circum-
vented at short distances, where the crack front does not
see that the disorder correlation length ξu is finite. The
Larkin model is thus defined as the limit ξu = ∞ (i.e.
Σ = 0), that amounts to removing the u-dependence of
the disorder: Kc(r, u) → Kc(r) [30].

To allow comparison with the numerical simulations, we
write the Larkin model for a line of length L discretized
with a step a, with periodic boundary conditions and put
in a parabola of curvature κ centered at w = 0. A station-
nary solution satisfies

0 = −κuj +
c

πa

∑
j′ �=j

φj−j′ (uj′ − uj) − Kcj , (10)

where the elastic kernel

φj =
∑

n

1
(j − nL/a)2

(11)

takes into account the periodic boundary conditions. In
Fourier space, where ũk =

∑N−1
j=0 exp

(
−2πi jk

N

)
uj (N =

L/a is the number of points of the line), the stationary
condition (10) reads

−κũk +
c

πa

(
φ̃k − φ̃0

)
ũk = −K̃ck. (12)

Extracting ũk and computing the average ũkũk′ gives the
roughness as a function of the disorder correlation. We
choose a disorder correlation KcjKcj′ = σ2δj,j′ ; in this
case the discretization length sets the correlation length
to a = ξr. The roughness at a distance δr = aj is then

BLarkin(aj) =
(σa

c

)2 2π2

N

∑
k

1 − cos
(

2πjk
N

)
(
φ̃0 − φ̃k + πκa

c

)2 ; (13)

in the limit κ → 0, N → ∞, it becomes

BLarkin(δr) =
(σ

c

)2 a

π

∫ π/a

−π/a

1 − cos(kδr)

k2
(
1 − a|k|

2π

)2 dk. (14)

For distances short enough for the Larkin model to be
relevant, but large compared to the disorder correlation
length, δr � a = ξr, the roughness takes the form

BLarkin(δr � ξr) ∼
(

σξr

c

)2
δr

ξr
, (15)

giving the Larkin roughness exponent ζLarkin = 0.5.

Fig. 4: (Color online) Dimensionless disorder-induced toughen-
ing k̃eff for different disorder distributions as a function of the
disorder parameter Σ, extrapolated with (8) from 1000 samples
of size L = 1000 with 10−3 ≤ κ ≤ 10−1. The line shows the
prediction (20).

To explore the roughness below the correlation length,
we need a disorder correlation function with correlation
length larger than the discretization step, ξr � a. In
practice, this cuts the integral in (14) at π/ξr, with an
extra factor ξr/a. In the limit δr 
 ξr, it reduces to

BLarkin(δr 
 ξr) ∼
(σ

c

)2
δr2 : (16)

the line has a ballistic behavior at short distances.
The exact Larkin roughness (13) and its limiting

law (15) are compared to the numerical simulations in
fig. 3. At low disorder, the agreement between simulations
and the Larkin prediction is strikingly good. The long-
distance approximation is also rather good. At high dis-
order, as expected, the results are far from the prediction.

We can address the question of the validity of the Larkin
regime: what does the assumption of “short distances”
mean? If the amplitude of the front perturbations char-
acterized by the roughness is smaller than the correlation
length ξu, the Larkin model should represent correctly the
behaviour of the line; on the contrary, when it is larger
than ξu, a different behaviour is expected. This defines
the length in the r-direction up to which the Larkin ap-
proximation is relevant, the so-called Larkin length Lc (see
ref. [31] for a recent review), by

√
BLarkin(Lc) = ξu. (17)

If the Larkin length is larger than the correlation length
ξr, its expression can be derived from eq. (15):

Lc =
(

cξu

σξr

)2

ξr =
ξr

Σ2 . (18)

The domains of size Lc that behave as if ξu was infinite are
called Larkin domains ; in these domains and for distances
larger than ξr, the roughness is given by (15). For larger
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distances, the roughness departs from the Larkin predic-
tion and continuity implies

B(δr � Lc) 	 ξu(δr/Lc)ζ , (19)

with a roughness exponent ζ 	 0.39 [25].
The second Larkin assumption is that the critical driv-

ing force is given by the typical toughness seen by a Larkin
domain. The toughness averaged along the line on a Larkin
domain has a mean 〈Kc〉 and its standard deviation de-
pends on Lc:

– if Lc > ξr (or Σ < 1), a Larkin domain sees several
defects: this is the collective-pinning regime. The lo-
cal toughness is averaged over Lc/ξr uncorrelated de-
fects and the standard deviation is σ

√
ξr/Lc, leading

to the net critical driving force K̃eff = σ
√

ξr/Lc.

– if Lc < ξr (or Σ > 1), a Larkin domain sees only
one defect: this is the individual-pinning regime. The
standard deviation is σ, giving the net critical driving
force K̃eff = σ.

Using the long-distance expression of the Larkin
length (18), we can write explicitly the net critical driving
force

K̃eff =

⎧⎪⎪⎨
⎪⎪⎩

σ2ξr

cξu
= σΣ, if Σ =

σξr

cξu
< 1,

σ, if Σ =
σξr

cξu
> 1.

(20)

These expressions are compared to the simulations for
the four different disorder distributions in fig. 4. In the
collective-pinning regime, the prevision captures the re-
sults of the simulations: this confirms the validity of
eq. (9), irrespective of the underlying local toughness
distribution. In the individual-pinning regime, the pre-
diction (20) does not fully describe the results of the
simulations, but provides a lower-bound for the effective
toughness:

Keff ≥ 〈Kc〉 + σ. (21)

Indeed, in this regime, the toughest defects that set the
value of the critical force are systematically tougher than
the toughness standard deviation σ.

As a possible application, we consider the case of a
material of toughness K1

c reinforced by a small volume
fraction n2 
 1 of randomly distributed particles with
large toughness K2

c and define the contrast as C = (K2
c −

K1
c )/K1

c . For an isotropic distribution of particles (ξr =
ξu), eq. (20) predicts an increase of the effective toughness
of the material by a factor Keff/K1

c 	 1 + n2(C + 2C2) in
the collective regime. This result is quite different from
the predictions of refs. [7,10] obtained for a periodic ar-
ray of tough particles where Keff/K1

c 	 1 + 2C
√

n2/π,
highlighting the crucial role played by disorder.

We underline the limitations of the line model used
here in the context of fracture. It rests on two assump-
tions: i) The solid is brittle, i.e. the process zone is

small compared to the microstructural length scales ξr

and ξu. This allows to treat the crack front as a line
that separates the fracture plane into two distinct do-
mains of intact and broken material. ii) The distortion
of the line is small enough so that the linear interaction
term used in eq. (1) describes properly the line elasticity.
This condition is fullfilled as long as the steepest slopes
along the crack line are smaller than one. The steep-
est slopes are found at small distances, for δr 
 ξr, Lc,
where the ballistic roughness (16) shows that they are
[
√

B(δr)/δr]max 	 σ/c. The condition σ/c ≤ 1, or
σ ≤ 〈Kc〉/2, limits our study to moderately heterogeneous
solids, where the spatial toughness variations are smaller
than the average toughness. This condition is generally
satisfied in the collective-pinning regime, whereas in the
individual-pinning regime where σ/c > ξu/ξr (eq. (20)), it
can be only satisfied for anisotropic disorder with ξr > ξu.
Beyond the assumption ii), larger local slopes of order one
would require non-linear corrections to the line elastic-
ity [32]. However, we expect a similar toughening mech-
anism governed by the toughest defects to apply. If the
steepest slopes are even larger, the line model (assump-
tion i)) breaks down: this may come from crack bridging
due to very tough inclusions [10,33] that conserve clus-
ters of intact material in the broken domain; or from the
nucleation and coalescence of damage ahead of the crack
that occurs, e.g., in quasi-brittle solids. In this latter case,
the front becomes fractal [34] and a material description
based on random networks of fuses or springs will be more
appropriate [35].

We now compare the regimes identified here to
those observed in former studies. In the self-coherent
schemes [12,14], the weak- to strong-pinning transition
corresponds to the emergence of metastability: for small
systems or low disorder, there is no metastability and
the effective toughness is equal to the space-averaged
toughness; for large systems or strong disorder, metasta-
bility produces a disorder-induced toughening. The tran-
sition depends on the system size and the weak-pinning
regime disappears in the thermodynamic limit. In our
case, metastability is always present, indicating that the
individual- and collective-pinning regimes belong to the
strong-pinning regime. The individual- to collective-
pinning crossover occurs when the Larkin length Lc equals
the disorder correlation length ξr. We can expect that the
pinning becomes weak when the Larkin length exceeds the
system size L. The system size then sets the size of the
Larkin domains, leading to a disorder-induced toughening,

K̃eff = σ

√
ξr

L
. (22)

This regime occurs for very low disorder σ < cξu/
√

Lξr

and has a small effect on the material toughness; this ex-
plains why it has been neglected in some studies [12,14].

In the linear stability analysis [13], the different
behaviors show up in the participation ratio τ of the most
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unstable mode. In the weak-pinning regime, the system
unpins as a whole and τ 	 1; in the strong-pinning regime,
the avalanches are concentrated on a small portion of the
system and τ < 1. Following Larkin’s argument, the
Larkin length is also the minimal size of avalanches and
is thus linked to the participation ratio via τ = Lc/L.
With this interpretation, a participation ratio in the range
ξr/L < τ < 1 reveals a collective regime, while τ 	 ξr/L is
the signature of individual pinning. However, the connec-
tion between the participation ratio and the Larkin length
deserves further investigations, as emphasized in [13].

Finally, our study provides also insights into the
behavior of contact lines that follow the same evolution
equation as crack lines. In refs. [36,37], the disorder am-
plitude can be computed from the defects density n and
strength h as σ2 ∼ nh2, while the capillary length sets
the system size L. The hysteresis H in wetting problems
is analogous to the disorder-induced toughening K̃eff for
cracks. First, it was found that the hysteresis is zero for
a defect strength h below a critical value hc; that cor-
responds to the weak-pinning regime. As noted in [37],
this regime disappears when the capillary length goes to
infinity. In addition, the scaling hc(n) ∼ 1/

√
n is consis-

tent with the weak- to strong-pinning crossover occurring
for L = Lc = c2ξr/(nh2), as suggested here. Above this
critical value, but at low densities, the hysteresis scales
as H ∼ nh2 ∼ σ2: this behavior is consistent with the
collective-pinning regime in eq. (20).

To conclude, we have investigated the effect of a dis-
ordered microstructure on the pinning of a brittle crack
front. We have shown that the interaction between the
front and the disorder is governed by one dimensionless
parameter and that two distinct regimes can be identi-
fied. In the collective-pinning regime that occurs at low-
disorder amplitude, many impurities act together to pin
the crack front. The effective toughness follows eq. (9) and
depends on a few parameters measurable from the mate-
rial microstructure. On the other hand, at high-disorder
amplitude, the front is pinned by tough individual defects:
this is the individual-pinning regime. The macroscopic
toughness is shown to depend on many parameters, such
as the actual distribution of microscopic local toughness.
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