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Sampling fractional Brownian motion in presence of absorption: A Markov chain method
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We numerically study fractional Brownian motion (fBm) with an absorbing boundary at the origin for selected
values of the Hurst exponent H ∈ [0,1]. Using a Monte Carlo sampling technique, we are able to numerically
generate these fBm processes at discrete times for up to 107 time steps, even for values as small as H = 1/4. The
results are compatible with previous analytical results that suggest that the distribution of (rescaled) endpoints
y follow a power law P+(y) ∼ yφ with φ = (1 − H )/H , even for small values of H . Furthermore, for H = 0.5
we study analytically the finite-length corrections to first order, namely a plateau of P+(y) for y → 0 which
decreases with increasing process length. These corrections are compatible with our numerical results.
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I. INTRODUCTION

The Brownian motion plays a key role in modern theoretical
physics, as it explains many effects observed in physical
systems. It is currently used in various fields of science
to understand, for instance, the trend of financial markets,
the dynamics of complex molecules within cells, and the
food-searching strategies of animals. In order to describe the
fluctuations in these systems, it is often necessary to go beyond
the Brownian motion and consider random walkers whose
mean square displacement grows over time in a nonlinear way.
The term used to refer to this situation is anomalous diffusion,
in particular subdiffusion if the mean square displacement
grows slower than linearly, superdiffusion if it is faster.

In practice, anomalous diffusion occurs whenever the
process x(τ ) is self-affine (at least at large time) with a
characteristic value of the so-called Hurst exponent H �= 1/2,
so that the displacement grows with time as τH . A remarkable
example of a process displaying anomalous diffusion is the
fractional Brownian motion (fBm) [1]. This process is self-
affine Gaussian with 0 < H < 1. A Gaussian process is
completely defined by its autocorrelation function, which for
fBm is written as

〈x(τ )x(τ ′)〉 = τ 2H + (τ ′)2H − |τ − τ ′|2H , (1)

where x(0) = 0 and the brackets 〈. . .〉 refer to an ensemble
average over the realizations of the Gaussian processes. The
strength of the correlation is described by the Hurst exponent.
Note that Eq. (1) implies 〈[x(τ1) − x(τ2)]2〉 = 2|τ1 − τ2|2H .
This means that H = 1/2 corresponds to the Brownian
motion (standard diffusion), H > 1/2 to superdiffusive paths,
and H < 1/2 to subdiffusive paths.

Recently these random walks have been found to be relevant
for many physical applications. Among them we mention the
fluctuations of a tagged monomer of an equilibrated Rouse
chain [2,3], or of a tagged particle in the one dimensional
system [4,5]. In both cases the motion of the tagged object
can be modeled as fractional Brownian motion with H = 1/4.

*a.hartmann@uni-oldenburg.de

Other physical processes such as the mechanical unzipping
of DNA [6], the translocation of polymers through nanopores
[2,7–9], and subdiffusion of macromolecules inside cells and
membranes [10–12] are also well described by fBm diffusion.

Despite the large number of cases where fBm is observed,
very little is known about the properties of this process when it
is confined to some region of space, which is the case for many
of the above mentioned applications. A concrete example is
given by polymer translocation. In this case it has been shown
[2,7] that the fraction of the polymer penetrated through the
nanopore fluctuates with time as a fBm walker confined inside
the interval 0 (which corresponds to the translocation failure)
and 1 (which corresponds to completed translocation).

In the presence of boundaries, translational invariance is lost
and analytical representations such as the fractional Langevin
equation are of little help [13]. In these situations, numerical
simulations remain the most viable option in answering many
concrete questions arising from biology and physics [14–16].
Recently, methods have been developed to study fBm in a
system under the influence of a potential [17] and for fBm in
confined geometries [18]. Here we present a generic numerical
method which we use to study these processes in the presence
of boundaries. We study in detail the case where there is an
absorbing wall at x = 0: we thus consider only the paths that
remain positive up to the final time τ . Recently, analytical
predictions [7,19] have been obtained for the distribution
P+(y) of rescaled motion endpoints y ∼ x/(τH ) at end time
τ . A possible numerical strategy consists of directly sampling
L-step fBm paths x0,x1, . . . ,xL at discrete times, starting at
x0 = 0. This strategy is demanding, in particular for H < 1/2,
since in the presence of an absorbing boundary the success
probability of generating a nonabsorbed trajectory is very
small. Hence, such simulations were restricted to a small
number L of discrete steps. Using a Markov chain approach,
we were able to generate long fBm processes up to L = 107

discrete steps for H = 1/4, 2/5, 1/2, 2/3, and 3/4.
The outline of the remainder of the paper is as follows:

Next, we present our numerical approach and then we present
our numerical results: In order to verify that our approach
is working, we first consider the case of Brownian motion
(H = 1/2), where analytical results for the finite-length
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corrections are available. We further study the cases H = 1/4,
H = 2/5 and H = 2/3, H = 3/4 as examples for the two
regions H < 1/2 and H > 1/2. In all cases the results are
compatible with previous analytical predictions. Finally, we
summarize our results.

II. NUMERICAL METHODS

To generate fBm processes on a computer, we study
discrete-time random walks with suitable correlations. It is
useful to introduce the increments of the random walk, namely
�xl = xl+1 − xl . For Gaussian processes the increments are
Gaussian variables defined by their autocorrelation function.
Using Eq. (1) we can compute the autocorrelation function of
the Gaussian increments:

Cl+m,l ≡ 〈�xl+m�xl〉
= |m + 1|2H − 2|m|2H + |m − 1|2H ≡ C(m). (2)

We note that this function is independent of the initial
time l. Matrices having this property are called Toeplitz
matrices. Moreover, the increments are identically distributed
Gaussian numbers with variance σ 2 = 2 displaying power law
correlations. Taking the limit m → ∞, it is easy to extract
the power law decay of these correlations. For superdiffusive
fBm (H > 1/2), C(m) is positively correlated, decaying as
m−2(1−H ). Positive correlation means that there is a high
probability of observing a long sequence of increments of
the same sign. For subdiffusive fBm (H < 1/2), C(m) is
negatively correlated and decays as −m−2(1−H ). Negative
correlation means that there is a high probability of observing
a long sequence of increments of oscillating sign.

The direct generation of L steps with increment correlation
Eq. (2) is in principle straightforward. The starting point is a
vector ξ = (ξ0,ξ1, . . . ,ξL−1) of L independent and identically
distributed (iid) Gaussian (mean 0, variance 1) numbers
∼G(0,1). For the uncorrelated case (H = 1/2) one could
directly use these random numbers, multiplied by

√
2 to

obtain the right Cl,l , as increments of the fBm processes, i.e.,
xuncorr(L) = ∑L−1

l=0

√
2ξl .

For the case H �= 1/2, since C is a positive semidefinite
correlation matrix, there exists a matrix A such that C = A2.
Thus, one could use �x = Aξ to obtain a random vector
satisfying Eq. (2). Nevertheless, this is too time consuming
since it requires diagonalizing the L × L C matrix once
(∼L3 operations) and, for each process, multiplication with
the L × L matrix A (∼L2 operations) [20]. This is not feasible
in practice given the sizes L = 107 we study here.

Instead, we use the circulant embedding method proposed
in [21,22] for the fast generation of a Gaussian field. This
method allows us to generate random increments which are
approximately correlated according to Eq. (2) by generating
a periodic increment sequence of period L′, with L′ � 2L.
The correlations of this periodic sequence are encoded in a
covariance matrix Cl,l+m = C(m) of size L′ × L′ built using
the original covariance C and defined as

C(m) = C(m) for m = 0, . . . ,L′/2 − 1
(3)

C(m) = C(L′ − m) for m = L′/2,L′ − 1.

Toeplitz matrices displaying this periodicity are called
circulant matrices. For the analysis of our numerical simu-
lations, we consider only the first L steps �x1,�x2, . . . ,�xL.
If L is large, the correlation between the first and the last
increment is small and the periodicity has no large influence.
The advantage of this approach is that the periodicity of the
matrix C allows the application of fast Fourier transformation
(FFT) to generate the fBms [23].

The FFT is performed in ∼L′ log(L′) operations. We
used the GNU Scientific Library (GSL) [24]. Let be ĉk the
FFT of C(m) from Eq. (3), i.e., ĉk = ∑L′−1

m=0 C(m)e−2πi(k/L′)m.
Since C(m) is symmetric and positive, the coefficients ĉk are
positive real numbers. The generation of the correlated random
numbers works as follows:

(i) The starting point is a vector of L′ independent and
identically distributed (iid) Gaussian numbers (with zero mean
and variance 1).

ξ = (ξ0,ξ1, . . . , . . . ,ξL−1).

(ii) We define

δ̂k =
√

L′ĉkξk (k = 0, . . . ,L′ − 1), (4)

which are real numbers as well and where the factor
√

L′ takes
into account the correct normalization.

(iii) The vector of increments is obtained after back
transforming δ̂k:

δl = 1

L′

L′−1∑
k=0

δ̂ke
2πi(l/L′)k, (5)

and taking the real and imaginary part:

�xl = Re {δl} + Im {δl} (6)

with l = 1,2, . . . ,L′.
It is easy to check that these three steps lead to the desired

correlation. Using ξk = ξ ∗
k and 〈ξkξk′ 〉 = δk,k′ one arrives at

〈δx(∗)
l δx

(∗)
j 〉 = C(±i ± j ), where the signs are + when δxl and

δxj on the left, respectively, and − for the conjugate complex.
Thus, using Re(z) = (z + z∗)/2, Im(z) = (z − z∗)/2i, and
C(m) = C(−m), one obtains

〈�xl+m�xl〉
= 1

4 〈(δl+m + δ∗
l+m − iδl+m + iδ∗

l+m)(δl + δ∗
l − iδl + iδ∗

l )〉
= C(m)

as desired. A numerical test of the method is shown in Fig. 1,
which indicates that the randomly generated numbers satisfy
Eq. (2).

For direct simulations of fBm processes, one generates a
vector of L′ random real numbers, constructs the vector of
complex numbers ξ , uses the transformation Eqs. (4) and (6)
to obtain the correlated increments �xl , and then finally

x ≡ x(L) =
L∑

l=1

�xl. (7)

Nevertheless, since we use an absorbing boundary at x = 0,
most of the time at least one of the intermediate steps will visit
the negative half axis, i.e.,

∑	
l=1 �xl < 0 (for some 	 � L),

in which case the obtained value x(L) does not contribute to
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FIG. 1. Correlation between increments. Shown are the desired
function C(m) and the numerical data for L = 104. The main plot is
for H = 1/4, while the inset displays H = 2/3.

the distribution P+(y). The probability of not being absorbed,
i.e., the persistence (or survival probability), behaves like

S(x0 = 0,L) ∼ L−θ (8)

with θ being the persistence exponent, known to be θ = 1 − H

[3,25,26]. Hence, for the case L = 107 and H = 1/4, we
obtain P0(L) ≈ 10−5. This means a direct simulation is not
feasible. Such an approach has been used in the past [19]
for H � 1/2, which is simpler than H < 1/2. Moreover, due
to the mentioned limitations, even for the simpler case only
L = 20 000 could be studied, in contrast to L = 107, which we
study for H � 1/2 as well as H < 1/2. Note that an alternative
is to directly simulate a physical process which exhibits the
nature of fractional Brownian motion, e.g., a suitable polymer
model. However, this includes many more physical details
than a raw fBm, and hence only even smaller systems can
be studied, as for example in a recent study [27] where only
polymers with N = 257 monomers could be treated.

To circumvent this problem, we performed a Markov
chain Monte Carlo simulation with the configuration space
consisting of all feasible random vectors ξ . Feasible in this
context means that the resulting fBm process (after FFT
to generate the correlation of the increments �x) is not
absorbed. The simulation must be initialized with an allowed
configuration, and therefore we start from a random vector ξ (0)

and a corresponding correlated increment �x(0) such that the
resulting process is not absorbed. In practice, for H � 1/2, we
facilitate the generation of a feasible initial configuration by
sampling from a shifted Gaussian G(ξ,1) (ξ > 0) and repeat
the search for an initial configuration until a feasible increment
vector is found. This initial configuration is clearly biased, but
does not have influence on the final result since we start to
sample the observables only after some sufficient equilibration
time.

Each Monte Carlo step ξ (t) → ξ (t+1) consists of changing
a fraction p of randomly chosen entries of the configuration
ξ (t), the new entries being iid G(0,1), resulting in a trial

configuration ξ trial. Then, again after using FFT to introduce
the correlation, we obtain �x trial: if the resulting fBm

{∑L̂
l=1 �̃x trial

l } (L̂ = 1, . . . ,L) is absorbed, the trial configu-
ration is rejected, i.e., ξ (t+1) = ξ (t). If the resulting fBm is
allowed, the trial configuration is feasible and thus is accepted,
i.e., ξ (t+1) = ξ trial. This approach satisfies detailed balance, and
hence converges to the correct distribution: The distribution of
configurations is given by a product of Gaussians over the
space of feasible configurations,

P (ξ ) =
L′∏

i=1

(
1√
2π

exp
(−ξ 2

i

/
2
))

Iξ ,

where the indicator function Iξ is 1 if ξ is feasible (the resulting
fBm is not absorbed) and 0 otherwise. Therefore, if a certain
fraction p of the entries of ξ is replaced to yield ξ ′, the resulting
change of weight is given by

w(ξ → ξ ′) =
∏
j

′
(

1√
2π

exp
(−ξ ′2

j

/
2
))

Iξ ′ ,

where the product runs over the altered entries. This change of
weight is symmetric with respect to ξ ↔ ξ ′, and hence detailed
balance is fulfilled: P (ξ )w(ξ → ξ ′) = P (ξ ′)w(ξ ′ → ξ ).

The Markov chain in the configuration space is reflected
by the sequence of endpoints x(0)(L),x(1)(L), . . . in our
Monte Carlo simulation. Here we studied the statistics of the
rescaled variable y = x(L)/(σLH ). Since we are interested
in the behavior of P+(y) near y = 0, we also used a bias
b(y) = y−a (a > 0), and imposed the additional Metropolis
criterion [28–30] of accepting a feasible configuration with the
probability paccept = min{1,b(y trial)/b(y(t))}. This drives the
simulation into the range of interest. We adjusted the fraction
p of changed entries such that the total acceptance probability
of an Monte Carlo (MC) step is near 0.5. Hence, for each value
H of the Hurst exponent and each length L, we needed to find
a suitable value p = p(H,L) empirically.

In Fig. 2 a sample trajectory in the space of (rescaled)
endpoints is shown for H = 1/2 and L = 107. By employing
the bias b(y) ∼ y−1.2, the simulation was concentrated near
y ≈ 0.

Concerning equilibration of our Monte Carlo simulation,
we found that typically, for the longer fBm processes, there
are no signs of the initial configuration after 1000 sweeps.
After disregarding this initial bunch of Monte Carlo sweeps,
we measured histograms [31] of the rescaled endpoints of the
processes. In the case that a bias is applied, the histograms
must be multiplied by b−1 = ya and normalized to get the
final distributions P+(y).

Note that the approach used here is rather general: During
the Monte Carlo simulation a vector of variables is changed.
This vector, according to a Metropolis criterion is either
rejected or accepted. This is like in any Markov chain Monte
Carlo simulation, e.g., a single-spin flip simulation of the Ising
model. The only difference here is that the step transforming
the configuration vector into a Metropolis criterion is rather
involved since it includes creating a correlation between the
vector entries, turning them into random walks, checking
for absorption and including a bias that keeps the random
walks close to the origin. For the Ising system the same step
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FIG. 2. Sample trajectory of a Monte Carlo simulation: the
endpoint y(t) = x(L)(t)/LH of a nonabsorbed fBm (H = 1/2) of
length L = 107 as a function of the MC time t , for the initial phase of
the MC simulation up to t = 104. A bias ∼y−1.2 is used to increase
the statistics near y = 0.

would be just the calculation of an energy. Nevertheless, this
approach allows us to treat nonequilibrium, nonstationary pro-
cesses, such as fractional Brownian motion, within the same
framework as conventional equilibrium statistical mechanics
systems. Hence, the approach should be applicable to a wide
range of problems.

III. RESULTS

We have performed simulations to generate fBm’s for
values of the Hurst exponent H = 1/4, H = 2/5, H = 1/2,
H = 2/3, and H = 3/4 of lengths L = 103, 104, 105, 106,
and 107, respectively (for H = 3/4 we did not consider
L = 105 and L = 106 since this was not necessary). For the
rescaling, we used a = 2 (H = 1/4), a = 1.5 (H = 2/5), a =
1.2 (H = 1/2), a = 0.5 (H = 2/3), and a = 0.4 (H = 3/4).
In each case, we determined the parameter p such that the
acceptance probability was (very roughly) 0.5. The values we
used are shown in Table I. In each case the MC simulation
was performed for long runs, up to t = 3 × 108 for the longest
walks of length L = 107.

Note that for H = 1/4, H = 2/5, and H = 1/2, we have
restricted the simulations to fBm processes with y > 0.0001
to prevent the simulation from being caught near y = 0 due

TABLE I. Value of the Monte Carlo parameter p for different
lengths of the fBm’s and different values of the Hurst exponent H .

L H = 1/4 H = 2/5 H = 1/2 H = 2/3 H = 3/4

103 0.010 0.060 0.030 0.40 0.50
104 0.020 0.020 0.020 0.40 0.50
105 0.020 0.030 0.020 0.20
106 0.010 0.020 0.020 0.10
107 0.015 0.020 0.015 0.05 0.05
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FIG. 3. Distribution P+(y) of the rescaled endpoints y = x/LH

for nonabsorbed fBm’s (Hurst exponent H = 1/2).

to a very small acceptance ratio via the rescaling factor in that
region.

First, to verify our method, we studied the case of
standard random walks, where H = 1/2. For this case the
first corrections to the continuum limit behavior are known
(see the Appendix):

P+(y,L) = f0(y) − c√
L

f1(y) + · · · , (9)

where L is the number of increments, and the constant c

depends on the increments’ distribution of the random walk.
For Gaussian numbers (zero mean, unit variance) we have
c = ζ (1/2)/

√
2π ∼ −0.582 597 . . . and the scaling functions

are

f0(y) = y e−y2/2, (10)

f1(y) =
(

1 − 2y

π

)
e−y2/2.

The rescaled distributions P+(y) of the endpoints are, together
with the predictions of Eq. (9) valid for large L, shown in
Fig. 3. One is able to see strong finite-size effects for small
values y → 0, where a plateau is visible. For increasing length
L, the plateau decreases as c/

√
L and the data increasingly

approach the continuum limit scaling function f0.
We conclude that for a generic fBm for which first

corrections to the continuum limit behavior is not known,
this plateau should also vanish when the size of the system
is large. Indeed for very long walks (L = 107) the continuum
limit behavior is observed over several orders of magnitude.

Based on scaling arguments it has been conjectured [7]
that in the continuum limit P+(y) vanishes as yφ with φ =
(1 − H )/H = θ/H for y → 0, θ being the persistence defined
via Eq. (8). This conjecture was confirmed by an epsilon
expansion around the Brownian solution obtained by a field
theory calculation [19]. A numerical check of the conjecture
for values of H far from 1/2 remains very challenging. We
first consider the discrete random walk with H = 2/3. In this
case, since the persistence is decreasing slowly (θ = 1/3),
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FIG. 4. (Color online) Distribution P+(y) of the rescaled
endpoints y = x/LH for nonabsorbed fBm’s (Hurst exponent
H = 2/3).

numerical results were obtained for moderate lengths L =
2 × 104 by direct simulations [19], which were compatible
with the analytics. Here, we studied this case again. Our results,
up to a length of L = 107, confirm the analytics with much
better accuracy, as the small-endpoint behavior follows the
expected power law with exponent φ = 1/2 very well (see
Fig. 4). For the case H = 3/4, the behavior close to the origin
also matches the expected P (y) ∼ yφ behavior with φ = 1/3
very well (see Fig. 5).

In the subdiffusive case, convergence with the increasing
length L of the path is slower. We first consider the case
H = 2/5 (see Fig. 6). For the longest walk, the behavior
close to the origin follows a power law P (y) ∼ yφeff , but
the exponent φeff = 1.44(1) (obtained from fitting a power
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(y
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y

fractional Brownian motion H=3/4
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y0.529

FIG. 5. (Color online) Distribution P+(y) of the rescaled end-
points y = x/LH for nonabsorbed fBm’s (Hurst exponent H = 3/4).
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FIG. 6. (Color online) Distribution P+(y) of the rescaled
endpoints y = x/LH for nonabsorbed fBm’s (Hurst exponent
H = 2/5).

law in the region y ∈ [0.03,0.2]) is slightly smaller than the
predicted value φ = (1 − H )/H = 3/2. A better estimation
is obtained by performing a finite-length extrapolation of the
form

φeff(L) = φ + cL−b (11)

for the effective exponent as a function of the length L (Fig. 7).
When fitting Eq. (11) to the data, we obtained φ = 1.50(4)
[and b = 0.23(4)], which is in perfect agreement with the
prediction.

Finally, we turn to the most difficult case with H = 1/4,
where we expect that P+(y) ≈ y3 near y = 0. Direct simula-
tions of this process (for restricted sizes) are not conclusive

 1
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φ e
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data
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FIG. 7. Effective exponent φeff as a function of the walk length L

for H = 2/5. The line shows a fit to the function φeff (L) = φ + aL−b.
Inset: for the case H = 1/4.
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FIG. 8. (Color online) Distribution P+(y) of the rescaled end-
points y = x/LH for nonabsorbed fBm’s (Hurst exponent H = 1/4).

and a scaling behavior ∼y2 was found to be consistent with
the data [27,32]. Using our Markov chain approach we can see
the finite-size effects remain important even for long processes
(see Fig. 8). Again, as in the case H = 2/5, we observed power
law behavior close to the origin with an effective exponent
φeff(L). From L = 105 on, the effective exponent is above
2 and is growing with walk length L. Hence, the previous
claim of quadratic behavior can be clearly discarded. Here the
extrapolation according to Eq. (11) yields φ = 3.3(3) with a
very slow convergence [b = 0.08(2)]. Hence, even if one was
able to study extremely long walks like L = 1011, one would
observe φeff ≈ 2.88. Thus, the observed extrapolated exponent
is also compatible, within error bars, with the predicted value
φ = 3, but with lower accuracy due to stronger finite-length
correction.

IV. SUMMARY

We have introduced a Markov chain Monte Carlo approach
to study numerically fractional Brownian motion in the
presence of an absorbing boundary via generating finite-step
random walks with correlated disorder. Our approach allowed
us to study walks of up to L = 107 steps. For the test case
H = 1/2, the resulting distribution P+(y) of the rescaled
endpoints y of the walks agrees in the limit L → ∞ with the
exact analytic result. We also derived analytical expressions
for the finite-length corrections, which are also compatible
with the numerical results, increasingly so with increasing
step number L.

In the main part of our work, we studied fractional Brownian
motion where we find for y → 0 power law behaviors P+(y) ∼
yφ . For the superdiffusive cases, H = 2/3 and H = 3/4, we
observed for long walks L = 107 that the measured exponents
match the analytical prediction φ = (1 − H )/H with very
good accuracy.

For the subdiffusives cases H = 2/5 and H = 1/4 we
found strong finite-length effects which can be described via an
effective exponent φeff (L). Therefore, we could not observe the

limiting exponent directly. However, in both cases we found
via a power law extrapolation a convergence to the predicted
values φ = (1 − H )/H .

ACKNOWLEDGMENTS

We thank S. Franz for interesting discussions concerning
the detailed balance of the approach, leading to the concise
presentation given here. We thank C. Cook for critically
reading the manuscript. A.K.H. acknowledges the hospitality
of the Aspen Center for Physics, which is supported by
National Science Foundation Grant No. PHY-1066293. The
simulations were performed at the University of Oldenburg
HERO high-performance computing facility which is funded
by the DFG, INST 184/108-1 FUGG and the Ministry of
Science and Culture (MWK) of the Lower Saxony state.
A.K.H. thanks the Université Paris Sud and in particular
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APPENDIX: DERIVATION OF EQS. (8) AND (9)

We consider a random walk starting at the origin. Its
position at discrete time steps evolves via

xn = xn−1 + ηn (A1)

starting from x0 = 0. The random variables ηn are inde-
pendent, identically distributed noises, each drawn from a
symmetric and continuous probability density function (pdf)
f (η). Let pL(x) denote the probability density of the particle
arriving at x at step L, while remaining positive during all
intermediate steps. An exact expression for pL(x), or rather
for its generating function, is known explicitly for arbitrary
jump density f (η) and is given by [33]∫ ∞

0
dx e−λ x

∞∑
L=0

pL(x) sL = φ(s,λ) (A2)

with

ϕ(s,λ) = exp

(
− λ

π

∫ ∞

0

ln [1 − sf̂ (k)]

k2 + λ2
dk

)
, (A3)

where f̂ (k) = ∫ ∞
−∞ ei k η f (η) dη is the Fourier transform of

the noise density. Our goal is to extract the leading (and
subleading) scaling behavior of pL(x) for large L from
Eq. (A2).

As an intermediate step, it is useful to consider an alternative
expression for φ(s,λ) derived in Ref. [34], valid for all f (η)’s
with a finite variance σ 2 = ∫ ∞

∞ η2 f (η) dη,

φ(s,λ) = 1

[
√

1 − s + σ λ
√

s/2]

× exp

[
− λ

π

∫ ∞

0

dk

λ2 + k2
ln

(
1 − s f̂ (k)

1 − s + s σ 2k2/2

)]
.

(A4)
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We next consider the scaling limit when x → ∞, L → ∞,
with the ratio y = x/

√
L fixed. In the Laplace space, this

corresponds to taking the limit λ → 0, s → 1, keeping the
ratio λ/

√
1 − s fixed. Taking this scaling limit in Eq. (A4),

one sees that

φ(s,λ) → 1 − c λ√
1 − s + σ λ/

√
2
, (A5)

where c is a constant and given by the following expression
[34,35]:

c = 1

π

∫ ∞

0

dk

k2
ln

[
1 − f̂ (k)

σ 2 k2/2

]
. (A6)

Substituting the scaling-limit expression of φ(s,λ) from
Eq. (A5) on the right hand side of Eq. (A2) and inverting
the Laplace transform with respect to λ gives

∞∑
L=0

pL(x) sL ≈
√

2

σ

[
1 +

√
2

σ
c
√

1 − s

]
e−√

2 (1−s) x/σ ,

(A7)

which is valid in the scaling limit s → 1, x → ∞ while
keeping the product

√
1 − s x fixed. Next, one can invert this

generating function with respect to s using Cauchy’s inversion
formula. Skipping the details, we find that the two leading
terms, in the scaling limit where x → ∞, L → ∞ while
keeping y = x/

√
L fixed, are given by

pL(x) ≈ 1

σ 2
√

π L

[
y e−y2/2σ 2 − c√

L
e−y2/2σ 2

]
. (A8)

The conditional probability PL(x) (probability density of
reaching the position x given that it has survived L steps) is

defined as

PL(x) = pL(x)∫ ∞
0 pL(x) dx

. (A9)

Substituting the scaling behavior for pL(x) from Eq. (A8) in
the above definition, we find that PL(x) has the following
scaling behavior:

PL(x) → 1√
L

P+(y,L) (A10)

with y = x/
√

L and

P+(y,L) = f0(y) − c√
L

f1(y) + O(1/L), (A11)

where

f0(y) = y

σ 2
e−y2/2σ 2

, (A12)

f1(y) = e−y2/2σ 2 − 2

πσ
y e−y2/2σ 2

, (A13)

and c as defined by Eq. (A6). For the special case of the
Gaussian jump density, f (η) = e−η2/2/

√
2π (with σ 2 = 1),

one can evaluate the constant c in Eq. (A6) explicitly
[34],

c = ζ (1/2)√
2π

= −0.582 597 . . . . (A14)

In this case, setting y = 0 we get

P+(0,L) ≈ − c√
L

= 0.582 597 . . .√
L

, (A15)

which is consistent with our simulations.
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