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We study the planar matching problem, defined by a symmetric random matrix with independent identically
distributed entries, taking values zero and one. We show that the existence of a perfect planar matching structure
is possible only above a certain critical density, pc, of allowed contacts (i.e., of ones). Using a formulation of
the problem in terms of Dyck paths and a matrix model of planar contact structures, we provide an analytical
estimation for the value of the transition point, pc, in the thermodynamic limit. This estimation is close to
the critical value, pc ≈ 0.379, obtained in numerical simulations based on an exact dynamical programming
algorithm. We characterize the corresponding critical behavior of the model and discuss the relation of the
perfect-imperfect matching transition to the known molten-glass transition in the context of random RNA
secondary structure formation. In particular, we provide strong evidence supporting the conjecture that the
molten-glass transition at T = 0 occurs at pc.
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I. INTRODUCTION

In this paper the combinatorial problem of complete planar
matching is considered. It can be formulated as follows. Take
L points i = 1, . . . ,L on a line, and define a symmetric L × L

random matrix A containing ones or zeroes. We are looking
for a set of L/2 links between pairs of points allowed by the
entries Aij (each point is involved in one link only) such that
these links form a planar diagram (see Fig. 1). This problem
can be thought of as a constraint satisfaction problem (CSP)
characterized by a certain distribution P (Aij ) on the entries of
the matrix A. If at least one such set of links exists, we say
that the problem is satisfiable, and we refer to the solution as
to the perfect matching configuration.

The Bernoulli model that we study in this paper is defined
as follows: Aij = Aji are independent identically distributed
random variables, equal to one with probability p for any
i �= j , and equal to zero otherwise. This sets the uniform
distribution on the entries of the matrix A (Aij = Aji):

Prob(Aij ) = pδ(Aij − 1) + (1 − p)δ(Aij ), (1)

where δ(x) = 1 for x = 0, and δ(x) = 0 otherwise.
The matrix A can be regarded as an adjacency matrix of a

random Erdös-Rényi graph G(A) without self-connections. In
what follows, we describe a phase transition, typical for CSP’s.
A well-known example of such transition is the SAT-UNSAT
problem [1]. As the number of constraints per node, imposed
by the matrix A, is below some certain critical value, pc, the
problem is satisfiable, while above pc it becomes unsatisfiable
in the large L limit. In other words, there is a critical value of the
bond formation probability, pc, such that for any large (L � 1)
sample of the matrix A, for p > pc it is always possible to
find at least one “gapless” planar diagram, which involves in
its formation almost all vertices and only ∼o(L) vertices are
missing, while for p < pcr a finite fraction of missing vertices
of order ∼O(L) exists; see Fig. 1(a) and 1(b).

To the best of our knowledge, in the context of random
matrix theory, this transition has never been discussed in

the literature. The planar diagrams play an important role in
various branches of theoretical physics, such as matrix and
gauge theories [2], many-body condensed matter physics [3],
quantum spin chains [4], and random matrix theory [5]. Since
we do not assume the sparsity of the matrix A, the spectral
techniques developed for the sparse random matrices [6–8]
seem to be not applicable in the present problem.

Besides the mathematical context, this problem has a
straightforward application to finding the optimal secondary
structure in RNA molecules [9–20]. The secondary RNA
structure consists of a set of saturating reversible chemical
bonds between monomers. These bonds correspond to links
represented by planar diagrams. In the RNA context, the
matrix A is a function of a frozen disorder in the sequence of
monomers (nucleotides). Recently the existence of a matching
transition as a function of the number of different monomer
types (the nucleotide alphabet size) has been demonstrated in
Ref. [21]. The main contribution of our current work is twofold.
On one hand, it consists in the description of the “perfect-
imperfect” phase transition and the determination of the
threshold value pc, using both analytic methods and numerical
computations. On the other hand, we treat the relation between
a zero-temperature perfect-imperfect matching transition in
random planar diagrams, and a temperature-dependent molten-
glass transition in random RNAs, widely discussed in the
literature [13,15,22,23]. We find that the perfect-imperfect
phase transition point lies on the critical line, separating molten
and glassy regions, and coincides with the freezing transition at
zero temperature. Therefore, while on the corresponding phase
diagram the molten phase exists in both perfect and imperfect
regions, the glassy phase is present only in the region with gaps.

The paper is organized as follows. First, we give an
estimation of the transition value pc by mapping of the
problem to the so-called Dyck paths and estimating the fraction
of “essential” arcs. Then we formulate the planar matching
problem in terms of the matrix field theory proposed in
Ref. [24] and discuss the self-consistent mean-field approx-
imation. The estimations of the critical point, pc, obtained
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FIG. 1. Examples of imperfect (a) and perfect (b) planar match-
ings (open dots represent gaps); the gapless representation is shown
by a Dyck path (c). The arc is given by an “up” and “down” steps at
the same height, shown by arrows ↗ and ↘. The part of the walk
between arrows is a Dyck path itself.

analytically are compared to the values computed numerically
via an exact dynamical programming algorithm. Finally, we
characterize the fluctuation behavior of the free energy and
discuss the relation between the perfect-imperfect transition
and the molten-glass phase transition in random RNA with
quenched primary sequence.

II. MAPPING ON BROWNIAN EXCURSIONS AND NAIVE
MEAN FIELD

An intuitive idea about the calculation of the critical value
pc can be obtained by considering the one-to-one mapping
between the L-point planar diagrams and the L-step Brownian
excursions (BEs), known as Motzkin paths [25] (these paths
are also called “height diagrams” in the context of applications
to RNA folding [15]). Within this mapping, the gapless
(perfect) planar configurations correspond to BEs with no
horizontal steps, also known as Dyck paths; see Fig. 1(b) and
1(c). The total number of Dyck paths of even length L is given
by a Catalan number

CL/2 = L!(
L
2

)
!
(

L
2 − 1

)
!

∼ L−3/2 2L, (2)

where the asymptotic expression is valid for L � 1; CL/2

represents the number of possible planar diagrams in the fully
connected case, corresponding to p = 1 in our model.

For 0 < p < 1, some planar diagrams in the fully con-
nected ensemble are forbidden. This reduces the number of
possible planar configurations, which becomes zero below
a certain value pc. A naive estimation of pc can be easily
obtained via the following mean-field-like argument. Since
each arc in the diagram is present with a probability p, the
probability that the whole configuration is allowed, is given
by pL/2. Assuming that planar diagrams in the fully connected
ensemble are statistically independent, we get the probability

P to have at least one perfect planar matching configuration:

P = 1 − (1 − pL/2)CL/2 = 1 − exp(−pL/2CL/2), (3)

where the last equality is valid for L → ∞. In this limit the
probability P is equal to one for p > pc, and to zero for
p < pc. The perfect-imperfect naive mean-field threshold pc

is thus given by the condition

lim
L→∞

pc[CL/2]2/L = 1, (4)

yielding pc = 1/4. However, here we have neglected the
statistical correlations between different configurations in the
fully connected ensemble of planar configurations. Therefore,
it provides only a lower bound to the true value of pc. A careful
account for such correlations leads to a natural generalization
of the critical condition (4):

lim
L→∞

ξ (pc)[CL/2]2/L = 1, ξ (pc) = 1/4, (5)

where ξ (p) is some weight (due to correlations) to be
determined.

III. COMBINATORICS OF “CORNER COUNTING”

An estimation of ξ (p), and therefore of pc, can be obtained
by exploiting the combinatorial properties of Dyck paths. The
consideration below provides an intuitive understanding of the
statistical reasons beyond the shift of the transition probability
from the mean-field value pc = 1/4.

Our estimation is based on the following observation:
the probabilities to find different arcs in a perfect matching
structure crucially depend on the lengths of arcs. Consider a
perfect matching of L/2 arcs connecting L points. In the limit
L → ∞ the local statistics of “up” and “down” steps in a
corresponding Dyck path becomes independent on the global
constraint for the random walk to be a Brownian excursion.
Using the bijection between Dyck paths and arc diagrams, we
see that the arc is drawn between ith and j th steps if and
only if the ith step is ↗ (“up”) and j th step is the first step
↘ (“down”) at the same height after i, as is depicted in the
Fig. 1(c). Therefore, the probability to find an arc from i to
j in a randomly chosen diagram can be formally written as a
“correlation function”:

P (i,j ) = 〈↗ |Di+1,j−1| ↘〉
2j−i+1

. (6)

In this expression the denominator represents the total number
of possible sequences from ith to j th step; Di+1,j−1 is a Dyck
path between (i + 1)-th to (j − 1)-th steps: this part of the
walk should be a Dyck path itself to return to the same spatial
coordinate for the first time at j th step. The number of such
Dyck paths is given by the Catalan number C(j−i−1)/2. Thus,
P (i,j ) depends only on k = j − i and equals

P (i,j ) = C(k−1)/2

2k+1
, (7)

and they are nonzero for odd k only: P (i,i + 1) = 1/4,
P (i,i + 3) = 1/16, P (i,i + 5) = 1/32, etc. The whole set of
P (i,j ) sums to

∑∞
k=1 P (i,i + k) = 1/2, which has a meaning

of a probability that i is a starting (rather than ending) point of
an arc.
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Thus, the fraction of the shortest arcs of length k = 1,
P (i,i + 1) = 1/4, represented by “up corners” ∧ in a Dyck
path, is exceptionally high. Indeed, in a typical fully connected
diagram one half of the arcs (L/4 out of L/2) correspond to
such corners. Moreover, while a fraction of long arcs chosen
in each particular diagram is decaying at L → ∞ (the number
of possible long arcs is of order L2, so the fraction of those
chosen in each structure, is of order L−1), the fraction of
corners converges to 1/4 (there are L − 1 possible corners,
L/4 of them appear in a typical structure). Therefore, the
values of quenched weights Ai,i+1 assigned to the short arcs
in our model influence the existence of a perfect arc structure
in a crucial way. Now we estimate how this exceptional role
of the subdiagonal values Ai,i+1 influences pc.

Assume that the typical arc structure is constructed as
follows: (1) take 1/4 corners (from L − 1 possible places)
such that none of them touch each other, (2) select remaining
L/2 − L/4 = L/4 arcs at random from ensemble of any
longer arcs. Since the total number of longer arcs is of order of
L2 � L/4, we assume that the quenched disorder in the entries
Ai,j away from the subdiagonal can be safely ignored, and the
contribution from the longer arcs into ξ (p) remains as it is in
the mean-field case (each arc is allowed with a probability p

independently of others), thus

ξL/2(p) = pL/4︸︷︷︸
long arcs

P∧(p)︸ ︷︷ ︸
corners

. (8)

To determine the contribution of corners, P∧(p), note that this
value has a meaning of a probability to take L/4 corners at
random (respecting the nontouching constraint) in a way that
all of them belong to the set of pL allowed ones. Due to the
nontouching constraint the problem of distributing corners can
be mapped onto a problem of choosing L/4 objects (corners)
out of 3L/4 ones (L/4 corners and L − 2 × L/4 = L/2
unmatched vertices; see Fig. 2). The number of corresponding
partitions Z is

Z = C
L/4
3L/4 =

3L
4 !

L
4 !L

2 !
. (9)

In the Bernoulli model, only the fraction p of arc positions
is fixed. Because of the nontouching constraint, it is natural

shortest arcs (L/4 of them)

unmatched points (L/2 of them)(a)

(b)

FIG. 2. Computation of Z and Z(p): (a) Selection of L/4
nontouching arcs on the set of L points (L/2 open dots remain
unmatched); (b) the same problem reformulated as a partitioning
of vertical segments (arcs) between open dots (unmatched points). A
certain number of partitions are forbidden by the matrix of contacts A.

to assume that of 3L/4 positions in the “point-and-stick”
representation in Fig. 2(b) only p(L − L/4) = 3pL/4 are
allowed on average (i.e., correspond to unity weights in the
connectivity matrix A). Thus, the number of allowed partitions
can be estimated as

Z(p) = C
L/4
3pL/4 =

3pL

4 !
L
4 !

( 3pL

4 − L
4

)
!
. (10)

Here Z(p) is the average number of possibilities to distribute
shortest nontouching arcs at a given fraction p of allowed arcs,
and

P∧(p) = Z(p)

Z (11)

is a probability, given p, to pick an allowed set of short arcs at
random. Substituting (11) into (8) one gets in the limit L → ∞
the following result for ξ (p):

ln ξ (p) = 1

2
ln p + 3p

2
ln

3p

2
− 3p − 1

2
ln

3p − 1

2
− 3

2
ln

3

2
.

(12)

Being substituted into (5), Eq. (12) gives an estimate for the
transition point pc = 0.35. We see therefore that the transition
point shifts significantly from its mean-field value due to the
special role of a quenched disorder in the subdiagonal entries
Ai,i+1 of the connectivity matrix A.

IV. SELF-CONSISTENT FIELD THEORY FOR PLANAR
ARC COUNTING

A different way to attack the planar matching problem
consists in using the matrix model approach proposed in
Ref. [24] and the 1/N expansion, a standard technique in
quantum field theory. For the set of L vertices, associate to a
vertex i an Hermitian matrix (φi)N×N . The L-point generating
function ZL can be written as follows:

ZL(N ; A) =
∫

dφ1 · · · dφLe−H0 1
N

tr(φ1 · · · φL)∫
dφ1 · · · dφLe−H0

≡ 〈φ1 · · · φL〉H0 , (13)

where

H0 = N

2

∑
i,j

(A−1)ij tr(φiφj ). (14)

Since tr(φiφj ) = ∑
a,b φi

abφ
j

ba = ∑
a,b,c,d δadδbcφ

i
abφ

j

cd , every
propagator enters with a 1/N factor, while every loop gives a
N factor. Due to the Wick theorem, one has

〈φ1 · · ·φL〉H0 =
〈 ∑

pairs

∏
k,k′

φkφk′

〉
H0

, (15)

where each nonplanar configuration comes with a factor 1/N2

to some power and therefore vanishes in the N → ∞ limit.
Thus, the generating function ZL(N ; A) counts in the limit
N → ∞ the number of planar diagrams with exactly L/2 arcs
(on genus g = 0 surface) compatible with a specific realization
of the disorder defined by the matrix A. In the absence of any
disorder, one can set Aij ≡ α for any (i,j ), where α is some
constant (it corresponds to the p = 1 limiting case). In this case
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the multidimensional integral (13) can be reduced by a series of
Hubbard-Stratonovich transformations to a one-dimensional
integral involving the spectral density of a Gaussian matrix,
which is a well-known result of random matrix theory (RMT).
We will refer to this realization of A as to the fully connected
case. If we set α = 1, we get [24]

lim
N→∞

ZL(N ; A) = CL/2, (16)

where CL/2 is the Catalan number (2), as it should be.
However, for a generic disordered matrix A, the calculations
are intractable. Still, we show below that by averaging over the
matrix distribution (1) and by applying the self-consistency
arguments, we are able to treat the partially connected system
with 0 < p < 1 as an effective fully connected system with
α different from one, thus obtaining a correction to the naive
mean-field result (4).

According to the consideration above, the function ξ (p)
defined by Eq. (5) can be calculated within the matrix approach
by averaging ZL(N ; A) over the distribution (1). To this end,
we use the standard Hubbard-Stratonovich transform and
integrate over A with the weight (1):

∫
dAP (A) ZL(N ; A) = C

∫ L∏
k=1

dφk

1

N
tr(φ1 . . . φL)

×
∫ L∏

m=1

dhmeiN
∑

i tr(hiφi )eS,

(17)

where C is a constant, S = S0 + V , and

S0 = −pN

2

∑
ij

tr(hihj ), (18)

V = p(1 − p)N2

8

∑
ij

[tr(hihj )]2 − p(1 − p)(1 − 2p)N3

48

×
∑
ij

[tr(hihj )]3 + · · · . (19)

Up to this point, no approximation has been made. The
S0 term (18) corresponds to a fully connected matrix with an
additional factor p behind. If this term is the only present, then,
performing the inverse Hubbard-Stratonovich transformation
and returning to the functional of the type (13), we get
ξ (p) = p, recovering the value pc = 1/4 given by the critical
condition (4).

The correction to pc due to the rest of the series V

(19) can be estimated as follows. The series given by the
action S can be thought of as a Gaussian theory with the
interaction V . Since V contains an infinite number of terms,
it is impossible to treat it perturbatively. Still, we can use
a self-consistent nonperturbartive approach reminiscent of
Feynman’s variational principle [26] in the field theory: as
all the fields {hi}i=1,...,L in Eq. (19) are equivalent, we assume
that the average 〈N tr(hihj )〉S0 ≡ U is independent on (i,j ).
Within the adopted mean-field approximation, the replacement

eS = eS0e〈V 〉 is supposed, where

〈V 〉 = p(1 − p)N

8
U

∑
ij

tr(hihj ) − p(1 − p)(1 − 2p)N

48
U 2

×
∑
ij

tr(hihj ) + · · · . (20)

Resumming the series (20), we obtain the following self-
consistent equation for the “propagator” U :

1

U
= − 2

U
log

[
1 − p + p exp

(
− U

2

)]
. (21)

The equation (21) yields U = −2 log [1 − 1−1/
√

e

p
]. Hence,

finally, we can write

S = −ξ (p)N

2

∑
ij

tr(hihj ), (22)

where

ξ (p) =
(

− 2 log

[
1 − 1 − 1/

√
e

p

])−1

. (23)

Substituting (23) into (5), we get an estimation for the critical
value p∗

c = 0.455. Although the self-consistent approximation
(20) seems to be rather crude (the numerical estimation of
pc for large matrices is pc ≈ 0.379), it leads to the correct
direction of the shift of pc from the naive mean-field value
pc = 0.25 (4). It would be interesting to understand how to
treat the interaction term V (19) more properly.

V. PERFECT-IMPERFECT PHASE TRANSITION

The combinatorial problem of planar matching, introduced
above, is strongly related to the problem of optimal folding
of random RNAs. A real RNA represents a single-stranded
polymer, composed of four types of nucleotides: A, C, G,
and U. Under normal conditions, the RNA molecule folds
onto itself and forms double-helical structures of stacked
base pairs, known as the secondary structure of the RNA,
favoring the stable Watson-Crick pairs A-U and G-C. The
simplest theories describe the statistics of the random RNA
secondary structures, incorporating the most important fea-
tures: saturation of base pairings, exclusion of the so-called
pseudoknots, which are known to be very rare in real RNA
[11], and, sometimes, the condition of finite flexibility of the
molecule, requiring a minimal length of a loop [22,23]. The
exclusion of the pseudoknots means that the base pairings can
be represented by one-dimensional planar diagrams, depicted
in Fig. 1. This topological constraint allows us to calculate
the partition function of the RNA, using an exact dynamical
programming algorithm [9,11]. The recursion relation for the
partition function, Zi,i+k , of the part between monomers i and
i + k, reads

Zi,i+k = Zi+1,i+k +
i+k∑

s=i+1

βi,sZi+1,s−1 Zs+1,i+k, (24)

where βi,j = e−Ai,j /T are statistical weights of bonds (1 �
i < j � n); Ai,j = 1 if i and j match each other, and Ai,j = 0
otherwise. In the zero-temperature limit, Eq. (24) is reduced
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to the dynamical programming algorithm for the ground state
free energy [27]:

Fi,i+k = lim
T →0

T ln Zi,i+k

= max
s=i+1,...,i+k

{Fi+1,i+k,εi,s + Fi+1,s−1 + Fs+1,i+k}.
(25)

Since the free energy, F , of the whole chain is proportional
to the number of nucleotides involved in the planar bond
formation, the combinatorial problem of planar matching can
be regarded as a T = 0 optimization problem for the free
energy of the RNA molecule with a given matrix of contacts,
A. Therefore, the exact dynamical programming algorithm
(25) allows us to detect the phase transition by considering the
fraction fL(p) = 2F/L of links, involved in planar binding,
for different densities of contacts p in the limit L → ∞: one
expects f∞(p) = 1 for p > pc, and f∞(p) < 1 for p < pc.

Thus, looking for the fraction, ηL(p), of sequences, which
allow perfect matchings, in the whole ensemble of random
sequences, one has η∞(p) = 1 for p > pc, and η∞(p) = 0
for p < pc. The corresponding dependencies are shown in
Fig. 3(a) for different polymer lengths, L = 500, 1000, 2000.
As L → ∞, the function ηL(p) tends to a step function.
Two different phases are observed: for p > pc one has a
gapless perfect matching with all nucleotides involved in
planar binding, while for p < pc there is always a finite
fraction of gaps in the best possible matching.

The scaling analysis permits to determine the phase
transition point as pc ≈ 0.379 (compare to the predictions
of the “corner counting” and of the self-consistent field
theory). Fig. 3(b) shows that curves with different L collapse,
demonstrating the scaling behavior η[(p − pc)/Lν] with
the transition width L−ν , where ν = 0.5. The convergence
of the function fL to the limiting value f∞(p) (see Fig. 4) in
the perfect and imperfect phases has, respectively, exponential
and power-law tails:

f∞(p) − fL(p) ∼ e−L/
(p) for p > pc
(26)

f∞(p) − fL(p) ∼ L−α(p) for p < pc.

FIG. 3. (Color online) (a) The fraction of perfect matchings ηL(p)
as a function of the density p of ones in the contact matrix A for
chain lengths L = 500, 1000, 2000, averaged over 10 000 instances.
The dashed line corresponds to the thermodynamic limit L → ∞,
yielding the critical value pc = 0.379. (b) The scaling analysis
of curves, corresponding to different chain lengths L. The fitting
procedure gives the exponent of the transition width ν ≈ 0.5.

FIG. 4. (Color online) Convergence of fraction of links, involved
in planar binding, fL to the limiting value f∞ in two regimes, p > pc

and p < pc. (a) In the perfect phase, the exponential convergence is
demonstrated for p = 0.38 and p = 0.4 in the semilogarithmic scale.
The screening length 
(p) diverges as p approaches the critical value
pc. (b) In the imperfect phase, the power-law behavior is shown for
p = 0.32 and p = 0.34 in the log-log scale. The exponent α(p) as
a function of p takes values between 0.8 and 1. The data points are
averaged over 1000 instances.

In the perfect matching phase the screening length 
(p)
diverges at the point p = pc [two examples for p = 0.38 and
p = 0.4 are shown in the Fig. 4(a) in the semilogarithmic
scale], while for the imperfect matching the finite-size scal-
ing analysis demonstrates the power-law behavior with the
exponents 0.8 � α(p) � 1 [see Fig. 4(b) for two examples,
p = 0.32 and p = 0.34 in the log-log plot]. Note that the
exponential scaling for p > pc may not be universal (being
model dependent) and is likely to be a feature of the Bernoulli
model (1), while the power-law behavior for p < pc appears
in other models, e.g., for integer-valued “alphabet” [21].

VI. MOLTEN-GLASS PHASE TRANSITION

The investigation of thermodynamic properties of RNA
secondary structures has been addressed in a number of papers
[12,13,15,18,19,22,23]. Many of them provided numerical
and analytical evidence for existence of a low-temperature
glassy phase. In Ref. [15] it was shown that in the high-
temperature phase the system remains in the molten phase,
characterized by a homopolymer-like behavior. In the molten
phase the disorder is irrelevant, and the binding matrix
elements Aij can be replaced by some effective value α.
Carrying out the two-replica calculation, the authors were
able to prove that the system exhibits a phase transition
from a high-temperature regime, in which the replicas are
independent, to a low-temperature phase, in which the disorder
is relevant and replicas are strongly coupled. The authors
numerically characterized the transition to a glassy phase
by imposing a pinch between two bases and measuring the
corresponding energy cost.

Several other works [22,23] used an alternative so-called ε-
coupling method, to investigate the nature and the scaling laws
of the glassy phase, observing the effect of typical excitations
imposed by a bulk perturbation. The authors argued that for the
models with nondegenerate ground states, the low-temperature
phase is not marginal, but is governed by a scaling exponent,
close to θ = 1/3. The explicit numerical studies of the specific
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heat demonstrate that molten-glass transition is only a fourth
order phase transition [13].

Regardless of particular details of models considered in
all these works, it is clear that the existence of the glassy
phase is possible only in a sufficiently disordered and frustrated
system. Besides the planarity constraint, shared by all simple
models of random RNA, the Bernoulli model is described by
a unique disorder parameter, p, that controls the density of
allowed contacts. In this model the appearance of the glassy
phase is impossible above a certain threshold, p∗. Indeed, it
is well known that for p = 1/2 (corresponding to an effective
alphabet c = 1/p = 2), there is no transition to the glassy
phase at all, and the system remains always in the molten
phase [13,15]. Below we present arguments supporting the
hypothesis that p∗ is equal to the critical value of the perfect-
imperfect matching transition, pc, discussed above.

To identify the dependence of the molten-glass transition
temperature on the effective alphabet (defined as c = 1/p),
we follow the procedure suggested in Ref. [15]. In the high-
temperature regime the disorder is irrelevant (this corresponds
to a homopolymer-like behavior in polymer language) and
one can put Aij = α. In this regime the free energy of the
chain of length L scales linearly with L, up to a logarithmic
correction, which is just the logarithm of the power-law
multiplier in the Catalan number (2) enumerating all possible
structures: F (L,T ) = f (T )L − (3T/2) ln L, where f (T ) is
some (nonuniversal) function of the temperature. In particular,
the energy cost of imposing a bond connecting two monomers
at distance L/2 from each other equals in the high-temperature
regime

�F (L,T ) = F (L,T ) − 2F (L/2,T ) = 3

2
T ln

L

4
. (27)

The violation of this behavior indicates [15] the appearance of
the glassy phase. This fact can be used to detect the transition
temperature in the Bernoulli model. Namely, we use the
following fit for �F (L,T ) [where F (L,T ) is to be determined
via recursion relations (25)],

�F (L,T ) = a(T ) ln L + b(L), (28)

and plot the T dependence of a(T ); see Fig. 5. We interpret the
deviation of the a(T ) from the high-temperature value 3T/2
as appearance of the glass transition. Note that the logarithmic
fit (28) for the free energy does not give a correct asymptotics
at low temperatures (indeed, the true asymptotics is known to
include power-law and logarithm-squared terms [19]).

As follows from Fig. 5, the expected behavior (27) is indeed
observed at high temperatures and is violated at a certain
temperature Tc. Following Ref. [15] we identify this regime
change with the molten-glass transition. We see that with
the increase of p, the critical temperature Tc shifts to lower
values, approaching zero for some 0.35 < p∗ < 0.5. At low
temperatures, the numerical computations become very time
consuming, leading to the loss of precision in the vicinity of
p∗. However, it seems that the hypothesis p∗ = pc still holds:
the sequences corresponding to p > pc remain in the molten
phase, the pinching free energy (28) has the same dependence
even for very low temperatures.

FIG. 5. (Color online) The dependence of the coefficient a(T )
in (28) on the temperature for p = 0.15, 0.2, 0.25, 0.35, 0.5. For
p > p∗ (0.35 < p∗ < 0.5), the coefficient a(T ) seems to follow the
a(T ) = 3T/2 law, typical for the molten phase, up to very low
temperatures. For p < p∗, the a(T ) dependence deviates from the
high-temperature behavior at some temperature, which we identify
as a critical temperature of transition to the glassy phase. The data
points are averaged over 10 000 samples.

VII. DISCUSSION: MATCHING VS FREEZING

The results presented in this work suggests the generic
phase diagram shown in Fig. 6 for the Bernoulli model of

FIG. 6. The phase diagram of the Bernoulli model on the (T ,p)
plane. The data points correspond to the critical temperature Tc

of the molten-glass transition for different values p = 0.15, 0.2,
0.25, 0.3, 0.35, 0.5. A four-letter alphabet (p = 0.25) is highlighted
by a thin dashed line. The critical curve (A–B) separates glassy
and molten phases. We conjecture that at zero temperature, the
endpoint B, giving p∗, coincides with the critical point pc for the
perfect-imperfect transition. The thick dashed line (B–C) separates
the perfect and imperfect matching cases. The glassy phase lies
entirely inside the region, characterized by gaps. Inset: Evidence for
the conjecture p∗ = pc. Study of the pinching free energy �F (L,T )
at zero temperature. In the limit of large L, the glassy phase is absent
for p > p∗, characterized by �F (∞,0) = 0. The point p∗ can be
identified as a crossing point for different �F (L,0) curves, presented
here for L = 1000 and L = 2000, and its value is found to be very
close to pc = 0.379. The data points are averaged over 1000 samples.
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random RNA chains. The perfect-imperfect transition at zero
temperature separates two matching regions: with and without
gaps. Analytically, we proved the existence of the transition
from the perfect matching region to the imperfect one, and
we provided estimates for the values of the transition point,
pc. Using the exact dynamical programming algorithm (25),
we found this critical value to be pc ≈ 0.379, highlighted by
a thick dashed line (B–C) in Fig. 6. The previous studies
have been mostly concentrated on the description of the
finite-temperature molten-glass transition for a sufficiently
frustrated model with a fixed alphabet (a fixed p in the
Bernoulli model). An example of such a phase transition point
is marked by a thin dashed line in the Fig. 6 and corresponds
to an intensively studied case of the four-letter alphabet
(p = 0.25). The ensemble of critical points for different values
of p gives a critical curve (A–B) in the (T ,p) plane.

The computational cost increases drastically for tempera-
tures close to zero (and, hence, in the vicinity of pc), and the
recursive relations (24) are no more applicable. However, we
can still try to carry out the analysis of the pinching free energy
�F (L,T ) at zero temperature, using the exact dynamical
programming algorithm (25). Indeed, the glassy phase does
not exist if �F (∞,0) = 0. This happens for p > p∗, where
p∗ is defined as the density of constrains, for which the
critical temperature is zero: Tc(p∗) = 0. The corresponding
plot is shown in the inset of Fig. 6. According to (26), the
pinching free energy (27) decreases with growth of L in the
imperfect matching phase, while increases (with growth of
L) in the perfect matching regime. Hence, the value of p∗
in the large L limit can be identified as a crossing point
of �F (L,0) curves for different L. The crossing point for
L = 1000 and L = 2000 is indeed found to be very close

to the value pc = 0.379, strongly supporting the hypothesis
p∗ = pc. The aforementioned results indicate that the critical
curve Tc(p) crosses zero at the critical value pc. Hence, the
perfect-imperfect transition point seems to lie at the critical
line, separating molten and glassy regions, and coincides with
its limiting T = 0 value. We see that although the glassy phase
exists only in the region where the gaps are present, the molten
phase lies in both, perfect and imperfect, matching regions.

Because of the one-parameter dependence, the Bernoulli
model is probably the simplest model for modeling the
secondary structure of the RNA, that captures the essential
physical properties of the process. Being applied to the
studies of the thermodynamic properties of random RNAs, the
problem introduced in this paper provides some enlightenment
on the nature of molten-glass transition at zero temperature.
Starting from the Bernoulli model, one could directly gen-
eralize our approach to investigate more sophisticated and
realistic models of the RNA secondary structure, for example,
by introducing the minimal allowed hairpin length [13,15,23],
taking into account the pseudoknots [24] and different binding
probabilities [22,24].
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