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Optimal structure and parameter learning
of Ising models
Andrey Y. Lokhov,1,2* Marc Vuffray,2 Sidhant Misra,3 Michael Chertkov1,2,4

Reconstruction of the structure and parameters of an Ising model from binary samples is a problem of practical
importance in a variety of disciplines, ranging from statistical physics and computational biology to image pro-
cessing and machine learning. The focus of the research community shifted toward developing universal recon-
struction algorithms that are both computationally efficient and require the minimal amount of expensive data.
We introduce a new method, interaction screening, which accurately estimates model parameters using local
optimization problems. The algorithm provably achieves perfect graph structure recovery with an information-
theoretically optimal number of samples, notably in the low-temperature regime, which is known to be the
hardest for learning. The efficacy of interaction screening is assessed through extensive numerical tests on syn-
thetic Ising models of various topologies with different types of interactions, as well as on real data produced
by a D-Wave quantum computer. This study shows that the interaction screening method is an exact, tractable,
and optimal technique that universally solves the inverse Ising problem.
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INTRODUCTION
The Isingmodel is a renownedmodel in statistical physics thatwas orig-
inally introduced to study the phase transition phenomenon in ferro-
magnetic materials (1). In modern applications, the Ising model is
regarded as the most general graphical model describing stationary sta-
tistics of binary variables, called spins, that admit a pairwise factoriza-
tion. The spins are associated with the nodes of a graph, and the edges
specify pairwise interactions. Given a graph G = (V, E), where V is the
set of N nodes and E is the set of edges, the probability measure of an
Ising model reads

PJ *;H *ðsÞ ¼ 1
Z
exp ∑

ði;jÞ∈E
J*ijsisj þ ∑

i∈V
H*i si

 !
ð1Þ

where s = {si}i∈V denotes the vector of spin variables si ∈ {−1, +1},
J*¼ fJ*ijgði;jÞ∈E is the vector of pairwise interactions,H* ¼ fH*i gi∈V is
the vector of magnetic fields, and Z, called the partition function, is a
normalization factor that ensures ∑sPJ*;H*ðsÞ ¼ 1. In this representa-
tion, the temperature is absorbed in J* andH*. Regimes corresponding
to small and large interactions andmagnetic field intensities are respec-
tively known as high- and low-temperature phases. Models in which
couplings or magnetic fields are positive, negative, or have mixed signs
are traditionally referred to as ferromagnet, antiferromagnet, and spin
glass, respectively. In numerous application fields, such as statistical
physics (2, 3), neuroscience (4, 5), biopolymers (6), gene regulatory
networks (7), quantum computing (8), image segmentation (9), deep
learning (10), and sociology (11), the underlying interaction graph and
the values of couplings are often unknown a priori and have to be re-
constructed from the data, which takes the formof several observed spin
configurations. The learning problem that we consider in this paper,
called the inverse Ising problem, is stated as follows: givenM statistically
independent samples {s(m)}m=1,…,M generated by an unknown prob-
ability measure PJ*;H*ðsÞ, reconstruct the interaction graph G and the
parameters {J*, H*}.

Over the past several decades, a considerable number of techniques
have been developed in statistical physics, machine learning, and com-
puter science communities to carry out this reconstruction task (12–24).
A direct maximization of the log-likelihood of the data is generally in-
tractable because it requires a repeated evaluation of the partition
functionZ for different trial values of the parameters {J,H}. Computing
Z is, in general, a task of exponential complexity in the number of spins
(25), with the exception of some special cases such as tree-structured
Ising models (26) and planar Ising models with zero magnetic fields
(27). Despite this difficulty, one may still try to maximize the log-
likelihood using, for instance, Monte Carlo simulations, as done in the
study by Ackley et al. (12) via the so-called learning for Boltzmann
machines. In thismethod, one estimates all themagnetizations and pair-
wise correlation functions from samples and then maximizes the log-
likelihood using a gradient ascent procedure over all couplings and
magnetic fields. The Monte Carlo nature of the method makes it expo-
nentially expensive in the number of runs required to achieve a prede-
fined accuracy. Note, however, that this method is asymptotically exact
as the number of samples goes to infinity, thus illustrating that “sufficient
statistics”–based approaches that use only estimates of first moments
and pair correlations of spins can achieve exact reconstruction albeit
through computations with exponential complexity (28).

Following the observation that the first and second moments are
sufficient to reconstruct Ising models, a number of mean-field approx-
imations have been suggested to circumvent the difficulty of an ana-
lytical evaluation of magnetizations and pair correlation functions [see
the study by Roudi et al. (14) for a review]. The applicability of these
methods is limited: They perform weakly on systems embedded
in a low-dimensional space and in the spin glass regime, where fluc-
tuations are important and cannot be neglected. Some of the limita-
tions of these naïve mean-field methods (13) are addressed in more
advanced mean-field methods: The small correlation expansion (15)
considers corrections to the mean-field in the high-temperature re-
gime; Nguyen and Berg (16) exploits clustering of samples in the con-
figuration space according to their mutual overlaps; and the Bethe
approximation (17) is based on the tree-like approximation of the in-
teraction graph. Nevertheless, the applicability of these approximate
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techniques remains limited to Ising models pertaining to specific
classes.

Although sufficient statistics consisting of the first and second mo-
ments of the data carry all the information needed for estimating the
couplings, the computations required to extract this information are ex-
pensive and prohibitive for large systems (28). This leaves the use of
higher-order moments of the spin statistics as the only way to improve
computational complexity. Several heuristic algorithms that use higher-
order moments have been proposed on the basis of statistical physics
arguments. Among other approximate methods, let us mention the
adaptive cluster expansion (18), which controls the accuracy of the ap-
proximation at a cost of a higher computational complexity involving
computation of entropies of growing clusters, and the probabilistic flow
method (19), which introduces a relaxation dynamics to a certain trial
distribution. However, both schemes remain computationally expen-
sive and thus not suitable for large systems and rely on fine tuning of
auxiliary parameters. An alternativemethod, which uses the full infor-
mation contained in the samples, has been suggested and rigorously
analyzed in the study by Ravikumar et al. (20). Although it has been
shown by Montanari and Pereira (29) that this estimator is unable to
correctly reproduce the underlying graph of the original model at low
temperatures, until lately with certain modifications it remained the
state-of-the-art practical method (21, 22, 30). Partly anticipating on
our results, we show later in this paper that this regularized pseudo-
likelihood estimator (RPLE) can be turned into an exact and universal
method if completed with a rather natural, but key, ingredient: a post-
inference thresholding of reconstructed couplings.

The problem of designing a universal learning algorithm with poly-
nomial computational complexity (28) that achieves exact graph topology
reconstruction for arbitrary Isingmodels in all regimes was resolved only
recently in the studies by Bresler et al. (23, 24). The biggest challenges
addressed were the low-temperature regime and long-range correlations,
which are known to be particularly difficult for learning. Nonetheless, the
computational cost of these algorithms is still high and scales as a poly-
nomial of high degree in the number of nodes (23) or double exponential
in the maximum node degree dmax and in the maximum interaction
strength (24). Moreover, both algorithms require prior information on
the bounds on the interaction strengths, that is, positivea and b such that
a ≤ |Jij| ≤ b for all (i, j) ∈ E, as well as the knowledge of dmax.

In an attempt to determine the optimal number of samples needed
for reconstructing the graph, information-theoretic bounds were de-
rived by Santhanam andWainwright (31). We emphasize three salient
features of these bounds. First, the optimal number of samplesMopt for
perfect graph recovery scales exponentially with the maximum interac-
tion value and node degree, Mopt º ecg, where g = bdmax + hmax, and
hmax denotes an upper bound on the absolute values of magnetic fields.
Although it was shown that c ∈ [1, 4], the precise value of c remains
unknown; here, we refer to this range of c as to the optimal regime with
respect to the dependence of the number of samples on g. Intuitively,
this exponential scaling requirement can be attributed to the typical
waiting time for collecting a sufficient number of “nontrivial” samples,
that is, those that are different from the ground state configurations.
This waiting time is more pronounced in the low-temperature regime
when g is large. Second, for finite dmax, the dependence on the number
of variables N is very weak:Moptº ln N. This logarithmic dependence
represents the amount of information needed for hypothesis testing
over the set of Cdmax

N candidate neighborhoods of a given vertex (32).
Third, the number of required configurations grows as a decreases,
because it is difficult to distinguish between the presence of a very
Lokhov et al., Sci. Adv. 2018;4 : e1700791 16 March 2018
weak coupling and its absence. In particular, in the limit of small a,
Mopt º 1/a2.

Inwhat follows, we discuss two exactmethods for solving the inverse
Ising problem. The firstmethod is based on the RPLE of Ravikumar et al.
(20) supplemented with a post-optimization parameter thresholding
procedure. We prove that this ingredient makes the estimator exact,
meaning that the algorithm can reconstruct an arbitrary Ising model with
an appropriate number of samples. The second algorithm that we intro-
duce is an exact estimator based on the interaction screening method.
By settingupa framework for an empirical assessment of theperformance
of the algorithmsguidedby the information-theoretic arguments presented
above,we show that ournewestimator outperforms thepseudolikelihood-
based algorithm and requires in all test cases a number of samples lying
within the information-theoretically optimal regime.
RESULTS
Regularized pseudolikelihood estimator
A widely used approach aiming at achieving the optimal scalings was
suggested in the study by Ravikumar et al. (20), where the estimation
of model parameters is performed on the basis of the so-called pseudo-
likelihood acting as a surrogate for the intractable log-likelihood
function. The method is based on maximizing a set of local RPLEs.
Each of them can be interpreted as a regularized probability of a
single spin i conditioned on the remaining N − 1 spins in the system
given by

LiðJ i;HiÞ ¼ ln
1

1þ e�2siðHiþ∑j≠iJijsjÞ

� �
M

� l∥J i∥1 ð2Þ

where 〈 f ðsÞ〉M ¼ M�1∑Mm¼1 f ðsðmÞÞ is the notation for the empirical
average; Ji and Hi are the optimization parameters; and Ji is the
shorthand notation for {Jij}j≠i. The sparsity promoting ℓ1 regularization
term ∥ Ji ∥1 = ∑j≠i |Jij| is important because it discourages the minimizer
Ĵ i from being dense by effectively pushing the interaction values toward
zero whenever an edge is absent. In the original version of the algo-
rithm, the graph structure is identified as a set of edges carrying cou-
plings that were not set to zero by the RPLE. Guarantees for perfect
graph reconstruction with this procedure rely on a rather restrictive
set of conditions that are not always satisfied and are hard to verify
in practice (20). Models known to satisfy these conditions are partic-
ular ferromagnetic models at high temperature, but this procedure
provably fails in other regimes, most noticeably at low temperatures
(29). A natural extension of this algorithm that uses a postestimation
thresholding of a part of nonzero couplings was introduced in the
study by Aurell and Ekeberg (21). In this scheme, all recovered Jij
satisfying |Jij| < d, where d is a chosen threshold, are declared to be
zero. However, the performance of the RPLE-based algorithm with
thresholding has never been rigorously analyzed, and until now, it
was believed that any RPLE scheme fails in the low-temperature re-
gime, following theoretical indications (29) and experimental studies
conducted in a framework that does not fully account for the sample
complexity structure of the inverse Ising problem (21). The reason that
previous numerical studies show failure of the RPLE with thresholding
at low temperatures is most likely due to the hidden dependence of the
required number of samples M* on the strength of the couplings
(inverse temperature b) in the original analysis (20), which resulted in
2 of 10
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tests of the reconstruction quality as a function of inverse temperature
assuming a constant number of samples only. At the same time, it is
clear that in the low-temperature regime, the Boltzmann probability
measure concentrates on the ground state samples, that is, most of
the samples in a typical batch would correspond to less-informative
ground state configurations. Hence, an assessment of empirical
performance should be based on a setting where the number of
provided samples is exponentially increasing, in agreement with
information-theoretic dependencies (31). We take this fact into account
in the numerical experiments presented below.

In the Supplementary Text, we prove that there exists a minimum
number of samplesM* for which the error on the estimated couplings is
bounded by a/2, so that choosing d = a/2 leads to a perfect reconstruc-
tion of the graph topology. Hence, our first result states that the RPLE
with a post-evaluation thresholding is exact: In the worst case, the re-
quired number of samples scales at most asM*º exp (8g)lnN/a2, (see
Supplementary Text for details). Note that the parameter estimation
problem for each vertex is independent, and the optimization can be
carried out separately for each spin. As we explain below, the symme-
trized estimate of coupling associated with the edge (i, j) is obtained as
an average of local estimates ðĴ ij þ Ĵ jiÞ=2. This parallelization of local
reconstructions is lost when the optimization is performed globally over
the entire graph (22).

Interaction screening method
Recently, we introduced the first exact reconstruction algorithm having
the same parametric dependence as the information-theoretic bound
and termed the regularized interaction screening estimator (RISE) (33).
Our theoretical analysis showed that the RISE has a lower theoretical
sample complexity for perfect graph recovery compared to the one
derived here for the RPLEwith thresholding, guaranteeing that a number
of samplesM*º exp (6g)ln N/a2 is sufficient for reconstruction of the
graph structure [see the Supplementary Text and (33) for details]. How-
ever, factors 6 and 8 in the exponents of the RISE and the RPLE, respec-
tively, are likely to be an artifact of the used proof techniques and are not
tight as indicated by the computational experiments in this paper.

The RISE is based on the minimization of the interaction screening
objective (ISO)

SiðJ i;HiÞ ¼ exp �∑
j≠i
J ijsisj �Hisi

� �� �
M

ð3Þ

over the probe vector of couplings Ji and the probemagnetic fieldHi for
a given spin i. The ISO, as its name suggests, is constructed on the basis
of the property of “interaction screening,” which is illustrated in Fig. 1.
As a consequence of this property, in the limit of a large number of
samples, the unique minimizer of the convex ISO objective is achieved
at ðJ i;HiÞ ¼ ðJ*i ;H*i Þ. A simple derivation of this fact is presented in
the Materials and Methods. In the RISE construction, the ISO is
appended with the ℓ1 regularizer to promote sparsity (33). Here, we in-
troduce a modification to the RISE that leads to a new exact learning
method for the inverse Ising problem, which we call the logRISE and
which takes the following form

ðĴ i; Ĥ iÞ ¼ argmin
ðJi;HiÞ

�
lnSiðJ i;HiÞ þ l∥J i∥1

�
ð4Þ

The name logRISE comes from the fact that instead of the ISO itself,
we use its logarithm to form the logRISE objective (4). Obviously, in the
Lokhov et al., Sci. Adv. 2018;4 : e1700791 16 March 2018
absence of the regularizer (for l = 0), taking the logarithm of the ISO
does not change its minimizer. However, this difference is crucial for
nonzero values of the regularization term, which suggests that logRISE
might have good properties for the reconstruction problemdue to a par-
ticular form of its first and second derivatives (see the Supplementary
Text for additional explanations and details).

Unfortunately, the proof techniques used for deriving bounds on
scaling for the RPLE and the RISE provide less tight expressions when
applied to the estimator logRISE, because it no longer can be represented
in a form of finite functional sum over individual samples. Our analysis
states that the number of required samples for logRISE in the worst case
scales asM*º exp (10g)lnN/a2 for guaranteeing the reconstruction
of the structure of the underlying Ising model with a high probability.
Given the looseness of the theoretical analysis in this case, the empirical
assessment of the performance of the logRISE and its comparison with
the RPLE are required. We provide a detailed numerical study of the
quality of different estimators below.

As we show through a rigorous analysis in the Supplementary Text,
theℓ1 regularizer plays an important role for all of the estimators because
it reduces the required sample complexity for perfect topology recon-
struction from quasi-linear to logarithmic in the number of spins N.
However, the performance of the RPLE, the RISE, and the logRISE
and hence the number of required samples M* are dependent on the
regularization coefficient l. The choice of l needs to account for the
following tradeoff: If l is too small, then the estimation is prone to noise,
and if l is too large, then it introduces a bias in the estimated couplings
toward zero. The optimal value of l is unknown a priori. In the Supple-
mentary Text, we present detailed simulations for different topologies,
which show that for achieving correct graph reconstruction with prob-

ability 1 − e, the choice l ¼ cl
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðN2=eÞ=M

p
is appropriate when no

additional information about themodel is available, with cl≃ 0.2 for the
RPLE, cl ≃ 0.4 for the RISE, and cl ≃ 0.8 for the logRISE. We use these
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Fig. 1. ISO for different probe values of model parameters in the large M limit.
The ISO is an empirical average of the inverse of the factors in the Gibbs mea-
sure, and its screening property becomes apparent in the limit of large num-
ber of samples. Changing the value of the probing parameters (Ji,Hi) in the ISO
alters the effective interaction strength of si with its neighbors. This mecha-
nism is schematically represented in the figure, where the value of ISO for dif-
ferent values of probing parameters is depicted. When the probing parameters
are equal to the true ones ðJ*i ,H*i Þ, the ISO completely screens this interaction
making si effectively independent of its neighbors. With some analysis, this
can be shown to be equivalent to the ISO attaining its minimum at the true
parameters of the model.
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values for l in all numerical experiments reported below. Given a
sufficient number of samples, other techniques such as consistency
cross-validation can be used for selecting the optimal value of the
regularization coefficient on a case-by-case basis. An illustration of this
approach alongside some practical remarks is provided in the Supple-
mentary Text.

Learning structure and parameters of the model
Westate our three-step algorithm for learning the underlying graph and
the parameter values of the Ising model using the RPLE or the logRISE
(the same algorithm applies to the RISE). First, given M samples, we
find the optimizer of the objective (2) or (4), respectively, at each node
i∈V and obtain a collection of estimated parametersðĴ i; ĤiÞ. Given that
both estimators are convex, any appropriate convex optimization
method can be used to find the minimizer of the objective function,
the simplest one being a plain gradient descent supplemented with
an additional projection step due to nondifferentiability of theℓ1 reg-
ularization term. For our numerical experiments, we used the Ipopt
optimization software (34); however, as we comment in the Supple-
mentary Text, better choices such as composite-type gradient descent
methods exist for experiments with very large networks (35, 36).

Given a sufficient number of samplesM, a typical histogram of cou-
plings estimated by the RPLE, the RISE, or the logRISE takes the form
shown in Fig. 2A. Notice the emergence of gaps separating a group
of inferred couplings that are close to zero from those with signifi-
cantly bigger intensities in absolute value. In the second step, we thresh-
old the inferred couplings below the observed gaps to zero. The edges
associated with the remaining nonzero couplings form the recon-
structed graph Ĝ. Finally, we optimize the unregularized objective for
each of the three estimators by setting l = 0, but only over the couplings
corresponding to the edges in Ĝ, and obtain our final estimates ðĴ i;ĤiÞ.
This procedure is illustrated in Fig. 2B for the logRISE on an Erdös-
Rényi graphwithN=25nodes and spin glass couplings,where the scatter
plot of predicted versus true values of themodel parameters is presented,
and only parameters over the already reconstructed graph fromM =
M* = 5000 samples have been accounted for. We see that even using
a small number of samples (in this example, the minimal amount re-
quired for a correct structure recovery), the numerical values of the
parameters are also reconstructed with a very good accuracy that in-
creases when more samples are provided.

To have statistical confidence in our results, we determineM* as
follows. Progressively increasing values ofM, the reconstruction ex-
periment runs L times, using L independent sets of M samples. On
the basis of the number of successful topology reconstructions Lsucc, one
can define the empirical probability of reconstruction Pemp = Lsucc/L.
We define M* as the minimum M for which Pemp = 1 (see Fig. 2C
for a typical example). The value L that we use in our computations,
L = 45, comes from the requirement of a perfect topology reconstruc-
tion with probability greater than 1 − e, where we fix e = 0.05. That is, it
is essential to getL= 45 successful reconstructions in a row tomake sure
that the probability of correct topology recovery is above 0.95 with con-
fidence of at least 90%, as we explain in the Supplementary Text.We use
this value of L in the computations throughout the text.

We performed extensive numerical experiments to empirically ob-
tain the minimal number of samples M* required for perfect graph
reconstruction for different topologies and types of interactions. We
carried out numerical experiments for all of the three estimators con-
sidered in this paper. However, for the sake of simplicity and for the
clarity of presentation, in what follows in the main text, we present
Lokhov et al., Sci. Adv. 2018;4 : e1700791 16 March 2018
numerical results only for the logRISE, which is the central object of
the present study, and for the RPLE, which is the state-of-the-art
method for the inverse Ising problem. Note that throughout the man-
uscript, we present comparisons of the logRISE with the exact and
universal version of the RPLE, that is, corrected through our thresh-
olding procedure. The corresponding scalings for the RISE are avail-
able in the Supplementary Text.

We first verify the logarithmic scaling ofM*, claimed in our theore-
tical analysis for RPLE and logRISE, with respect to the number of
spinsN in ferromagnetic Ising models without magnetic fields (J*ij > 0,
H*i ¼ 0), defined on two topologies: square lattice with periodic bound-
ary conditions and random regular (RR) graphs with degree d = 3. The
choice of ferromagneticmodels has been dictated by the need to generate
Nonzero
 

NonzeroZero
 

δ δ + –

H

* H*

Fig. 2. Reconstruction of the graph topology and the values of parameters
with the logRISE. Reconstruction procedure for an Erdös-Rényi graph with N = 25
and average degree 〈d〉 = 4 given M = 5000 configurations. The couplings and
magnetic fields are generated uniformly at random in the range [−1.0, −0.4] ∪
[0.4, 0.1] and [−0.3, 0.3], respectively. (A) The symmetrized estimate of coupling
Ĵ ij associated with the edge (i, j ) is obtained as an average of local estimates
ð Ĵ ij þ Ĵ jiÞ=2. When the regularizing parameter l is appropriately chosen and
the number of samples is sufficient, gaps emerge in the estimated couplings
Ĵ ij around d+ > 0 and d− < 0, separating the estimated couplings that are close
to zero and those with higher intensities in absolute value. The values below the
threshold are then set to zero to obtain an estimate of the graph structure. (B) Once
the graph structure is learned, the parameters are reestimated by optimizing the
unregularized objective only over the edges in the reconstructed graph. The reduc-
tion in the number of free optimization variables from N to dmax + 1 greatly improves
the estimates. The resulting values are shown in the scatter plot. (C) Empirical prob-
ability of successful structure recovery Pemp over L = 45 independent runs as a
function of the number of samples M. For the logRISE, the smallest number of
samples for which Pemp = 1 is given by M* = 5000.
4 of 10
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independent samples for large values of N, and given that for spin glass
models, this is a nontrivial task (37). For the two aforementioned topol-
ogies, we generate independent samples using Glauber dynamics for
different values of N in the low-temperature regime, where the corre-
lations are long-range: we have used J*ij ¼ 0:7 for the lattice ensemble
and J*ij ¼ 1:0 for the RR graph ensemble. The minimal required sam-
ple size M* on both topologies is presented in Fig. 3. We see that M*
exhibits a logarithmic dependence onN for both estimators: the logRISE
and the RPLE.

The major difference in performance between the estimators is ob-
served in the scaling with respect to g = bdmax + hmax. This is critical
because a favorable exponent allows the algorithm to have a lower sam-
ple complexity in the low-temperature regime, where known algorithms
either do not work or exhibit poor scaling. An extensive numerical
study is presented in Fig. 4, where we study quasi-homogeneous sys-
tems with ferromagnetic-type couplings (Fig. 4A, B, and E) and spin
glass–type couplings (Fig. 4C and D) on two topologies: square lattice
with double-periodic boundary conditions (Fig. 4A, C, and E) and
random regular graphs (Fig. 4B and D). This choice of topologies elim-
inates fluctuations with respect to the heterogeneity of node degrees,
so that it becomes easier to extract the right scaling with respect to b
and d. To disentangle the effects of a and b, we always fix one (for ferro-
magnets) or two (for spin glass systems) couplings to a and −a, which
is different from the interaction values ±b carried by the rest of the
edges. Therefore, b can be conveniently thought of as the inverse tem-
perature of the model. To investigate the effect of temperature on the
scalings, we deliberately set magnetic fields to zero and fix the thresh-
olding parameter to d = a/2. The test cases represented in Fig. 4 (A to
D) show that, overall, the RPLE and the logRISE demonstrate similar
scaling properties. Notice that there exists a qualitative difference in
the scaling behavior between the low- and high-temperature regimes,
Lokhov et al., Sci. Adv. 2018;4 : e1700791 16 March 2018
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with an exponential scaling for both estimators observed for large b.
Our numerical study shows that from the learning perspective, the
ferromagnetic model on the two-dimensional lattice appears to be
the most challenging class of Ising models for both the logRISE and
the RPLE. It has the highest scaling exponent with respect to g and,
hence, the largest sample complexity for the inverse Ising problem.
This observation supports theoretical evidence that this case belongs
to the hardest class of models with respect to learning (38). In partic-
ular, this finding shows that, paradoxically, the inverse Ising problem
is significantly harder for planar ferromagnetic models compared to
spin glass models on random graphs, whereas the direct problem of
drawing independent samples from the former can be incomparably
easier than from the latter (37).

The ultimately hardest case for the reconstruction problem is un-
known. However, we were able to construct a slight variant of the fer-
romagnetic model on a lattice that appears to be even harder for all
algorithms considered: a ferromagnetic model with a weak antiferro-
magnetic interaction, that is, an edge carrying a negative coupling −a.
In Discussion, we present intuitive arguments why this case should
be fundamentally hard. The results for the extraction of the M* in
this model instance are presented in Fig. 4E. We see that the logRISE
has a markedly better scaling exponent compared to the RPLE. In
this test case, the scaling exponent of the RPLE is significantly larger
than the information-theoretic upper bound, whereas the correspond-
ing value for the logRISE lies within the optimal regime in terms of the
information-theoretic predictions. We summarize the scaling behavior
of the estimators in Discussion.

Application to a real system: D-Wave quantum computer
To evaluate the performance and robustness of the estimators in a
nonsynthetic case, we apply the logRISE and the RPLE to real data
produced by the D-Wave 2X quantum annealer “Ising” at Los Alamos
National Laboratory. The D-Wave computer (39) has been designed
for solving binary quadratic optimization problems in the form of
Ising models through quantum annealing, that is, slowly transforming
an initially prepared state of the system to the ground state of the
desired input Ising Hamiltonian encoded on its chip. Because of the
thermal noise in the system, a single annealing run may end in one
of the excited states instead of the desired ground state. In practice,
the device attempts to find the target ground state by rerunning the
annealing multiple times and producing as output the best solution
found. Previous experiments with D-Wave report that the produced
samples are distributed according to the Boltzmann distribution at
some effective temperature (40) related but not equal to the native
temperature at which D-Wave operates. This effective temperature is
naturally low because D-Wave contains superconducting elements as
a part of its architecture. Because of the temperature rescaling effect, as
well as inevitable biases present in this analog device, the effective Ising
model from which the samples are produced does not exactly corre-
spond to the input Ising model. It then becomes interesting to see how
the structure of the distorted effective Ising model is related to the one
encoded in the chip. This task is exactly what the methods presented
in our paper are designed to solve, making it a good real-world appli-
cation for testing their performance.

Let us describe the procedure that we followed for generating the
data. Our goal was to check the performance of the algorithms on a
noisy heterogeneous instance, both in node degrees and couplings as
well as in magnetic fields. Hence, we encoded an Ising model with ran-
dom couplings and magnetic fields, distributed uniformly in the range
Fig. 3. Verification of the logarithmic scaling with the size of the system.
Scaling of M* with the number of spins N for (A) the logRISE and (B) the RPLE
obtained using samples produced in the cases of the ferromagnetic Ising model
over a double periodic two-dimensional lattice with b = 0.7 and ferromagnetic
random regular graphs with degree d = 3 for b = 1.0. In all cases, we observe a
logarithmic growth of M* with respect to N, which is in agreement with the
information-theoretic bounds and our theoretical analysis for the estimators.
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[−0.16,−0.02] ∪ [0.02, 0.16].We also chose to encode these couplings in
a region of the chipwith the highest concentration of broken qubits that
are inevitably present and can potentially create additional noise. The
topology of this portion of the chip containing N = 62 qubits is
illustrated in gray in Fig. 5A. We observed that the initial Ising model
got distorted while being implemented on the chip. From several trial
tests, we inferred that the effective rescaling factor in this regime roughly
fluctuates around beff≈ 12, although this factor is different for individ-
ual model parameters. Because the precise values of the couplings and
magnetic fields actually implemented on the chip are unknown, the on-
ly “ground truth” available to us in this experiment is the topology of the
portion of the chip thatwe encoded ourmodel on.However, let us point
out that because of the complexity of the D-Wave architecture and a
possible conflict of superconducting loops representing couplers be-
tween qubits, it is a priori unclear whether the resulting topology of
the effective Ising model will necessarily remain unchanged.

The maximum number of annealing runs for a given Ising model
implementation is limited to 104 by standard system settings on the
D-Wave.We collected 5 × 105 samples corresponding to the same input
Lokhov et al., Sci. Adv. 2018;4 : e1700791 16 March 2018
model specified above by obtaining 50 batches of 104 samples each
and provided them as an input to the logRISE and the RPLE. Notice
that each additional implementation of the same chosen Ising model
for each batch in principle corresponds to a different actual Ising
Hamiltonian owing to a different concrete realization of randombiases;
this creates an additional source of noise in our data. The reconstructed
model parameters are presented in Fig. 5 (A and B).We emphasize that
it is difficult to disentangle the effects of statistical errors due to the
finiteness of the number of samples and the errors due to noise.

For structure reconstruction, we chose to threshold the parameters
Jij in the tail of a set of couplings reconstructed in the vicinity of zero.
Given this choice of threshold, we found that both algorithms are quite
robust to noise and are able to accurately reconstruct the graph
topology, making only a few false positives and false negatives. The re-
constructed topologies are shown in the left of Fig. 5 (A and B). Notice
that although the RPLE makes local errors, detecting one false-positive
and one false-negative connections between neighboring spins, the
logRISE misclassifies a nonexisting edge as existing in a clearly non-
local fashion, meaning that the vertices it misclassifies as neighbors are
Fig. 4. Scaling of M* with the couplings strength. Comparison of the performance of the logRISE and the RPLE is presented for five different ensembles of Ising
models. Because of a weak dependence M* º ln N, we consider graphs of size N = 16, which allowed us to produce independent samples through an exhaustive
enumeration of spin configurations. The first four cases correspond to (A) a ferromagnet on a square lattice with double-periodic boundary conditions, (B) a ferro-
magnet on a random 3-regular graph, (C) a spin glass on a periodic lattice, and (D) a spin glass on a random 3-regular graph. The most difficult reconstruction test case
for both algorithms, a ferromagnetic lattice with a weak antiferromagnetic impurity, is presented in (E). The phase transition points in the corresponding infinite
systems are indicated as bc. An exact pictorial representation of the corresponding Ising model is portrayed on the left-hand side of each plot. Ferromagnetic couplings
equal to b and a = 0.4 are colored in orange and red, respectively. Antiferromagnetic couplings equal to −b and −a, respectively, are colored in turquoise and blue.
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far away in graph theoretic distance on the D-Wave chip. Although in
the case of the logRISE it is possible to choose an optimal threshold that
allows one to completely separate zero couplings from nonzero ones
and, thus, reconstruct the structure of the chip perfectly, no such thresh-
olding is possible for the result produced by the RPLE, suggesting
that the RPLE needs more samples before this separation becomes
possible. Finally, notice that according to the histograms on recon-
structedmagnetic fields in the right insets of Fig. 5 (A and B), the RPLE
seems to make larger errors in the reconstruction of magnetic fields
Lokhov et al., Sci. Adv. 2018;4 : e1700791 16 March 2018
that should be of the same order as couplings according to our input
Hamiltonian.

As we pointed out in the Introduction, a plethora of other methods
have been proposed for the inverse Ising problem, but the majority of
them either are too computationally expensive for practical applica-
tions or fail at low temperatures, sometimes even when an infinite
number of samples are provided. To illustrate the value of exact algo-
rithms, especially for problems at low temperatures (such as this
application), we compare the results obtained from the logRISE and
A

B

C

Fig. 5. Reconstruction of the structure of a portion of the D-Wave annealer chip using 5 × 105 samples. This part contains 62 qubits with heterogeneous connectivity,
couplings, andmagnetic fields. Reconstructed couplings are presented for (A) the logRISE, (B) the RPLE, and (C) themean-field regime (MFR) of the RPLE and the logRISE. On each
histogram in the main plots, bars corresponding to the edges actually present on the chip are colored in blue, whereas nonexistent connections are colored in red. The recon-
structed magnetic fields are shown in green in a separate histogram on the right-hand side. A topology of the reconstructed structure is depicted on the left-hand side, with
correctly reconstructed edges, missing edges, and incorrectly reconstructed edges colored in gray, blue, and red, respectively. Although the MFR exhibits a poor behavior, as
expected at such low temperatures, both the logRISE and the RPLE are achieving similarly good performance. Notice that whereas there exists a thresholding procedure that
produces a perfect network recovery with the logRISE, it is not the case for the RPLE as one existing coupling has been set to zero.
7 of 10
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the RPLE to those from mean-field–type methods (see Fig. 5C). The
particular scheme that we used for comparison is obtained from a
high-temperature expansion of our estimators and is closely related
to the naïve mean-field method of statistical physics, which performs
well at high temperatures. See Materials and Methods for a detailed
description of the method and related discussions. As expected for
such systems with strong and long-range correlations, this method
using only information contained in magnetization and pairwise
correlations behaves poorly, incurring a very large number of false
positives and false negatives. This illustrates an importance of taking
into account higher-order interaction in data samples for a reliable
reconstruction in the low-temperature regime.
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DISCUSSION
In Fig. 6, we comparatively present the algorithmic scalings that
summarize the main theoretical and empirical results of our paper.
All of the three considered estimators for the inverse Ising problem
have a better worst-case empirical scaling compared to their theo-
retical estimates. The empirical sample complexity of the logRISE
algorithm introduced in this paper lies in the optimal regime with
respect to the information-theoretic predictions, outperforming all
existing methods. The worst-case scalings are based on the hardest
case for the learning problem that we were able to construct. To de-
scribe the logic behind this case, we first mention observations in
existing literature and then provide intuitive arguments regarding
the way the structure of the underlying graph and the nature of inter-
actions affect the hardness of the reconstruction. There are strong the-
oretical indications that ferromagnetic-type spin systems are among
the models requiring a maximum number of samples to be learned.
Information-theoretic bounds suggest that these models are at least as
hard to learn as any other model (38). Moreover, the presence of strong
long-range correlations is known to be a challenging situation to deal
with (24). This hardness of learning of ferromagnetic models is
consistent with our numerical studies in which ferromagnetic random
graphs and especially ferromagnetic lattices are the cases requiring the
largest amount of samples. Intuitive explanations for this behavior
are twofold. As mentioned earlier, ferromagnetic models are more
prompt to develop strong long-range correlations at low tempera-
tures, especially on lattices, and they tend to favor two configurations
that are the ground states. Long-range correlations make it less likely
to obtain nontrivial samples, that is, fluctuations around ground
Lokhov et al., Sci. Adv. 2018;4 : e1700791 16 March 2018
states that are crucial to obtain information about the detailed struc-
ture of the graph that is crucial for the reconstruction. This translates
into a need for a larger number of samples, proportional to the like-
liness of such fluctuations that is typically exponentially suppressed
in g. Moreover, when several similar models share identical ground
states, it becomes very hard to make a distinction between them solely
based on configurations close to their ground states. This mechanism
can be illustrated very simply using an extreme example of three spins
with homogeneous couplings forming a chain that is either open or
closed, forming a triangle. Deciding which chain is formed is im-
possible for a ferromagnetic system when only the ground states
±(1, 1, 1) are observed. However, it is an easy task for an antiferro-
magnetic system because an open chain has two ground states ±(1, −1,
1), whereas the close chain has six ground states ±(1, 1, −1), ±(1, −1,
1), and ±(−1, 1, 1).

The hardest test case studied in our numerical experiments contains
an extra ingredient that makes the inverse Ising problem even more
challenging: an additional weak negative coupling or an “antiferro-
magnetic impurity” added on top of the ferromagnetic model on a
lattice. This weak antiferromagnetic bond has the effect of weakening
or cancelling the correlation between the two spins that it connects.
Consequently, it becomes difficult to distinguish between the presence
of this weak negative coupling from its absence. Although we do not
claim with certainty that this model is the hardest to learn, we believe
that any such difficult-to-learn model is likely to include the features
outlined above.

We proved that the three techniques explored in this paper, the
logRISE, the RISE, and the RPLE, are exact and universal methods
to solve the inverse Ising problem. Exactness and universality in
this context mean that these methods reconstruct couplings and mag-
netic fields up to any given accuracy with a sufficient but finite num-
ber of samples and for every Ising model regardless of its structure,
density, temperature, or any other property that characterizes it. Al-
though in the present article we focused on the quantification of the
scaling of the number of required samples with structural properties
and temperature of sparse systems, it remains an interesting question
left for exploration in dense models, for instance, in the Curie-Weiss
or the Sherrington-Kirkpatrick type (37). In these models, the expo-
nential scaling with coupling intensities and degrees, denoted by g for
sparse models, will be more intricate. It seems reasonable to expect that
the sample requirement scales exponentially with the typical “energy
per spin.” For instance, in the Curie-Weiss–type models with all
RPLE

IT
 upper bound

logRISE

Undersampled regime

RISE
 upper bound

e
4γ

e
6γ

e
8γ

e
γ

Oversampled regimeOptimal regime

RPLE
 upper bound

IT
 lower bound

RISE e
10γ

logRISE
 upper bound

M
*

Fig. 6. Theoretical and empirical worst-case scaling of M* with respect to g. This figure summarizes the main theoretical and empirical results of this paper
for the inverse Ising problem. The red region represents the undersampled regime where the number of samples is insufficient for perfect graph reconstruction
from the information theory perspective. The existence of an exact algorithm, albeit with an exponential computational complexity, has been proven for M º e4g,
and thus represents an upper bound on the optimal number of samples Mopt that must lie in the white region, named the optimal regime. The quantities e6g, e8g,
and e10g denote our theoretical upper bounds on the scaling for the RISE, the RPLE, and the logRISE, respectively. However, these bounds are not tight, and the
worst-case empirical scalings observed in our numerical experiments were much lower; these values are indicated in the chart as “RISE,” “RPLE,” and “logRISE”
and correspond to e4.5g, e5.2g, and e3.8g, respectively (see the Supplementary Text for additional details on the scaling of the RISE). The empirical scaling for the
logRISE lies within the optimal regime.
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Jij ≥ 0, this quantity is gCW≈hi þ 1
N ∑j≠iJ ij, whereas in the Sherrington-

Kirkpatrick–type models, where Jij are centered random variables, it
reads gSK≈hi þ 1ffiffiffi

N
p ∑j≠i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðJ ijÞ

p
. We also note that, in these dense

models, there is no longer any reason to expect that the sample com-
plexity requirement scales logarithmically with the system size (31);
instead, we expect it to exhibit a polynomial dependence. Note that,
in this case, the inclusion of theℓ1 regularizer in the logRISE and the RPLE
is no longer necessary because there is no sparsity pattern to promote.

In conclusion, in this paper, we showed both theoretically and ex-
perimentally that an arbitrary Ising model can be reconstructed exactly
with an information-theoretically minimum number of samples using
the introduced interaction screening method. In addition, no prior
knowledge on the graph and associated parameters is required to im-
plement the algorithm, making it a very practical choice for applica-
tions. The practical advantages of our methods have been illustrated
on real data coming from a D-Wave quantum computer. We also
provided a sample complexity analysis of the popular RPLE showing
the logarithmic scaling in system size for arbitrary Ising models, albeit
with a higher worse-case scaling with respect to the inverse tempera-
ture when compared to the logRISE. We demonstrated the paradoxical
relation between sampling and learning, showing that the instances
that are easier for one task are harder for the other. In Materials
and Methods, we point out a curious connection to the mean-field ap-
proximation at high temperatures. The second-order high-temperature
expansion of all exact estimators considered in this paper provides an
identical reconstruction scheme, valid in the limit of weak couplings.
This high-temperature regime is related to learning methods based
on the well-known naïve mean-field approximation in statistical
physics. Finally, although this paper is dedicated to the reconstruction
of Ising models, the interaction screening method can be generalized to
graphical models with higher-order interactions and nonbinary
alphabets, including those described byHamiltonians over continuous
variables. Exploration of these research directions is underway.
 on M
arch 17, 2018
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MATERIALS AND METHODS
Interaction screening property
Here, we presented a simple argument that illustrated the fact that in the
limit of a large number of samples, the unique minimizer of the convex
ISO objective (Eq. 3) was achieved at ðJ i;HiÞ ¼ ðJ i*;Hi*Þ, meaning that
the true interactions present in the model were fully “screened.” The
ISO was an empirical average of the inverse of the factors in the Gibbs
measure; if F iðJ i;HiÞ ¼ expð∑j≠iJ ijsisj þHisiÞ , then SðJ i;HiÞ ¼
〈F�1

i ðJ i;HiÞ〉M . In the limit of a large number of samples S(Ji, Hi) →
S *(Ji, Hi) = 〈1/F i(Ji, Hi)〉. The derivative of the ISO corresponded to
weighted pairwise correlations, ∂S*/∂Jij = 〈sisj/F i(Ji, Hi)〉, and this shed
light on its key property. When ðJ i;HiÞ ¼ ðJ*i;H*iÞ, ∂S*=∂JijjJi*;Hi* ¼ 0,
meaning that the minimum of ISO was achieved at ðJ i;HiÞ ¼ ðJ i*;Hi*Þ
asM→ ∞.

High-temperature expansion of exact estimators and
connection to the mean-field method
Among all heuristics undertaken to solve the inverse Ising problem, a
large fraction of methods is based on mean-field approximations using
various level of sophistication [see the study by Roudi et al. (14) for a
review]. In particular, the first such attempt to solve the inverse Ising
problem was based on a naïve mean-field approach, where inferred
couplings are related to the inverse reduced correlation matrix (13).
Although these techniques provided satisfactory estimates in the
Lokhov et al., Sci. Adv. 2018;4 : e1700791 16 March 2018
high-temperature regime, they were known to exhibit poor behaviors
at low temperatures when themodel developed long-range correlations,
even for an infinite number of samples (29).

It is interesting to observe that there exists a connection between
mean-field approaches and the high-temperature expansion of the
exact estimators RISE and RPLE. A second-order Taylor expansion of
the pseudolikelihood objective function (without regularizer) and the
ISO around the high-temperature point (Ji, Hi) = (0, 0) produced an
explicitly solvable minimization problem (see Supplementary Text for
an exact derivation). It is remarkable that, in this regime, both objec-
tive functions produced identical estimates for the model parameters.
Couplings and magnetic fields reconstructed in this mean-field regime
(MFR) were expressed as functions of the inverse connected correlation
matrix and local magnetizations

Ĵ
MFR
ik ¼ �

�
�C�1
�
ik�

�C�1
�
ii

; Ĥ
MFR
i ¼ �mi þ∑

j≠i

�
�C�1
�
jk�

�C�1
�
ii

mj ð5Þ

where the matrix of empirical connected correlations and local magne-
tizations were directly computed from samples using the formulae �Cij ¼
〈sisj〉M � 〈si〉M〈sj〉M and mi = 〈si〉M. Note that there was a subtle
difference between the MFR estimates in Eq. (5) and the naïve mean-
field estimates in (13). The values produced by the naïve mean-field
method were directly equal to the inverse connected correlation matrix,
whereas the MFR estimates were rescaled by the diagonal entries of this
matrix. As a result, although both estimators provided similar answers,
the choice of symmetrization and thresholding procedures for the recon-
structed parameters can lead to significant discrepancies in the final
estimates of the graph structure. It is worth noticing that the exact
same expression producing the MFR estimates arose in the context
of reconstructing multivariate Gaussian distributions (41). This
parallel suggests that an optimal thresholding and symmetrization
procedure for the MFR estimates was likely to be based on the geo-
metrical mean rather than the arithmetic average.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/4/3/e1700791/DC1
Supplementary Text
section S1. Analysis of the estimators RPLE, RISE, and logRISE
section S2. On optimization techniques for minimizing the estimators
section S3. On the procedure for M* selection
section S4. On the theoretical predictions for l selection
section S5. Empirical selection of the regularization parameter l
section S6. Hyperparameter l selection through cross-validation
section S7. Scalings of the RISE with respect to g
section S8. High-temperature expansion of the RISE and the RPLE
fig. S1. Schematic representation of the proof strategy for bounding the reconstruction error.
fig. S2. Dependence of the number of samples M* required for a correct structure recovery on
the regularization coefficient.
fig. S3. Selection of the hyperparameter l through the K-fold cross-validation method on a
4 × 4 spin glass system on a square lattice.
fig. S4. Values of M* and g exponents for the RISE across different test cases.
References (42–45)

REFERENCES AND NOTES
1. G. Gallavotti, Statistical Mechanics: A Short Treatise (Springer Science & Business Media, 2013).
2. W. Kunkin, H. L. Frisch, Inverse problem in classical statistical mechanics. Phys. Rev. 177,

282 (1969).
9 of 10

http://advances.sciencemag.org/cgi/content/full/4/3/e1700791/DC1
http://advances.sciencemag.org/cgi/content/full/4/3/e1700791/DC1
http://advances.sciencemag.org/


SC I ENCE ADVANCES | R E S EARCH ART I C L E

 on M
arch 17, 2018

http://advances.sciencem
ag.org/

D
ow

nloaded from
 

3. J. T. Chayes, L. Chayes, E. H. Lieb, The inverse problem in classical statistical mechanics.
Commun. Math. Phys. 93, 57–121 (1984).

4. E. Schneidman, M. J. Berry II, R. Segev, W. Bialek, Weak pairwise correlations imply
strongly correlated network states in a neural population. Nature 440, 1007–1012
(2006).

5. S. Cocco, S. Leibler, R. Monasson, Neuronal couplings between retinal ganglion cells
inferred by efficient inverse statistical physics methods. Proc. Natl. Acad. Sci. U.S.A. 106,
14058–14062 (2009).

6. F. Morcos, A. Pagnani, B. Lunt, A. Bertolino, D. S. Marks, C. Sander, R. Zecchina,
J. N. Onuchic, T. Hwa, M. Weigt, Direct-coupling analysis of residue coevolution captures
native contacts across many protein families. Proc. Natl. Acad. Sci. U.S.A. 108,
E1293–E1301 (2011).

7. D. Marbach, J. C. Costello, R. Küffner, N. M. Vega, R. J. Prill, D. M. Camacho, K. R. Allison;
DREAM5 Consortium, M. Kellis, J. J. Collins, G. Stolovitzky, Wisdom of crowds for
robust gene network inference. Nat. Methods 9, 796–804 (2012).

8. T. F. Rønnow, Z. Wang, J. Job, S. Boixo, S. V. Isakov, D. Wecker, J. M. Martinis, D. A. Lidar,
M. Troyer, Defining and detecting quantum speedup. Science 345, 420–424 (2014).

9. D. K. Panjwani, G. Healey, Markov random field models for unsupervised segmentation of
textured color images. IEEE Trans. Pattern Anal. Mach. Intell. 17, 939–954 (1995).

10. Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521, 436–444 (2015).
11. N. Eagle, A. S. Pentland, D. Lazer, Inferring friendship network structure by using mobile

phone data. Proc. Natl. Acad. Sci. U.S.A. 106, 15274–15278 (2009).
12. D. H. Ackley, G. E. Hinton, T. J. Sejnowski, A learning algorithm for boltzmann machines.

Cogn. Sci. 9, 147–169 (1985).
13. H. J. Kappen, F. B. Rodríguez, Boltzmann machine learning using mean field theory and

linear response correction, in Advances in Neural Information Processing Systems,
M. I. Jordan, M. J. Kearns, S. A. Solla, Eds. (MIT Press, 1998), pp. 280–286.

14. Y. Roudi, E. Aurell, J. A. Hertz, Statistical physics of pairwise probability models. Front.
Comput. Neurosci. 3, 22 (2009).

15. V. Sessak, R. Monasson, Small-correlation expansions for the inverse Ising problem.
J. Phys. A 42, 055001 (2009).

16. H. C. Nguyen, J. Berg, Mean-field theory for the inverse Ising problem at low
temperatures. Phys. Rev. Lett. 109, 050602 (2012).

17. F. Ricci-Tersenghi, The Bethe approximation for solving the inverse Ising problem:
A comparison with other inference methods. J. Stat. Mech. 2012, P08015 (2012).

18. S. Cocco, R. Monasson, Adaptive cluster expansion for inferring Boltzmann machines with
noisy data. Phys. Rev. Lett. 106, 090601 (2011).

19. J. Sohl-Dickstein, P. B. Battaglino, M. R. DeWeese, New method for parameter estimation
in probabilistic models: Minimum probability flow. Phys. Rev. Lett. 107, 220601 (2011).

20. P. Ravikumar, M. J. Wainwright, J. D. Lafferty, High-dimensional Ising model selection
using ℓ1-regularized logistic regression. Ann. Stat. 38, 1287–1319 (2010).

21. E. Aurell, M. Ekeberg, Inverse Ising inference using all the data. Phys. Rev. Lett. 108,
090201 (2012).

22. A. Decelle, F. Ricci-Tersenghi, Pseudolikelihood decimation algorithm improving the
inference of the interaction network in a general class of Ising models. Phys. Rev. Lett.
112, 070603 (2014).

23. G. Bresler, E. Mossel, A. Sly, Reconstruction of Markov random fields from samples: Some
observations and algorithms, in Approximation, Randomization and Combinatorial
Optimization. Algorithms and Techniques, A. Goel, K. Jansen, J. D. P. Rolim, R. Rubinfeld,
Eds. (Springer, 2008), pp. 343–356.

24. G. Bresler, Efficiently learning Ising models on arbitrary graphs, in Proceedings of the
Forty-Seventh Annual ACM on Symposium on Theory of Computing, Portland, OR,
14 to 17 June 2015.

25. G. F. Cooper, The computational complexity of probabilistic inference using bayesian
belief networks. Artif. Intell. 42, 393–405 (1990).

26. C. Chow, C. Liu, Approximating discrete probability distributions with dependence trees.
IEEE Trans. Inf. Theory 14, 462–467 (1968).

27. J. K. Johnson, D. Oyen, M. Chertkov, P. Netrapalli, Learning planar Ising models. J. Mach.
Learn. Res. 17, 1–26 (2016).

28. A. Montanari, Computational implications of reducing data to sufficient statistics.
Electron. J. Stat. 9, 2370–2390 (2015).

29. A. Montanari, J. A. Pereira, Which graphical models are difficult to learn? in Advances
in Neural Information Processing Systems, Y. Bengio, D. Schuurmans, J. D. Lafferty,
C. K. I. Williams, A. Culotta, Eds. (Curran Associates Inc., 2009), pp. 1303–1311.
Lokhov et al., Sci. Adv. 2018;4 : e1700791 16 March 2018
30. M. Ekeberg, C. Lövkvist, Y. Lan, M. Weigt, E. Aurell, Improved contact prediction in
proteins: Using pseudolikelihoods to infer Potts models. Phys. Rev. E 87, 012707 (2013).

31. N. P. Santhanam, M. J. Wainwright, Information-theoretic limits of selecting binary
graphical models in high dimensions. IEEE Trans. Inf. Theory 58, 4117–4134 (2012).

32. B. Yu, Assouad, Fano, and Le Cam, in Festschrift for Lucien Le Cam, D. Pollard, E. Torgersen,
G. L. Yang, Eds. (Springer, 1997), pp. 423–435.

33. M. Vuffray, S. Misra, A. Lokhov, M. Chertkov, Interaction screening: Efficient and
sample-optimal learning of Ising models, in Advances in Neural Information Processing
Systems, D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, R. Garnett, Eds.
(Curran Associates Inc., 2016), pp. 2595–2603.

34. L. T. Biegler, V. M. Zavala, Large-scale nonlinear programming using IPOPT: An
integrating framework for enterprise-wide dynamic optimization. Comput. Chem. Eng.
33, 575–582 (2009).

35. Y. Nesterov, Gradient methods for minimizing composite objective function, Technical
Report, UCL (2007).

36. A. Agarwal, S. Negahban, M. J. Wainwright, Fast global convergence rates of gradient
methods for high-dimensional statistical recovery, in Advances in Neural Information
Processing Systems, J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, A. Culotta,
Eds. (Curran Associates Inc., 2010), pp. 37–45.

37. M. Mezard, A. Montanari, Information, Physics, and Computation (Oxford Univ. Press,
2009).

38. R. Tandon, K. Shanmugam, P. K. Ravikumar, A. G. Dimakis, On the information theoretic
limits of learning Ising models, in Advances in Neural Information Processing Systems,
Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, K. Q. Weinberger, Eds. (Curran
Associates Inc., 2014), pp. 2303–2311.

39. P. I. Bunyk, E. M. Hoskinson, M. W. Johnson, E. Tolkacheva, F. Altomare, A. J. Berkley,
R. Harris, J. P. Hilton, T. Lanting, A. J. Przybysz, J. Whittaker, Architectural considerations in
the design of a superconducting quantum annealing processor. IEEE Trans. Appl.
Supercond. 24, 1700110 (2014).

40. M. Benedetti, J. Realpe-Gómez, R. Biswas, A. Perdomo-Ortiz, Estimation of effective
temperatures in quantum annealers for sampling applications: A case study with possible
applications in deep learning. Phys. Rev. A 94, 022308 (2016).

41. N. Meinshausen, P. Bühlmann, High-dimensional graphs and variable selection with the
lasso. Ann. Stat. 34, 1436–1462 (2006).

42. S. Negahban, B. Yu, M. J. Wainwright, P. K. Ravikumar, A unified framework for high-
dimensional analysis of M-estimators with decomposable regularizers, in Advances
in Neural Information Processing Systems, Y. Bengio, D. Schuurmans, J. D. Lafferty,
C. K. I. Williams, A. Culotta, Eds. (Curran Associates Inc., 2009), pp. 1348–1356.

43. W. Hoeffding, Probability inequalities for sums of bounded random variables.
J. Am. Stat. Assoc. 58, 13–30 (1963).

44. A. M. Polyakov, Gauge Fields and Strings (Harwood Academic Publishers, 1987), vol. 140.
45. A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear

inverse problems. SIAM J. Imaging Sci. 2, 183–202 (2009).

Acknowledgments: The authors are grateful to G. Bresler, C. Coffrin, A. Montanari, N. Uvarov,
and M. Zamparo for fruitful discussions and valuable comments. Funding: The work at Los
Alamos National Laboratory (LANL) was carried out under the auspices of the National Nuclear
Security Administration of the U.S. Department of Energy under contract no. DE-AC52-
06NA25396. Author contributions: All authors designed the research, developed the theory,
performed the experiments, and wrote the manuscript. Competing interests: The authors
declare that they have no competing interests. Data and materials availability: All data
needed to evaluate the conclusions in the paper are present in the paper and/or the
Supplementary Materials. The code implementing all exact estimators presented in this paper
as well as real data produced by the D-Wave quantum computer “Ising” at LANL and used in
this work can be found at https://github.com/lanl-ansi/inverse_ising.

Submitted 15 March 2017
Accepted 6 February 2018
Published 16 March 2018
10.1126/sciadv.1700791

Citation: A. Y. Lokhov, M. Vuffray, S. Misra, M. Chertkov, Optimal structure and parameter
learning of Ising models. Sci. Adv. 4, e1700791 (2018).
10 of 10

https://github.com/lanl-ansi/inverse_ising
http://advances.sciencemag.org/


Optimal structure and parameter learning of Ising models
Andrey Y. Lokhov, Marc Vuffray, Sidhant Misra and Michael Chertkov

DOI: 10.1126/sciadv.1700791
 (3), e1700791.4Sci Adv 

ARTICLE TOOLS http://advances.sciencemag.org/content/4/3/e1700791

MATERIALS
SUPPLEMENTARY http://advances.sciencemag.org/content/suppl/2018/03/12/4.3.e1700791.DC1

REFERENCES

http://advances.sciencemag.org/content/4/3/e1700791#BIBL
This article cites 32 articles, 4 of which you can access for free

PERMISSIONS http://www.sciencemag.org/help/reprints-and-permissions

Terms of ServiceUse of this article is subject to the 

registered trademark of AAAS.
is aScience Advances Association for the Advancement of Science. No claim to original U.S. Government Works. The title 

York Avenue NW, Washington, DC 20005. 2017 © The Authors, some rights reserved; exclusive licensee American 
(ISSN 2375-2548) is published by the American Association for the Advancement of Science, 1200 NewScience Advances 

 on M
arch 17, 2018

http://advances.sciencem
ag.org/

D
ow

nloaded from
 

http://advances.sciencemag.org/content/4/3/e1700791
http://advances.sciencemag.org/content/suppl/2018/03/12/4.3.e1700791.DC1
http://advances.sciencemag.org/content/4/3/e1700791#BIBL
http://www.sciencemag.org/help/reprints-and-permissions
http://www.sciencemag.org/about/terms-service
http://advances.sciencemag.org/

