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Competition and collaboration are at the heart of multiagent probabilistic spreading processes. The battle
for public opinion and competitive marketing campaigns are typical examples of the former, while the joint
spread of multiple diseases such as HIV and tuberculosis demonstrates the latter. These spreads are
influenced by the underlying network topology, the infection rates between network constituents, recovery
rates, and, equally important, the interactions between the spreading processes themselves. Here, for the
first time, we derive dynamic message-passing equations that provide an exact description of the dynamics
of two, interacting, unidirectional spreading processes on tree graphs, and we develop systematic low-
complexity models that predict the spread on general graphs. We also develop a theoretical framework for
the optimal control of interacting spreading processes through optimized resource allocation under budget
constraints and within a finite time window. Derived algorithms can be used to maximize the desired spread
in the presence of a rival competitive process and to limit the spread through vaccination in the case of
coupled infectious diseases. We demonstrate the efficacy of the framework and optimization method on
both synthetic and real-world networks.
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I. INTRODUCTION

Spreading processes have become increasingly more
important in the fast-moving modern world, where physical
mobility is cheaper and easier than ever before, and where
information is passed instantaneously on multilayered inter-
woven webs of contacts. Consequently, pandemics—
whether physical or virtual, in the form of computer viruses,
internet rumors, or marketing campaigns—spread very
rapidly. For instance, the ongoing COVID-19 pandemic
[1,2] caused an unprecedented disruption in the world’s
functioning. Previously, an outbreak of African swine fever
caused by Asfivirus in China [3] in 2018 posed the risk of
spreading globally. In 2017, a worldwide cyberattack by the

WannaCry ransomware cryptoworm was estimated to have
affected more than 200,000 computers across 150 countries,
with total damages ranging from hundreds of millions to
billions of dollars [4].
Very often, spreading processes do not diffuse on their

own but instead show a complex dynamics, characterized
by a collaboration or competition between them. An
example of a collaborative spreading process is the
coinfection of HIV and tuberculosis, the latter being a
major factor that influences death rates of AIDS patients
[5]. The risk of developing tuberculosis is estimated to be
16–27 times higher in people living with HIV than
among uninfected individuals [6]. AIDS patients are more
susceptible to tuberculosis, due to their weakened immune
system, and tuberculosis can also activate the replication
of the HIV virus. Epidemiological studies have also shown
that coinfection exists between HIV and many other
diseases, including malaria parasites [7], herpes [8],
fungal [9] and bacteria [10], and between Zika and
dengue viruses [11]. An example of asymmetric collabo-
rative spreading is given by hepatitis D, which can
only transmit to people who are already infected with
hepatitis B.
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The spreading of rumors is an example of a competitive
process. Recently, the “antivaxx movement” in the U.S. has
attracted the public’s attention—for instance, through
Twitter messages—leading to a growing number of parents
who believe that vaccination is a violation of human rights,
and that vaccines cause autism and brain damage and do
not benefit the health and safety of society. This belief has
been spreading rapidly through social media. As a result,
the measles virus, which was declared to be eliminated in
2000, is making a comeback [12]; consequently, the World
Health Organization named vaccine hesitancy as one of the
top 10 global threats [13], and social network platforms
have been requested to block the spread of related infor-
mation [14]. A realistic competitive scenario is given by a
situation where “valid information” and “unsubstantiated
rumors” spread on the network simultaneously, and where
individuals exposed to one tend to believe in its content and
are less susceptible to the other.
Two important problems that recurrently arise in the

analysis of spreading processes are (1) forecasting the
dynamics and (2) the optimal use of resources to control
the dynamics, for instance, to maximize or minimize the
spread. Forecasting is based on a probabilistic modeling and
inference of the system state, such as the prediction of
infection probability over time for given initial conditions
and interaction type. Optimization is often referred to
resource allocation tasks such as the initial choice of best
spreaders or to the best vaccination strategy to contain an
outbreak of a disease. In this paper, we develop novel
methods that address current gaps pertaining to both infer-
ence and optimization of interaction spreading processes.
There exists a large body of work on probabilistic

modeling of spreading processes. The most commonly
studied models include single spreading processes that
follow the susceptible-infected-recovered/removed (SIR),
susceptible-infected (SI), and susceptible-infected-suscep-
tible (SIS) dynamics [15,16], where variables can have a
small set of statuses, such as S, I, and R, and transition from
one status to another depending on their original status and
that of their neighbors. The exact prediction of the spread
within these models is NP-hard [17], and therefore, the
dynamics has been approximately analyzed using a variety
of mean-field methods (see Refs. [15,18–23] for a review).
A mean-field method of the message-passing type that is
particularly suited for approximating dynamics of continu-
ous and discrete SIR-type models on sparse networks has
been introduced in Refs. [24–26]; in particular, it gives an
exact prediction of the spread on tree graphs. When
averaged over an ensemble of graphs, this method is
equivalent to the edge-based compartmental modeling
(EBCM) method [27–29] derived using the cavity-
method-type arguments and the correct choice of dynamic
variables that allows one to close the system of equations.
Yet another equivalent representation is given in terms of
dynamic belief propagation (DBP) equations on time

trajectories, which was presented in Refs. [30–32]. A
framework introduced in Ref. [32] showed how starting
from a DBP representation allows one to systematically
derive closed-form dynamic message-passing (DMP) equa-
tions for any models with unidirectional dynamics (so that
variable statuses cannot be revisited). In particular, the
method of Ref. [32] not only recovers previously known
DMP equations for simple SIR-type models [24,25,28,33]
but also allows one to derive DMP equations for more
complex models with multiple neighbor-dependent tran-
sitions, where guessing the correct dynamic variables
becomes incomparably harder.
The analysis of multiagent spreading is much more

involved because of the interaction between processes
and its impact on the spreading dynamics.Numerical studies
of multiagent processes [34] have revealed the existence of
new transitions, as a result of the cross-process interaction,
and an aggressive spreading mode, which points to a
percolation transition. These results highlight the risk of
an unpredictable and violent outbreak in cooperative spread-
ing scenarios. The most relevant studies to the current work
focus on the analysis of multiagent spreading in a competi-
tive scenario on a specific network, using continuous
equations similar to those of dynamic message passing
[35], and on a two-stage infection process, which is a
specific case for multiagent spreading processes [36].
Also relevant to our work are studies of complex contagions
[37,38], characterized by the requirement for multiple
transmissions before a network node changes status.
While this scenario is not exactly the same as the interacting
processes that we analyze in this paper, its dynamics depend
on the infection history, similarly to the scenarios we
examine. In this case, the interplay between topology and
initial conditions may give rise to hybrid phase transitions
when cascades are only possible for sufficiently prevalent
initial infections.We can envisage similar phenomena in the
scenarios studied here for some infection probabilities, but
have not observed them in the experiments carried out here
as they are not the focus of our study. Interestingly, recent
work [39] shows a mapping between interacting multiagent
spreading processes and social reinforcement infections
through multiple transmissions.
Competitive [35,40–45] and collaborative [46–56]

spreading processes have been studied in different contexts
and in a variety of scenarios. The foci of many of these
studies have been the fixed-point properties of the system,
such as a phase diagram [40,41,44,49], describing regimes
where one spreading process dominates the infection map
or where both processes coinfect the system nodes and the
type of transition between phases, epidemic thresholds, and
the infection cluster size [35,42,45,46,48,50–54]. These
analyses, for the most part, do not require a full solution
of the dynamics. Other studies focus on dynamical proper-
ties of the fraction of infected network nodes, by one
of the processes or both [42,44], by investigating the
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corresponding differential equations to identify phenomena
such as hysteresis [56] (particularly in the SIS model
scenario), the relation between topology and dynamics
[50,52], and the emergence of infected clusters [57] linked
to temporal correlations. Additionally, most studies focus
on analyzing networks of different degree distributions
[35,41,42,49–51,53,54], rather than specific network
instances.
A recent attempt to extend message-passing equations to

the case of cooperative epidemic spreading [58], which is
most relevant to the current study, only focused on a
particular case where transmission is independent of the
status of the target node. Additionally, this work studies
different degree distributions, rather than specific instances,
and concentrates on the fixed point properties such as the
phase diagram and infected cluster size, falling short of a
complete description of the dynamics. Hence, unlike in the
case of single dynamics, exact equations for describing the
complete dynamics of general interacting processes on tree
graphs remain unknown. In this work, our first major
contribution consists in a derivation of DMP equations for
interacting unidirectional spreading processes that are exact
on tree graphs, including low-complexity message-passing
equations for the case of collaborative interactions.
Moreover, we study approximate schemes to these equa-
tions that result in simplified expressions that can be
applied on general sparse networks.
Optimal resource deployment in various spreading set-

tings has mostly been investigated in the case of a single
spreading process. One of the most commonly studied
problems is identifying the most influential spreaders, on
which the deployment of resources at time zero would
maximize the spread at a given end time. Most of these
studies rely on the network’s topological properties, and
selection strategies are based on high-degree nodes [59],
neighbors of randomly selected vertices [60], betweenness
centrality [61], random walk [62], graph partitioning [63],
and K-shell decomposition [64]. These approaches mostly
ignore important dynamical aspects that impact perfor-
mance [65,66]. A related approach, termed network dis-
mantling [67–69], aims at identifying the nodes that, if
removed, lead to the fragmentation of the giant component
and prevent the global percolation. The optimal deploy-
ment of immunization has been addressed using a belief
propagation algorithm [70], based on cavity method tech-
niques developed previously for deterministic threshold
models [30,31]. Several scenarios that incorporate the
dynamical properties of the spreading process—such as
the optimal seeding problem, where one allocates the set of
initially infected nodes that maximize the spread asymp-
totically—have been studied and analyzed [71–73]. The
optimal seeding problem has been analyzed for the simple
diffusion models of independent cascade (IC) and linear
threshold types, and the optimal seeding problem has been
shown to be NP-hard [73] for both; i.e., there are no

deterministic algorithmic solutions that grow polynomially
with the system size. A different perspective is given by the
study of scenarios with a finite time horizon, as studied for
the IC [74] andother spreadingmodels [75].Most relevant to
the current study is the application of a recurrent optimiza-
tion framework [76] to the DMP-based probabilistic mod-
eling of spreading processes [32]. The framework also
facilitates both open-loop resource allocation (a preplanned
assignment) and a closed-loop (dynamical resource deploy-
ment with feedback) under a limited remedial budget. We
utilize a similar framework to investigate and optimize the
dynamics of multiple spreading processes.
To the best of our knowledge, no analysis or optimiza-

tion algorithms have been offered to address the general
case of multi-process modeling and optimization, namely,
incorporating both detailed topologies and dynamical
properties within a fixed time window for both inference
and optimization. Special cases, such as optimal seeding,
have been addressed mostly via linearized fixed-point
analysis [58] and for a simple dynamic that lends itself
to single time-step optimization. Moreover, most optimi-
zation algorithms for single-agent processes follow the
spread on a static network topology and cannot fully
capture the intricate dynamics of multiple spreading proc-
esses; they are therefore less effective for the optimization
tasks we aim to solve. As a second major contribution, we
build an optimization framework for both competitive and
collaborative scenarios based on the derived DMP equa-
tions that enable an accurate probabilistic forecasting.
We demonstrate that the inference method that we

construct in this paper provides an accurate dynamical
description of both competitive and collaborative scenarios
on both toy and large-scale problems; it is asymptotically
exact on treelike networks and provides a good approxi-
mation on networks with loops. We develop a related
optimization algorithm for maximizing the spread within a
given time window against a competing spread, as well as
the containment of spreads in a collaborative spreading
scenario through an optimized vaccination strategy that
curbs one of the spreading processes. We demonstrate the
efficacy of the suggested algorithm, offering excellent
results with a scalable computational complexity.
The paper is organized as follows: In Sec. II, we derive

exact and approximate DMP equations for general models of
multiple interacting spreading processes. In Sec. III, we
validate the efficacy of the probabilistic modeling by com-
paring the results with Monte Carlo simulations on synthetic
and real networks. The optimization algorithm is introduced
in Sec. IV for both competitive and cooperative scenarios and
is tested on synthetic networks in Sec. VA. In Sec. V B, we
apply the optimization algorithm to real-world networks for
demonstrating its usefulness in more realistic scenarios,
including both competitive and collaborative cases, and the
optimal deployment of vaccines to contain an epidemic.
A summary and outlook are provided in Sec. VI.
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II. MODEL AND DYNAMIC MESSAGE-PASSING
EQUATIONS

Spreading models studied in this work are based on the
discrete-time SI process, where a couple of spreading
agents are active in parallel and they interact with one
another. The implication is that the status of a network
vertex determines its susceptibility to be infected by either
(or both) of the spreading processes. For instance, in
mutually exclusive competitive processes that describe,
for instance, the battle for public opinion, once a vertex has
been infected by one process, it cannot be infected by any
other and retains its status, which is also termed a “cross-
immunity” [36]. In a collaborative spreading scenario that
describes, for example, the spread of multiple diseases,
being infected by one process increases the susceptibility of
being infected by another according to some predefined
conditional probability. Another variant of the model
considered here is that of vaccination in the presence of
collaboratively spreading diseases, where vaccination
against one agent affects the spread of both processes.
Although the framework for the various scenarios is
similar, it includes some important differences and will
therefore be developed separately. It is important to point
out that the introduction of cooperative or competitive
spreading processes cannot simply be reduced to a sto-
chastic process with more statuses, which would include
coinfection statuses; the new interactions between statuses
complicate the dynamics due to the dependence of the
interaction probability on the status of neighboring
variables.
In both competitive and collaborative scenarios, we

assume that two SI-type processes are spreading in discrete
time on a graph G ¼ ðV; EÞ comprising the set of vertices
V and edges E such that each node i can generally be found
in one of four statuses at any time step t: susceptible
[σiðtÞ ¼ S)], infected by disease A [σiðtÞ ¼ A], infected by
disease B [σiðtÞ ¼ B], or activated by both processes A and
B [σiðtÞ ¼ AB]. In what follows, we define the spreading
model in two scenarios and derive the corresponding DMP
equations.

A. From dynamic belief propagation to dynamic
message passing

DMP equations can be hard to guess beyond the simplest
models, but they can be systematically derived starting
from the general dynamic belief propagation algorithm that
approximates the probabilities of time trajectories of
individual nodes [32]. We use this approach here to obtain
exact equations on tree graphs. For the two-process
dynamics considered in this work, the dynamics of a single
node i is fully described by a pair of activation times,
ðτAi ; τBi Þ, where τAi denotes the first time when node i is
found in the status A, and similarly for τBi . For instance,
τAi ¼ 0means that node iwas initially in the active status A,

and we denote by τAi ¼ � the situation where node i did not
get A-activated before some final observation time, in other
words � absorbs all the history that happens after the end of
the observation window. For the convenience of presenta-
tion, in what follows, we consider two separate “observa-
tion windows,” for the A and B processes.
We start our derivations with the general DBP equations

[32,77,78] on the interaction graph, where the goal is to
approximate the probability mi

TAþ1;TBþ1ðτAi ; τBi Þ that node i
exhibits a trajectory ðτAi ; τBi Þ during the observation time
window of length TA for process A and TB for process B
(we keep the flexibility of having two separate time
windows, although in most situations we use
TA ¼ TB ¼ t). Exact equations that compute the proba-
bility mi

TAþ1;TBþ1ðτAi ; τBi Þ of a given time trajectory ðτAi ; τBi Þ
of node i are explained in Appendix A. Because of the
properties of the belief propagation algorithm [79,80], the
fixed-point solution of the DBP equations is guaranteed to
be exact on tree graphs, and it provides good estimates of
marginal probabilities on loopy but sparse graphs [32].
Given the computed value of the marginals

mi
TA;TB

ðτAi ; τBi Þ, one can straightforwardly define quantities
of interest, such as probabilities for a given node i to be
found in a given status:

Pi
SðtÞ ¼

X
τAi >t

X
τBi >t

mi
TA;TB

ðτAi ; τBi Þ; ð1Þ

Pi
AðtÞ ¼

X
τAi ≤t

X
τBi

mi
TA;TB

ðτAi ; τBi Þ; ð2Þ

Pi
BðtÞ ¼

X
τBi ≤t

X
τAi

mi
TA;TB

ðτAi ; τBi Þ; ð3Þ

Pi
ABðtÞ ¼

X
τAi ≤t

X
τBi ≤t

mi
TA;TB

ðτAi ; τBi Þ: ð4Þ

The definition of Pi
AðtÞ [Pi

BðtÞ] indicates that at time t, the
vertex i is A activated (B activated) irrespective of the other
process. Therefore, Pi

AðtÞ [Pi
BðtÞ] represents the probability

that at time t, vertex i is in status A (B) alone or in status
AB. Initial condition probabilities where the node is
exclusively found as status A (B) will be denoted as
Pi
A� ð0Þ [Pi

B�ð0Þ]. In principle, one can solve the DBP
equations to obtain mi

TAþ1;TBþ1ðτAi ; τBi Þ and then use the
expressions (A5)–(A8) to obtain final aggregated expres-
sions for the dynamic messages Pi

SðtÞ, Pi
AðtÞ, Pi

BðtÞ, and
Pi
ABðtÞ. However, because of the generality of the DBP

equations that are valid for any dynamics, this approach
may not be the most efficient one: Computing a single
marginal mi

tþ1;tþ1ðτAi ; τBi Þ may require as many as Oðt2dÞ
operations for a single marginal, where d is the degree of
the node i. On the other hand, for the concrete dynamics
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such as the processes considered here, which often have a
special structure, it is beneficial, from a computational
point of view, to explore this structure in order to drastically
reduce the complexity of computing the dynamic marginals
Pi
SðtÞ, Pi

AðtÞ, Pi
BðtÞ, and Pi

ABðtÞ. When this special struc-
ture is exploited to produce closed-form algebraic equa-
tions for computing Pi

SðtÞ, Pi
AðtÞ, Pi

BðtÞ, and Pi
ABðtÞ with

low algorithmic complexity, the resulting computational
scheme will be referred to as dynamic message-passing
equations for the given process.
Therefore, the procedure we adopt below for deriving

DMP equations will be as follows: (i) Specify DBP
equations based on a given two-process dynamics;
(ii) where possible, exploit the structure in the dynamics
to derive low-complexity closed-form DMP equations that
iteratively compute the quantities of interest Pi

SðtÞ, Pi
AðtÞ,

Pi
BðtÞ, and Pi

ABðtÞ starting with the algebraic definitions
(A5)–(A8), which will inherit the exactness of prediction
on tree graphs; and (iii) to further reduce the computational
complexity or the algebraic form of the exact equations,
derive approximate DMP equations that could be used as
an algorithm for inference or optimization problems on
general graphs.

B. Mutually exclusive competitive processes

The dynamics in mutually exclusive competitive proc-
esses can be made explicit by listing the allowed transitions
and their respective probabilities at every discrete time
step:

SðiÞ þ AðjÞ⟶
αAji

AðiÞ þ AðjÞ;

SðiÞ þ BðjÞ⟶
αBji

BðiÞ þ BðjÞ: ð5Þ

In other words, the two infection processes A and B are
mutually exclusive: Any node can be infected by a
neighboring node, assuming one of the two statuses, but
once infected by one of the two processes, it cannot change
its status. Since the infection is based on a two-vertex
interaction through an edge, the processes in Eq. (5) seem
deceptive as two completely independent parallel proc-
esses; however, they clearly interact through the graph
topology and the exclusivity of the adopted statuses.
Indeed, we assume that at any given time step, the infection
probabilities of process A (denoted αAji) or process B
(denoted αBji) are treated as independent, but the probability
of being infected by both A and B simultaneously is forced
to be 0 (thus creating probabilistic dependence between the
two processes). For closing the dynamic update rule, we
need to define what happens in the case where both
processes jointly infect the vertex in the same time step,
resulting in an invalid status. There are many possible ways
to deal with this case, which could be accommodated in
both analysis and simulations, depending on the needs of a

particular application. For the sake of simplicity, we
consider the rule where the probabilities of transitioning
to either status A or B, or staying in status S is propor-
tionally renormalized in such a way that they sum to one.
Alternatively, in simulation, one could think of this
procedure as resampling in the case where the joint
infection occurs: If a joint infection status by both proc-
esses A and B is sampled, it is rejected, and resampling is
carried out. This process is done repeatedly until a valid
status without progressing the dynamics, such that no
spurious probabilistic dependencies emerge. According
to the dynamic rules defined above, the probability of
the transition to the status A from status S for a node i is
given by

viAðtÞ ¼ 1 −
Y
j∈∂i

ð1 − αAji1½σjðtÞ ¼ A�Þ; ð6Þ

where ∂i denotes the set of neighbors of node i, and 1 is an
indicator function. Similarly, define

viBðtÞ ¼ 1 −
Y
j∈∂i

ð1 − αBji1½σjðtÞ ¼ B�Þ; ð7Þ

Zi ¼ 1 − viAðtÞviBðtÞ: ð8Þ

Then, under the resampling procedure explained above, the
final renormalized transition probabilities at time step t read

qiS→AðtÞ ¼
viAðtÞ(1 − viBðtÞ)

ZiðtÞ
; ð9Þ

qiS→BðtÞ ¼
viBðtÞ(1 − viAðtÞ)

ZiðtÞ
; ð10Þ

qiS→SðtÞ ¼
(1 − viAðtÞ − viBðtÞ þ viAðtÞviBðtÞ)

ZiðtÞ
; ð11Þ

where the notation σiðtÞ ¼ A=B=S refers to a node i at time
t, being in one of the statuses A, B, or S.
Given expressions (B1)–(B3), we can straightforwardly

specify the respective DBP equations for the mutually
exclusive competing dynamics of the two processes that are
given in Appendix B. In Table I, we numerically verify that
the DBP equations are exact on tree graphs. With a naive
implementation, DBP marginals can be computed explic-
itly in time max (OðjEjT2ðc−1ÞÞ; OðNT2cÞ), where c is the
maximum degree of the graph, and T is the final obser-
vation time. It is important to note that transition proba-
bilities defined as in Eqs. (B1)–(B3) reflect the complexity
of interactions between processes that result from the
renormalization of probabilities. Indeed, these expressions
depend on the particular realization of statuses for all
neighbors and hence lack any iterative structure at each
time step. Because of this lack of structure, exact
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low-complexity DMP equations cannot be straightfor-
wardly derived for the chosen dynamics.
Although DBP equations for the mutually exclusive

competing processes are exact on trees (see Table I), their
polynomial but potentially high computational complexity
makes them a less attractive choice in applications. To
address this issue, we notice that real application problems
are typically defined on sparse but nontree graphs. Even if
low-complexity DMP equations were available, they would
still yield only approximate solutions in general loopy
networks. This observation motivates us to search for a
tractable approximation of the message-passing equations
on tree graphs: If the approximation is good, the resulting
error on treelike loopy networks may be similar to the
application of exact DBP or DMP equations. In
Appendix C, we implement this strategy and derive
approximate DMP equations for the mutually exclusive
competing scenario with a computational complexity
OðjEjTÞ, where jEj is the number of edges in the graph
and T is the observation window, which makes them
scalable for very large sparse networks with millions of
nodes. The approximation that we use is inspired by the fact
that, in the absence of renormalization, the dynamics of
each process follows the dynamics of the usual SI-type
process, and hence it is natural to try to perform the
renormalization procedure at the level of dynamic margin-
als. In what follows, we present numerical tests that
illustrate the accuracy of the employed approximation.

C. Collaborative process

In the two-process collaborative scenario considered
here, when a node is infected by one process, its suscep-
tibility to activation by another process increases (or
decreases). Unlike in the mutually exclusive case, a node
can be infected by both processes, and the influence of the
different processes is not necessarily symmetric. The
dynamics in collaborative processes can be made explicit
by listing the possible transitions and their respective
probabilities at every discrete time step:

SðiÞ þ AðjÞ⟶
αAji

AðiÞ þ AðjÞ; ð12Þ

SðiÞ þ BðjÞ⟶
αBji

BðiÞ þ BðjÞ; ð13Þ

AðiÞ þ BðjÞ⟶
αBAji

ABðiÞ þ BðjÞ; ð14Þ

AðiÞ þ BðjÞ⟶
αABij

AðiÞ þ ABðjÞ: ð15Þ

In this scenario, status AB can be regarded as a
combination of status A and status B. The nontriviality
of the interaction between both processes comes from the
fact that αABij and αBAji are different from αAji and αBji,
respectively: when a node is infected by one process and
becomes more (or less) vulnerable to another, and vice
versa. Notice that unlike the mutually exclusive scenario
where the status AB is forbidden, under the general
collaborative scenario, the process SðiÞ → ABðiÞ is
allowed, and in discrete time the rule

SðiÞ þ ABðjÞ ⟶
αAji×α

B
ji
ABðiÞ þ ABðjÞ ð16Þ

follows from the transition rules above, simply as coac-
tivation that happens at the same time.
Following the scheme outlined above, we can start by

forming a dynamic transition kernel that encapsulates the
various transition rules and allows us to write the DBP
equations for this spreading model. The resulting DBP
equations are given in Appendix D. The special structure of
the dynamic kernel is written as a sum of possible transition
sequences factorized over the neighbors of a given node,
making it possible to derive low-complexity and exact
DMP equations for the collaborative model. The algebraic
form of equations for the dynamic marginals is given a
simple and intuitive meaning. The probability of finding
node i in status S can be written as

TABLE I. Demonstration of exactness of DBP equations for mutually exclusive competitive processes via numerical comparison with
the results from 108 Monte Carlo simulations on random trees. Case 1: Four-node random tree with uniform parameters αA ¼ 0.5 and
αB ¼ 0.5 and initial conditions P2

Að0Þ ¼ 1 and P3
Bð0Þ ¼ 1. Marginal probabilities for node i ¼ 0 at time t ¼ 3 are presented. Case 2:

Four-node random tree with uniform parameters αA ¼ 0.2 and αB ¼ 0.8 and the initial conditions P2
Að0Þ ¼ 1 and P3

Bð0Þ ¼ 1. Marginal
probabilities for node i ¼ 0 at time t ¼ 3 are presented. Case 3: Five-node random tree with uniform parameters αA ¼ 0.4 and αB ¼ 0.6
and the initial conditions P2

Að0Þ ¼ 1 and P3
Bð0Þ ¼ 1. Marginal probabilities for node i ¼ 0 at time t ¼ 4 are presented. Here and in the

following tables and figures, the index of the chosen node has no significance but emphasizes that a specific node is investigated.

Case 1 Case 2 Case 3

DMP MC DMP MC DMP MC

Pi
SðtÞ 0.07986111 0.0799122 0.0077903 0.0078026 0.02302213 0.0230145

Pi
AðtÞ 0.13194444 0.1318928 0.00257234 0.0025947 0.00967836 0.0096883

Pi
BðtÞ 0.78819444 0.788195 0.98963737 0.9896027 0.967299512 0.9672972
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Pi
SðtÞ ¼ Pi

Sð0Þ
Y

k∈∂inj
θk→i
A;B ðt; tÞ; ð17Þ

where θk→i
A;B ðt; tÞ is an aggregated dynamic message

defined through the fundamental messages on time
trajectories:

θk→i
A;B ðt; tÞ ¼

X
τAk

X
τBk

Yt−1
t0¼0

ð1 − αAki1½τAk ≤ t0�Þ

×
Yt−1
t00¼0

ð1 − αBki1½τBk ≤ t00�Þmk→i
TA;TB

ðτAk ; τBk Þ: ð18Þ

From the definition of θk→i
A;B ðt; tÞ, it is easy to “read off” its

physical meaning: It corresponds to the probability that
node k did not send activation signals A or B before time t,
while i follows a fixed ðτAi ; τBi Þ ¼ ð�; �Þ dynamics; i.e., it
does not activate until time t (see Appendixes A and D for
more details). This case conveys the following meaning to
the expression (17): Pi

SðtÞ is given by the probability that i
is in status S at the initial time, times the probability that
none of its neighbors has activated it with any of the
processes until time t (which exactly factorizes over
neighbors on a tree graph).
In a similar way, the marginals corresponding to statuses

A and B can be expressed as activations by time t:

Pi
AðtÞ ¼

X
t0≤t

μiAðt0Þ; ð19Þ

Pi
BðtÞ ¼

X
t0≤t

μiBðt0Þ; ð20Þ

where reduced marginals μiAðt0Þ and μiBðt0Þ are defined as
follows:

μiAðtÞ ¼
X
τBi

mi
t;tðt; τBi Þ ¼ Pi

AðtÞ − Pi
Aðt − 1Þ; ð21Þ

μiBðtÞ ¼
X
τAi

mi
t;tðτAi ; tÞ ¼ Pi

BðtÞ − Pi
Bðt − 1Þ: ð22Þ

Finally, using the normalization of probabilities [notice
that, by definition, Pi

ABðtÞ is contained in both Pi
AðtÞ and

Pi
BðtÞ], we finally get

Pi
ABðtÞ ¼ Pi

AðtÞ þ Pi
BðtÞ þ Pi

SðtÞ − 1: ð23Þ

The exact forms of the DMP equations for collaborative
processes, along with detailed derivations, are provided in
Appendix D. Because of the exploitation of the structure
properties, the DMP equations have a much lower compu-
tational complexityOðjEjT2Þ for a final observation time T
compared to the DBP equations while still providing exact
predictions on tree graphs. We numerically verify this fact
in a number of instances as shown in Table II.
In the search for simplified equations that are easier to

use for inference and optimization purposes, as well as
reduced computational complexity in time, we implement a
strategy similar to the one used for the mutually exclusive
scenario and derive approximate equations that could be
used in lieu of exact DMP equations on a general graph. To
do so, we notice that the special case of transmission
probabilities αABij ¼ αAij and αBAij ¼ αBij for collaborative
dynamics (12)–(15) corresponds to noninteracting spread-
ing processes: Activation by one process does not change
the activation dynamics for the other. In this case, the DMP
equations should simplify into the product of two inde-
pendent SI-like processes:

mi
t;tðτAi ; τBi Þ ¼ μiAðτAi ÞμiBðτBi Þ ð24Þ

if αABij ¼ αAij and αBAij ¼ αBij: ð25Þ

TABLE II. Demonstrating the exactness of the DMP equations for collaborative processes via numerical comparison against results
from 108 Monte Carlo simulations on random trees. Case 1: Six-node random tree with uniform parameters αA ¼ 0.1, αB ¼ 0.2,
αAB ¼ 0.8, and αBA ¼ 0.9, and the initial conditions P2

Að0Þ ¼ 1 and P0
Bð0Þ ¼ 1. Marginal probabilities for node i ¼ 3 at time t ¼ 5 are

presented. Case 2: Six-node random tree with uniform parameters αA ¼ 0.6, αB ¼ 0.5, αAB ¼ 0.2, and αBA ¼ 0.3, and the initial
conditions P2

Að0Þ ¼ 1 and P0
Bð0Þ ¼ 1. Marginal probabilities for node i ¼ 3 at time t ¼ 5 are presented. Case 3: Five-node random tree

with uniform parameters αA ¼ 0.5, αB ¼ 0.4, αAB ¼ 0.8, and αBA ¼ 0.6, and the initial conditions P2
Að0Þ ¼ 1 and P0

Bð0Þ ¼ 1. Marginal
probabilities for node i ¼ 3 at time t ¼ 3 are presented.

Case 1 Case 2 Case 3

DMP MC DMP MC DMP MC

Pi
SðtÞ 0.22111846 0.22111299 0.0152 0.0152037 0.06912 0.06908835

Pi
AðtÞ 0.02838733 0.02837872 0.02859 0.02859528 0.11808 0.1180704

Pi
BðtÞ 0.07848602 0.07845333 0.67248 0.67248319 0.12416 0.12412187

Pi
ABðtÞ 0.67200819 0.67205496 0.28373 0.28371783 0.68864 0.68871938
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We use this observation to produce a simplified version of
DMP equations, expanding the exact equations for inter-
acting spreading processes around the noninteracting point.
We keep certain first-order corrections in the update
equations only, so the resulting equations are similar to
the SI-type equations. This approximate version is expected
to be good as long as αABij and αAij and αBAij and αBij are
similar. It would clearly break down if αAij ¼ 0 or αBij ¼ 0

while the other infection probabilities remain finite. The
full derivation and expressions for the approximate DMP
equations are provided in Appendix E.

III. INFERENCE USING APPROXIMATE
DYNAMIC MESSAGE-PASSING EQUATIONS

In Sec. II, we considered DBP and DMP equations that
are exact on tree graphs, which follows from their deriva-
tion and supporting numerical checks. In this section, our
goal is to numerically establish the validity of approximate
DMP equations introduced in the previous section.
These equations enjoy an improved computational com-

plexity and a simpler algebraic form, and are expected to
provide a good approximation in the regimes dis-
cussed above.
To validate the approximate DMP equations obtained for

competitive or collaborative processes, we test the accuracy
of the inferred node values against numerical results
obtained via Monte Carlo simulations. Testing is carried
out on both synthetically generated networks and real
instances.

A. Inference in competitive spreading

Validation is carried out on two synthetic networks
generated by the package NetworkX, a tree network and
a network with loops, and on a real-world undirected
benchmark Polbooks [81] network. The latter is provided
as an example of a sparse network. With the given initial
condition, we apply both Monte Carlo simulation and the
DMP method to all models.

Exhaustive numerical experiments reveal that DMP-
based inference provides accurate marginal posterior prob-
abilities for the variable statuses, with the exception of
very-high-infection parameter values (very close to 1).
Therefore, we do not examine cases with extreme infection
parameter values in the examples provided. The location of
seeds initializing the processes and target nodes to be
observed are chosen randomly and have no significance.
In Fig. 1, we show three synthetically generated net-

works: (a) a toy tree network of 10 nodes, (b) a network of
10 nodes with loops, and (c) the Polbooks [81] network
with 105 nodes. The choice of network has no significance;
it is a standard benchmark network used in the literature (of
books about U.S. politics sold by Amazon) [81]. The
network comprises two sparsely connected hubs, where
edges represent books (vertices) bought jointly by the same
individuals. To validate the efficacy of DMP in modeling
competitive scenarios, we compare results obtained from
running Eqs. (A4)–(A9) against results obtained using
Monte Carlo simulations. Simulations are carried out 10
times for gathering statistics; each round includes 103

samples per node (about 105 samplings in total, depending
on the network size). The parameters used in the toy
model tests are αA ¼ 0.3 and αB ¼ 0.7, and we observe the
marginal posterior probabilities Pi¼3

A ðtÞ in both Figs. 2(a)
and 2(c), and Pi¼3

S ðtÞ in Figs. 2(b) and 2(d) for the tree and
loopy graphs, respectively. The seeds initializing the
processes are placed on nodes 7 for process A and on
nodes 2 for process B. The choice of these particular
nodes is arbitrary and has no significance. The results
obtained show excellent agreement between theory and
simulations. We also test the accuracy of the method on
the benchmark Polbooks network as shown in Figs. 2(e)
and 2(f) for the parameters αA ¼ 0.2 and αB ¼ 0.2. In this
case, process A starts from nodes 1 and 2, and process B
from nodes 4 and 37 (again, both are arbitrary choices).
The observed probabilities Pi¼0

A ðtÞ in Fig. 2(e) and Pi¼0
S ðtÞ

in Fig. 2(e) show good agreement between theory and
simulations.

FIG. 1. Networks used for validation. (a) Toy tree network of 10 nodes. (b) Toy network with loops of 10 nodes. (c) Polbooks network
[81] with 105 nodes. The color scale represents the degree of nodes.
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B. Inference in collaborative spreading

Similar experiments were run for a collaborative process
on the toy tree network: graphs with loops and the
benchmark football network. The latter is an undirected
network of American football games between colleges
during the 2020 fall season [82], which are quite uniformly
connected.
The results are shown in Fig. 3 for the various cases.
The experimental results indicate that modeling based on

approximate DMP equations is very accurate on treelike
networks, as expected for message-passing algorithms. It is
less accurate on small loopy graphs at longer times, as
expected, because of the small loops that violate the cavity
method’s assumption (the specific 10-node network used
includes two small loops). This effect is suppressed to some
extent on larger networks, where loops are typically longer
as demonstrated in the real benchmark network examples.
As discussed in Appendix E, the approximation quality

is expected to degrade when αA and αB are very different
from αAB and αBA, respectively. Indeed, in this case, the
prediction of the dynamics by the approximate DMP
equations can become inaccurate. To illustrate this point,

let us consider an extreme example on a chain of three
nodes and two links, with node 2 connected to nodes 1 and
3. Let us assume that αA ¼ 1, αB ¼ 0, and αAB ¼ αBA ¼ 1,
i.e., that the infection B can be transmitted only to nodes
that are already infected with A. Interestingly, this scenario
is relevant for several disease pairs, such as hepatitis D,
which can only be transmitted to individuals already
infected with hepatitis B. Given the initial conditions
P1
Að0Þ ¼ 1, P2

Sð0Þ ¼ 1, and P3
Bð0Þ ¼ 1, node 1 will become

infected with disease B at time t ¼ 3: It first infects node 2
with process A at time t ¼ 1; this leads to infection of node
2 by infection B coming from node 3 at time t ¼ 2; and
finally, node 2 transmits infection B to node 1 at time t ¼ 3.
This example represents an extreme case where the
approximate DMP equations are not valid and indeed
preclude node 1 from being infected by process B, which
illustrates that they may not be exact even on tree graphs
when the approximation criterion is not satisfied. However,
it is easy to check that exact DMP equations provide an
accurate answer in this case as well, as it should. This
counterexample reiterates the trade-off between the exact-
ness and the computational complexity between exact and

FIG. 2. Comparison of DMP-based results and Monte Carlo simulations for competitive processes. For each of the graphs, 105

samples have been used, and both mean values and error bars are shown, unless they are smaller than the symbol size. (a) Competitive
process on a treelike network using the parameters αA ¼ 0.3, αB ¼ 0.7 and observing Pi¼3

A ðtÞ. The seeds initializing the processes are
placed in nodes 7 for process A and in nodes 2 for process B. (b) Same as in panel (a) but observing Pi¼3

S ðtÞ. (c) Comparing results from
the DMP method and Monte Carlo simulation for the network with loops using the same parameters as in panel (a) and observing
Pi¼3
A ðtÞ. (d) Same as panel (c) but observing Pi¼3

S ðtÞ. For the Polbooks experiment, we observe (e) Pi¼0
A ðtÞ and (f) Pi¼0

S ðtÞ; the
parameters used are αA ¼ 0.2 and αB ¼ 0.2, and the seeds initializing the processes are placed in nodes 1 and 2 for process A and in
nodes 4 and 37 for process B.
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approximate DMP equations discussed in the previous
section. However, as illustrated in numerical examples, in
applications with plausible parameters, one could expect
that the approximate DMP method provides a good
description for cooperative spreading processes on sparse
networks.

IV. DMP-BASED OPTIMIZATION METHOD

Competition and collaboration of spreading processes on
graphs can be optimized through the judicious use of
resources. We demonstrate how managing a spreading
process against an adversarial competing agent can be
optimized within a given time frame and how joint
collaborative processes can be affected through the best
use of resources. The latter can take the form of spreading
maximization while making use of the process interdepen-
dencies, or of containment through vaccination to impact
on the spread of both processes.
We outline a general procedure for optimization in this

section. Details for the specific optimization problems we
address here are given in Appendix F for competitive
processes and in Appendix H for collaborative processes.

The core approach for optimization is based on a
discretized variational method, whereby a functional over
a time window (Lagrangian) is optimized through changes
in control parameters throughout the time interval. The
dynamics, resource constraints, initial conditions, and other
restrictions on the parameters used are enforced through the
use of Lagrange multipliers. A similar method is used in
optimal control.
We denote the components of the Lagrangian function

used in a way similar to [76]:

L ¼ O|{z}
objective

þ B þ P þ I þD|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
constraints

; ð26Þ

where L is the Lagrangian function,O is the objective to be
optimized, B is the budget or constraints on the resource
used, I represents the component that forces initial con-
ditions, P are restrictions on the probabilities used, and D
represents the dynamical constraints that take the form of
approximate DMP equations. All of the terms B, I , P, and
D are forced through the use of Lagrange multipliers.

FIG. 3. Comparison of DMP-based results and Monte Carlo simulations for collaborative processes. For each of the graphs, 103

samples have been used per node (about 105 samples in total), and both mean values and error bars are shown (unless they are smaller
than the symbol size). (a) Collaborative process on a treelike network using the parameters αA ¼ 0.3, αB ¼ 0.7, αAB ¼ 0.6, and
αBA ¼ 0.6, observing Pi¼3

S ðtÞ (the node to monitor has been selected arbitrarily). Process A was seeded at node 7 and process B at node
2. (b) Same as in panel (a) but observing Pi¼3

B ðtÞ. (c) Comparing results for the network with loops using the same parameters as in panel
(a), observing Pi¼3

S ðtÞ and (d) Pi¼3
A ðtÞ. (e) Comparing results obtained from the DMP method and Monte Carlo simulations of a

collaborative process on the football network. The parameters used are αA ¼ 0.1, αB ¼ 0.2, αAB ¼ 0.3, and αBA ¼ 0.4. The probabilities
represent observations of node 2, while process Awas seeded at nodes 3 and 4, and process B at nodes 0 and 1 (there is no significance to
any of these choices).
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For different problems, the constraints and objectives
vary. We take the competitive process as an example. In this
problem, we want to find an optimal allocation of a limited
number of spreaders (representing a budget, potentially time
dependent) for processA, which minimizes the spreading of
processB. These objectives could represent a competition in
a political or commercial setting. The objective function in
this case is

O ¼
X
i

(1 − PB
i ðTÞ); ð27Þ

where T is the end of the set time window. Our goal is to
maximize this objective function, thus minimizing the
spread of process B. The resources at our disposal for
seeding nodes with process A are represented by the budget
constraint at time zero (although more elaborate budget
constraints could be accommodated as in Ref. [76] and in
some of the examples that follow):

Bν ¼
X
i

νið0Þ; ð28Þ

where νið0Þ is the deployment of a fraction of the budget
for process A on node i. The budget constraint is forced
through the Lagrange multiplier λbu, such that

B ¼ λbu
�
Bν −

X
i

νið0Þ
�
: ð29Þ

The fraction or probability νi is kept within a certain range,
determined by the upper and lower bounds ν̄ and ν,
respectively. This process is also enforced using a
Lagrange multiplier

P ¼ ϵ
X
i

( logðν̄ − νið0Þ)þ log (νið0Þ − νÞ): ð30Þ

The term D is given by enforcing the approximate DMP
equations for the competitive case using a set of Lagrange
multipliers, as detailed in Appendix H for the competitive
case. The remaining term I forces the initial conditions for
the dynamics.
The extremization of the Lagrangian (26) is performed as

follows. Variation of L with respect to the dual variables
(Lagrangemultipliers) results in the DMP equations starting
from the given initial conditions, while derivation with
respect to the primal variables (control and dynamic param-
eters) results in a second set of equations, coupling the
Lagrange multipliers and the primal variable values at
different times. Ending conditions for the forward dynamics
provide the initial conditions for the backward dynamics.
We solve the coupled system of equations by forward-

backward propagation, a widely used control method
detailed in Ref. [76]. This method has a number of
advantages compared to other localized optimization pro-
cedures. It is simple to implement, of modest computational
complexity OðETÞ, where E is the number of edges in the

graph and T the time window, and does not require any
adjustable parameters. The forward-backward optimization
provides resource (budget) values to be placed at time zero
(or at any time within the time window if we so wish) in
order to optimize the objective function, e.g., that of
Eq. (27). One potential drawback of the method is the
possible nonconvergence of the dynamics to an optimal
solution. This drawback can be mitigated, to some extent,
by solving the equations for the backwards dynamics using
other available solvers and by storing the best solutions
found over time, or approaching a fixed point via gradient
descent. In general, as the functions used become more
nonlinear, it will become more difficult to obtain optimal
solutions, although we have not experienced significant
problems in the cases studied here.

V. NUMERICAL STUDY OF THE
OPTIMIZATION ALGORITHM

To validate and demonstrate the efficacy of the opti-
mization method, we carry out experiments on both
synthetic and realistic networks. Before embarking on a
large-scale application, we study the performance of the
derived method on a treelike network of 30 nodes.

A. Validation of the optimization algorithm

To validate the DMP-optimization algorithm on a prob-
lem that could be exhaustively studied and intuitively
presented, we restrict the study to a small, exemplar,
treelike synthetic model. Moreover, we select a small
number of nodes (3) on which resources could be deployed.
The objective is to maximize the spread of both agents or to
minimize the spreading of one of them (the disease-control
scenario) in both competitive and collaborative processes.

FIG. 4. Tree network of 30 nodes used for carrying out the
experiments. The color scale represents the degree of nodes.
Controllable nodes in the various experiments are marked.
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The 30-node network used for carrying out these experi-
ments is presented in Fig. 4. Comparison between the
DMP-based optimization algorithm and the exhaustive
search is implemented in the following way: We consider
a scenario where the entire budget is available at time t ¼ 0.
The optimization problem minimizes the spreading of
process B in a competitive process through judicious
budget allocation of the seeds for process A; i.e., we
aim at minimizing

P
i P

B
i ðTÞ, where T is the end time

of the process.
In the experiments, resources for process A were

deployed on three nodes: 0, 19, and 28 (determined by

the choices for nodes 0 and 19 because of the total budget
constraint). The fixed seed for process B is node 3; this
choice is arbitrary and insignificant. The objective function
landscape has been explored by sampling for different
parameter values as denoted by the green points in
Fig. 5(a). The collaborative scenario with specific infection
parameters is plotted in Fig. 5(b). A different set of
controllable nodes is presented in Figs. 5(c) and 5(d) for
the competitive and collaborative cases, respectively. The
maximum value obtained for the objective function is
contrasted with the results obtained using the DMP-based
optimization procedure, marked by the red dot, in all cases.

FIG. 5. Comparison of results obtained using the DMP-based optimization method and random sampling in parameter space.
(a) Competitive process with a time window T ¼ 3 and infection probabilities αA ¼ 0.5 and αB ¼ 0.5. Sampled values for the various
control parameters are marked by green points, while the DMP-optimal value is marked by a red point. Nodes 0, 28, and 19 were
infected by process A as controllable nodes, with a total budget of one, while the fixed seed for process B is node 3. The objective, in this
case, is to contain the spread of process B, namely, minimize

P
i P

B
i ðTÞ. The DMP-based optimization maximizes the objective function

as 24.17, while the optimal sampling result is 24.1. (b) Similar experiment to panel (a), with the same conditions and objective, for the
collaborative process with double infection parameters αAB ¼ 0.8 and αBA ¼ 0.8. The DMP-optimal objective value is 12.11 against
12.1 from sampling. (c) Competitive process using the time window and infection parameters as in panel (a) but a different objective
function—maximizing the infection

P
i (1 − PS

i ðTÞ). Controllable nodes are 6, 8, and 15, and node 3 is infected by process B. The
optimal DMP objective function value is 26.11 against 26.2 from sampling. (d) Similar experiment to panel (c) for the collaborative
process with double infection parameters as in panel (b). The DMP-optimal result is 10.32 and 10.3 from sampling.
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It is clear that there is good agreement between the DMP-
optimal values obtained and the optima discovered through
sampling, although in some of the cases they are not
identical. The corresponding objective function values for
Fig. 5 are denoted in the various subfigures.

B. Results on real networks

1. Competitive processes

We study the performance of our optimization algorithm
on networks assuming that all resources are available at
time zero. Other optimization strategies where resources’
availability is time dependent could also be considered
[76], as shown later. One of the problems in comparing the
performance of our method to other approaches is the
limited number of dedicated, competing optimization
methods for the multiple-agent scenario, especially in cases
where resource availability and its deployment are spread
over the whole time window. Therefore, we compare the
DMP-optimized spreading process with known heuristics
for the single-agent scenario such as a uniform allocation of
resources over all nodes (except seed nodes induced with
process B), the high degree deployment strategy [83] HDA,
and K-shell decomposition [64]. “Free spreading” refers to
an uncontrolled spread of process B. “Blocking” refers to
the allocation of a competing agent that is noninfectious
(p ¼ 0). In all cases, resources are used to contain the
spreading of process B.
Multiagent spreading processes exist in different

settings—from social networks, energy grids, and road
networks to the graph of random interactions between
individuals. There is no specific network type that is more
relevant to the scenarios we examine. Therefore, we choose
a set of sparsely connected benchmark networks of differ-
ent characteristics to test the efficacy of our algorithm
compared to competing approaches. The description of the
different networks and their specific properties appear in
the corresponding references. We aim to show that the
suggested methods work well on all of the sparse networks
examined, and we therefore expect it to work well on most
other sparse networks.

In these experiments, we allocate seeds of process B on
0.05N nodes at time zero, where N is the total number of
nodes in the network. The same amount of resource is
allocated to the controlled competing process A. Infection
parameters are αA ¼ 0.2 and αB ¼ 0.3. This choice of
parameters is arbitrary, and the performance for other
parameter choices provides qualitatively similar results.
The free parameter that forces the upper or lower limits of
the resource variables (F2) is set to ϵ ¼ 0.1 initially and
decays exponentially with iteration steps. Experimental
results show that decaying ϵ in this manner leads to an
improved performance, arguably since it allows one to
obtain solutions that are closer to the limit values. The
optimization procedure is iterated 10 times, and the best
result is selected. The objective is to minimize the spread-
ing of process B, and the normalized total spreadingP

i P
i
BðTÞ=N at time T ¼ 3 is shown in Table III. The

short time window used is due to the small diameter of the
networks.
In competitive processes, we observe that the contain-

ment of process B is carried out effectively by optimal
deployment of spreading agents of process A, compared to
static blocking, HDA deployment, K-shell, and uniform
seeding. This scenario corresponds to marketing, rumor
spreading or fake news, and opinion setting. We also
evaluate the improvement obtained for a given budget in
blocking the spread, which allows one to allocate the
appropriate budget for containment (e.g., addressing the
spread of fake news or antivaxxing rumors by releasing
verifiable information). Clearly, key factors in determining
the spread are the actual infection parameters associated
with the various processes, which can be obtained through
data analysis. The football network is highly connected,
and we speculate that this is the reason for the success of
uniformly allocating the spreading agents.
When the budget allocation is performed dynamically at

different times, several optimization procedures can be
used. Conventional stochastic optimal control [87] is based

TABLE III. Comparing different deployment methods for a competitive scenario on various networks. In each network, we randomly
choose 0.05N nodes as seeds of process B and the same total budget for the competitive process A, whereN is the number of nodes in the
network. The infection parameters are αA ¼ 0.2 and αB ¼ 0.3. The initial parameter ϵ, which forces the budget limits per node as in
Eq. (F2), is initially set to 0.1 but decays exponentially with the iteration steps. The optimization procedure is iterated 10 times, and the
best result is selected. The objective is to minimize the spreading of process B; the normalized total spreading

P
i P

i
BðTÞ=N at time

T ¼ 3 is shown. In all methods, budgets are available at time zero. Uniform allocation assumes that all the budgets are uniformly
allocated to all nodes at time zero (except those infected with process B). In free spreading, no agents are allocated for process A. In
blocking, competitive agents are not infectious (p ¼ 0); all the budget is used to contain the spreading of B. The best results are denoted
by bold font.

Network Number of nodes DMP Uniform K-shell HDA Blocking Free spreading

Football [82] 115 0.5829 0.5674 0.8264 0.7731 0.7860 0.8264
Lesmis [84] 77 0.0834 0.2211 0.1962 0.0990 0.1016 0.3549
Karate [85] 35 0.4206 0.4902 0.5470 0.4212 0.4966 0.5472
Power [86] 4941 0.0500 0.0621 0.0641 0.0632 0.0501 0.0644
Polbooks [81] 105 0.2243 0.3733 0.3102 0.2779 0.4316 0.5744
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on planning ahead for the entire time window, taking into
account future uncertainties. An optimal solution in dis-
crete time can be stated through a solution of the Bellman
equation that, in our setting, would result in an algorithm
with a high computational complexity due to the curse of
dimensionality [88]. To mitigate this issue, we adopt a
procedure that is similar to the one used in the closed loop
control setting, which updates the resource allocation at
every step based on the information on the realization of the
stochastic dynamics. This approach does not strictly
guarantee the solution optimality, but it quantitatively takes
into account realization of uncertainties while keeping
computational complexity under control. We carry out
the optimization for the end time T at each step, on a
shrinking time window, incorporating the newly available
information. We consider a case where one process spreads
randomly, while for the other, a unit budget is available per
time step, to be optimally deployed. Given the information
at hand for each time step, one may then consider the
following dynamic allocation strategies: (a) The DMP-
greedy strategy deploys the unit to optimize the objective
function for the next time step; (b) the DMP-optimal
strategy optimizes the objective function for the end time
T while incorporating information available at each time

step. Note that the latter represents a closed-loop-like
optimization in the sense that updated information on
realization of dynamics at each time step is incorporated
to produce a better resource allocation plan.
To demonstrate the efficacy of our method and the

differences between the DMP-greedy and DMP-optimal
resource deployment, we use the football network [82] and
infect node 1 at time 0 (blue point to the left of center; total
budget for B is 1); we then optimally deploy a budget of 1
for process A at each time step t ¼ 1; 2;…; 5. The infection
parameters used are αA ¼ αB ¼ 0.7. The results are shown
in Fig. 6, where the heat bar represents the dominating
process per node through the value Pi

AðtÞ − Pi
BðtÞ. Red and

blue represent dominating processes A and B, respectively.
It is clear that the DMP-optimal process (b) is much more
effective than the DMP-greedy one (a) in restricting the
spread of process B by maximizing the spread of process A.
Numerical comparisons between the two methods for the
same network and conditions are presented in Table IV. It is
clear that while the DMP-greedy process is successful at
earlier time steps, the DMP-optimal process minimizes the
spread of process B at T ¼ 5. A second example on a more
densely connected network is given in Appendix G.

FIG. 6. Football network with infection parameters αA ¼ αB ¼ 0.7. The budget for B is 1, allocated on node 1 at t ¼ 0, and a budget of
1 per time step is optimally assigned for process A. The figures represent the containment of process B at different times t ¼ 1; 2;…; 5
due to the judicious allocation of resources of process A. (a) DMP-greedy strategy; (b) DMP-optimal strategy. The heat bar represents
the dominating process per node through the value Pi

AðtÞ − Pi
BðtÞ. Red and blue represent dominating processes A and B, respectively.
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To demonstrate the improvement in reducing the spread
of agent B given a budget bB against an optimally deployed
budget bA of process A, we plot the ratio of infected A and
B statuses at time T ¼ 5 against the budget ratio bA=bB.
This process has been used for the Lesmis network [84] (77
nodes, representing the coappearance of characters in the
novel Les Miserables) with infection probabilities αA ¼
αB ¼ 0.5 and time window T ¼ 5. The results shown in
Fig. 7(a) have been averaged over five instances for both
uniform and optimal DMP-based deployment. It is clear
from the figure that the optimal DMP-based deployment
provides much better results than uniform deployment,
which exhibits a linear increase. The saturation for high
ratios is limited by the size of the graph.
We observe several instances in which the ratio of

infected probabilities exhibits a fast transition at specific
points. Figure 7(b) shows a fast transition towards a
process-A-dominated network as the ratio between the
budgets allocated exceeds a certain value bA=bB ≈ 0.28.
The y axis represents the ratio of process probabilitiesP

N
i¼1 P

i
AðTÞ=

P
N
k¼1 P

k
BðTÞ. These results clearly depend

on the topology, budgets, and infection rates used. The
example given here is based on the Lesmis network with
infection probabilities αA ¼ 0.5 and αB ¼ 0.7, fixed budget
bB ¼ 1, time window T ¼ 5, and optimal DMP-based
deployment.
To evaluate the interplay between infection parameter

values and budget allocated to each of the processes, we
study a competitive case on the Lesmis network, with a
varying ratio between budgets (bB ¼ 1, bA ¼ 0.5;…; 4.5)
and infection probabilities (αB ¼ 0.7, αA ¼ 0.1;…; 0.7).
The points where the processes end up with equal prob-
abilities at T ¼ 5 are plotted in Fig. 7(c) for the DMP-
optimized deployment of resource A (green line) and for
uniform deployment (red line). The results are averaged
over five randomly chosen initial positions for the seed
of B. From the figure, it is clear that, in this case, DMP-
optimized deployment can effectively mitigate significantly
inferior infection rates or budget ratios (area above the
green curve); only when both ratios are very low does the B
process dominate the network after T steps (yellow area).
Uniform deployment results in much inferior performance
(area above the red line).

2. Collaborative processes

Results obtained for collaborative scenarios, shown in
Table V, exhibit a similar behavior, showing that collabo-
rative processes can be optimized to spread quickly due to
the mutually supportive role played by the two processes.
In this case, some nodes (0.05N) are infected by process B,
and we allocate a given budget of process A such that the
joint spreading will be maximized and the number of
noninfected nodes (in status S) minimized. This case could
represent, for instance, the spread of opinions on the basis

TABLE IV. DMP-based resource deployment methods for the
football network under the same conditions as in Fig. 6. The
objective is to minimize the spreading of B, i.e., minimize
the fraction of B nodes at time T ¼ 5,

P
i P

i
BðTÞ=N.

Time DMP optimal DMP greedy

t ¼ 1 0.0767 0.0556
t ¼ 2 0.2157 0.1871
t ¼ 3 0.3109 0.4336
t ¼ 4 0.3211 0.5615
t ¼ 5 0.3211 0.5628

FIG. 7. Optimized competitive scenario on the Lesmis network. (a) Ratio of nodes infected by processes A and B after T ¼ 5 time
steps for a given initial budget ratio bA=bB. The infection probabilities used are αA ¼ αB ¼ 0.5. The green curve represents the ratio in
the case of DMP-optimized deployment of the A budget, while the red curve represents the uniform deployment case. (b) Fast transition
in the ratio of expected infected statuses

P
N
i¼1 P

i
AðTÞ=

P
N
k¼1 P

k
BðTÞ for infection probabilities αA ¼ 0.5 and αB ¼ 0.7 and time window

T ¼ 5. The budget for B is fixed at bB ¼ 1, and the budget deployment for A is optimized using DMP. (c) Interplay between infection
parameter values and budget allocated to each of the processes on the Lesmis network. The x axis represents the ratio between infection
parameters αA=αB and the y axis the ratio between budgets bA=bB. The green line represents values for which the two processes have
equal probabilities in the network at T ¼ 5 when DMP-optimized deployment of resource A is used; the red line represents the same line
for uniform deployment. Results are averaged over five randomly chosen initial positions for the seed of B.
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of political affiliation. In this case, the DMP-based opti-
mization algorithm also works well, with the exception of
the football network where uniform spreading seems to be
successful, arguably due to the same reasons as in the
competitive case.
The final set of experiments we carry out relates to the

vaccination policy in collaborative spreading processes. In
this case, two collaborative processes A and B spread
throughout the system, and the task is to minimize the
spread through a vaccination process to one of the two, say,
B. The role of vaccination in this case is in to reduce the
infection probability by the level of vaccination deployed.
For instance, we adopt a simplistic model whereby if the
vaccine deployed at a given node is b, its probability of
being infected will reduce to αB − b. Similarly, the

infection parameter αBA will also decrease by the same
amount to αBA − b. Other infection models can be easily
accommodated. The optimization task is in the deployment
of a given vaccination budget such that the fraction of
noninfected sites

P
i P

i
SðTÞ=N at time T is maximized.

The experimental results shown in Table VI demon-
strate that the DMP-based optimization shows excellent
performance.
Generally, for the different network topologies and size,

DMP-based optimization appears to be more effective than
other methods. The main cases where it does not offer the
best result are in complex networks with bounded con-
nectivity fluctuation,where it has been shown that uniformly
applied immunization strategies are highly effective [83].
To demonstrate the efficacy of DMP-optimal resource

deployment for vaccination in the case of a collaborative
spreading process, we use the main road network of England
[89]. Livestock epidemics often spread through the transport
of infected livestock on the road network (as was the case in
the 2001 Foot and Mouth epidemic in the UK). We consider
the spread of highly infectious coupled processes through the
road network starting from the areas ofGreater London (node
10, processA) and Leeds (node 11, processB); the budget for
both A and B is one unit, and infection parameters are
αA ¼ αB ¼ 0.2, αBA ¼ αAB ¼ 0.99. The process runs for 20
steps. The vaccination budget is one unit per time step and is
effective against process B only while being ineffective for
process A. The results shown in Fig. 8 demonstrate the
efficacy of the DMP-optimal vaccination strategy aimed at
minimizing

P
i (1 − Pi

SðtÞ) (b) in contrast to the free spread-
ing of both infections (a). Blue and red represent uninfected
and infected statuses, respectively; more specifically, the
node color represents 1 − Pi

SðtÞ, where red and blue corre-
spond to 1 and 0, respectively. As we can see in Fig. 8, the
infection spreading around London remains the same,with or
without the deployment of a vaccine, as it is mainly infected
by process A; hence, the vaccination has no effect while the
spread emanating from the Leeds area is effectively blocked.

TABLE V. Comparing different resource-allocation approaches for collaborative processes on various networks. On each network, we
randomly select 0.05N nodes as seeds of process B and the same total budget for process A to be optimally allocated, whereN is the total
number of nodes in the network. The infection parameters chosen are αA ¼ 0.2, αB ¼ 0.3, αAB ¼ 0.4, and αBA ¼ 0.5. The initial
parameter ϵ, which forces the budget limits per node as in Eq. (F2), is initially set to 0.1 but decays exponentially with the iteration steps.
The optimization procedure is iterated 10 times, and the best result is selected. The objective function, in this case, is to maximize the
spreading of processes A and B, i.e., minimize the fraction of susceptible nodes

P
i P

i
SðTÞ=N at time T ¼ 3. In DMP allocation-based

optimization, we assume the seeding budget for B is available at time zero. Uniform allocation assumes that the budget for A is initially
allocated uniformly to all free nodes. HDA deployment [83] and K-shell [64] seeding are used as before; in free spreading, no
collaborative spreading budget A is allocated. The lowest fraction of susceptible nodes is denoted by bold.

Network Number of nodes DMP allocation Uniform allocation K-shell HDA Free spreading

Football [82] 115 0.0536 0.0582 0.1736 0.1543 0.1735
Lesmis [84] 77 0.2222 0.3832 0.3151 0.3051 0.6451
Karate [85] 35 0.2771 0.3743 0.4527 0.2481 0.4529
Power [86] 4941 0.7652 0.7930 0.8434 0.9024 0.9355
Polbooks [81] 105 0.1524 0.2065 0.3347 0.2204 0.4255

TABLE VI. Different vaccine-allocation policies in a collabo-
rative process on different benchmark networks. On each net-
work, we randomly choose 0.05N of the nodes as seeds for
process B and 0.01N nodes as seeds for process A; the total
vaccination budget is 0.05N, where N is the number of nodes in
the network. Infection parameters are arbitrarily set to αA ¼ 0.4,
αB ¼ 0.4, αAB ¼ 0.9, and αBA ¼ 0.9. The parameter ϵ in Eq. (F2)
is set to 0.01. The optimization procedure is iterated 10 times, and
the best result is selected. The objective is to minimize the
spreading of processes A and B, i.e., maximize the fraction of
susceptible nodes

P
i P

i
SðTÞ=N at the end of the process (time

T ¼ 3). In DMP-based optimal allocation, we assume that all
budgets are available at time zero. Uniform allocation assumes all
budgets to be uniformly allocated to all nodes at time zero. In free
spreading, no vaccine is allocated. A detailed description of the
vaccine allocation problem can be found in Appendix I.

Network
Number
of nodes

DMP
allocation

Uniformed
allocation

Free
spreading

Football [82] 115 0.1887 0.0607 0.0294
Lesmis [84] 77 0.9455 0.5519 0.4941
Karate [85] 35 0.4676 0.3491 0.3123
Power [86] 4941 0.8891 0.8650 0.8356
Polbooks [81] 105 0.5483 0.3071 0.2354
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VI. SUMMARY AND FUTURE WORK

Competition and collaboration between spreading proc-
esses are prevalent on social and information networks and
on interaction networks between humans or livestock, to
name but a few. To better understand the expected spread
and dynamics of diseases, marketing material, opinions,
and information, it is essential to infer and forecast the
spreading dynamics. Moreover, the judicious use of limited
resources will help contain the spread of epidemics, win
political and marketing campaigns, and better inform the
public in the battle against unsubstantiated or misleading
information.
Most current studies of multispreading processes, such

as Ref. [34], heavily rely on computer simulations and
heuristics with varying results from one instance to another.
Obtaining reliable estimates therefore comes at a high
computational cost in order to obtain meaningful statistics.
We advocate the use of a principled probabilistic technique
for the analysis and employ the same framework to develop

and offer an optimization algorithm for the best use of the
resource available.
Both competitive and collaborative spreading processes

are investigated here using the probabilistic DMP frame-
work, and they provide an accurate description of the
spreading dynamics, as validated on both synthetic and real
networks. For the first time, we derive exact message-
passing equations for two interacting unidirectional
dynamic processes and study approximate DMP equations
that benefit from a simpler form and a lower algorithmic
complexity; this derivation represents the first major novel
contribution of this work. The probabilistic description
facilitates the study of multiagent spreading processes on
general sparse networks at a modest computational cost,
opening up new possibilities for obtaining insights into the
characteristics of such scenarios.
As a secondmajor contribution in this work, we employ a

scalable optimization framework that incorporates the DMP
dynamics to deploy limited resource for an objective

FIG. 8. England road network—the collaborative spread of highly infectious coupled processes. We consider the spread of highly
infectious coupled processes through the road network starting from the areas of Greater London (node 10, process A) and Leeds
(node 11, process B); the budget for both A and B is one unit, and infection parameters are αA ¼ αB ¼ 0.2, αBA ¼ αAB ¼ 0.99. The
process runs for 20 steps. The vaccination budget is one unit per time step and is effective to suppress process B only while being
ineffective for process A. The node color represents the value of 1 − Pi

SðtÞ, where red and blue correspond to 1 and 0, respectively (the
heat bar is similar to that of Fig. 6). (a) Free spread of the epidemics with no vaccination. (b) Vaccination budget of one unit per time step
against process B deployed at each time step using the DMP-optimal algorithm. We see that in panel (b), the infection in the London area
spreads unhindered in both (a) and (b), as it is mainly infected by process A, while spread emanating from the Leeds area is effectively
blocked when the vaccination is deployed.
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function to be optimized at the end of the timewindow. This
optimization task is a difficult hard-computational problem
since the resource is deployed at earlier times; the two
processes dynamically interact throughout the timewindow,
and the aim is to optimize the objective function at its end.
One of the scenarios we consider is that of resource

deployment in a mutually exclusive competitive case where
the deployment of an agent’s resources aims to maximize its
spread at the end of the time window with respect to the
spread of an adversarial process. This scenario can be seen as
a competition between adversarial agents, each of which
aims to contain the spread of the other, making it highly
relevant in the battle for public opinion. The collaborative
scenarios we optimize include constructive interaction
between the spreading processes, such that infection by
one process facilitates the infection by another. In this case,
the aim is to exploit the exposure optimally in order to
maximize the spread of both processes. Finally, we also
examine optimal vaccination strategies in the case of
collaborative spreading processes, where vaccination is
effective with respect to only one process but helps to reduce
the spread of both due to the interaction between them.
The optimization algorithm has been tested in several

different scenarios and on a range of small-scale and real
networks, showing excellent performance with respect to
the existing alternatives of high-degree allocation, K-shell-
based approaches, free spreading, and uniform budget
allocation. We demonstrate that the optimized deployment
makes a huge difference in the use of limited resources and
allows for a balanced competition even with significantly
inferior resource availability or lower infection rates. We
see a significant potential in the use of such principled
algorithms to make the most of limited resources.
Moreover, the suggested framework is highly adaptive

and can accommodate targeted spreading [76], where only
specific vertices are available and at specific times (as in the
case of critical vote and time-sensitive campaigns); tem-
poral deployment of resources, either of the process of
interest or of the adversarial process, where resources are
available at different times within the time window (e.g.,
because of limited production or shipment restrictions);

determining vaccination policies; and for more complex
collaborative scenarios. We anticipate that the developed
methods will also be useful for development of scalable [90]
algorithms for learning [91,92] of spreading models in the
context of multiple interacting spreading processes.
The application of our method for suggesting vaccina-

tion policy to contain the spread of collaborative health
conditions, for process containment (e.g., the spread of fake
news and antivaxxing messages), and for effective infor-
mation dissemination (e.g., marketing or opinion-setting
material) is promising, and timely applications that should
be explored.
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APPENDIX A: DYNAMIC BELIEF
PROPAGATION

In the two-process dynamics, the dynamics of a single
node i is described by a pair of activation times, ðτAi ; τBi Þ,
where τAi denotes the first time when node i is found in
status A, and similarly for τBi . For instance, τ

A
i ¼ 0 means

that node i was initially in the active status A, and we
denote by τAi ¼ � the situation where node i did not get A-
activated before some final observation time; i.e., in some
sense � absorbs all the history that happens after the end of
the observation window. For the convenience of presenta-
tion, in what follows, we consider two separate “observa-
tion windows,” for A and B processes.
We start our derivations with the general DBP equations

[32,77,78] on the interaction graph, where the goal is to
approximate the probability mi

TAþ1;TBþ1ðτAi ; τBi Þ that node i
has a trajectory ðτAi ; τBi Þ during the observation time
window of length TA for process A and TB for process B:

mi
TAþ1;TBþ1ðτAi ; τBi Þ ¼

X
fτAk ;τBk gk∈∂i

WiðτAi ; τBi ; fτAk ; τBk gk∈∂iÞ
Y
k∈∂i

mk→i
TA;TB

ðτAk ; τBk kτAi ; τBi Þ; ðA1Þ

where ∂i denotes neighbors of i on the graph and the sum runs over all possible values of τAk and τBk , i.e., f0; 1;…; tA=B; �g.
The transition kernelWi is defined through the dynamical rules for a given dynamics; we provide an explicit expression for
the kernel below. The probabilitiesmi→j

TA;TB
ðτAi ; τBi kτAj ; τBj Þ have a sense of the probability that node i has a trajectory of length

TA for process A and TB for process B [in what follows, we refer to this as the ðTA; TBÞ trajectory] equal to ðτAi ; τBi Þ, subject
to a fixed trajectory ðτAj ; τBj Þ of node j, satisfying the following consistency relations:

mi→j
TAþ1;TBþ1ðτAi ; τBi kτAj ; τBj Þ ¼

X
fτAk ;τBk gk∈∂inj

WiðτAi ; τBi ; fτAk ; τBk gk∈∂iÞ
Y

k∈∂inj
mk→i

TA;TB
ðτAk ; τBk kτAi ; τBi Þ: ðA2Þ
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The fixed-point solution of Eqs. (A1) and (A2) is guaran-
teed to be exact on tree graphs and provides good estimates
of the marginal probabilities on loopy but sparse
graphs [32,79].
Notice that mi→j

TA;TB
ðτAi ; τBi kτAj ; τBj Þ is not a conditional

probability (e.g., Bayes rule does not apply). Let us state
the following fact that will be crucial for the derivations
below. (This fact is due to the properties of the DBP
equations and the dynamics specified by Wi.)
Fact 1: (Fundamental property of messages) For τAi ≠ �

and τBi ≠ �,

mi
TA;TB

ðτAi ;τBi Þ¼mi
τAi ;τ

B
i
ðτAi ;τBi Þ ∀ TA > τAi and TB > τBi :

A similar statement holds for messages.
Thus, future events cannot affect current or past events.

Because of Fact 1, the DBP equations can be considerably
simplified. Indeed, Eqs. (A1) and (A2) basically state that
the right-hand sides do not depend on the final times in the
observation windows, i.e., on times ðTA þ 1; TB þ 1Þ. In
particular, for τAi ¼ 0 or τBi ¼ 0, the right-hand side does
not depend on τAi or τBi , respectively. For other cases,
choosing TA ¼ τAi − 1 and TB ¼ τBi − 1, we see that since
the time window of messages is ðτAi − 1; τBi − 1Þ, they do
not depend on the precise value of τAi and τBi . Thus, the
following fact holds.
Fact 2: (Simplified DBP equations) For the dynamics

considered, the following DBP equations hold:

mi
TAþ1;TBþ1ðτAi ; τBi Þ ¼

X
fτAk ;τBk gk∈∂i

WiðτAi ; τBi ; fτAk ; τBk gk∈∂iÞ

×
Y
k∈∂i

mk→i
TA;TB

ðτAk ; τBk k�; �Þ; ðA3Þ

mi→j
TAþ1;TBþ1ðτAi ; τBi kτAj ; τBj Þ
¼

X
fτAk ;τBk gk∈∂inj

WiðτAi ; τBi ; fτAk ; τBk gk∈∂iÞ

×
Y

k∈∂inj
mk→i

TA;TB
ðτAk ; τBk k�; �Þ: ðA4Þ

To simplify the notations, in what follows, we use the
notation mk→i

TA;TB
ðτAk ; τBk Þ≡mk→i

TA;TB
ðτAk ; τBk k�; �Þ. Given the

computed value of the marginals mi
TðτAi ; τBi Þ, one can

straightforwardly define quantities of interest, such as
probabilities for a given node i to be found in a given status:

Pi
SðtÞ ¼

X
τAi >t

X
τBi >t

mi
TA;TB

ðτAi ; τBi Þ ¼ mi
t;tð�; �Þ; ðA5Þ

Pi
AðtÞ ¼

X
τAi ≤t

X
τBi

mi
TA;TB

ðτAi ; τBi Þ

¼
X
τAi ≤t

X
τBi ∈f0;1;…;t;�g

mi
t;tðτAi ; τBi Þ

¼
X
τAi ≤t

(mi
t;0ðτAi ; 0Þ þmi

t;0ðτAi ; �Þ); ðA6Þ

Pi
BðtÞ ¼

X
τBi ≤t

X
τAi

mi
TA;TB

ðτAi ; τBi Þ

¼
X
τBi ≤t

X
τAi ∈f0;1;…;t;�g

mi
t;tðτAi ; τBi Þ

¼
X
τBi ≤t

(mi
0;tð0; τBi Þ þmi

0;tð�; τBi Þ); ðA7Þ

Pi
ABðtÞ ¼

X
τAi ≤t

X
τBi ≤t

mi
TA;TB

ðτAi ; τBi Þ ¼
X

τAi ≤t;τ
B
i ≤t

mi
t;tðτAi ; τBi Þ:

ðA8Þ
In the last expression, we used Fact 1, and in the previous
expressions, we used the definition of � and hence the
equalities of the type

mi
TA;TB

ðτAi ; �Þ ¼ mi
TA;TBþ1ðτAi ; �Þ þmi

TA;TBþ1ðτAi ; TB þ 1Þ:
ðA9Þ

Hence, in principle, to each node i, one can associate a
ðtþ 1Þ × ðtþ 1Þmatrix of probabilitiesmi

t;tðτAi ; τBi Þ, and to
each edge ðijÞ, one can associate a fourth-order tensor of
probabilities mi→j

t;t ðτAi ; τBi kτAj ; τBj Þ; one can then solve the
fixed-point equations (A4), e.g., through iteration using
some initialization for the conditional probabilities; next,
one uses Eq. (A3) to compute the quantities mi

t;tðτAi ; τBi Þ;
and finally, one uses Eqs. (A5)–(A8) to assemble the
probabilities of finding node i in one of the statuses S,
A, B, or AB. However, the naive implementation of this
scheme would require as many as Oðt2ðd−1ÞÞ operations for
an estimation of a single message in Eq. (A4) and Oðt2dÞ
operations for a single marginal in Eq. (A3), which still
produces a polynomial-time algorithm for bounded-degree
graphs but can quickly become prohibitive for large d.
On the other hand, the argument above applies to general

dynamics parametrized by the flipping times τAi ; τ
B
i for

node i; however, dynamics of interest (such as processes
considered here) often have a special structure, and it is
beneficial, from the computational point of view, to explore
this structure in order to drastically reduce the complexity
of the computation of the marginal probabilities (A5)–(A8).
Therefore, while the problem is conceptually solvable
in polynomial time at the level of the basic DBP
equations (A3) and (A4), below we derive a computational
scheme that would allow for an efficient computation of
marginal probabilities (A5)–(A8). We refer to this scheme
as the DMP equations.
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APPENDIX B: EXACT DBP EQUATIONS FOR MUTUALLY EXCLUSIVE COMPETITIVE PROCESSES

As explained in the main text, the transition rules for competitive dynamics at time step t are defined as follows:

SðiÞ → AðiÞ; with probability qiS→AðtÞ ¼ viAðtÞ(1 − viBðtÞ)=ZiðtÞ; ðB1Þ

SðiÞ → BðiÞ; with probability qiS→BðtÞ ¼ viBðtÞ(1 − viAðtÞ)=ZiðtÞ; ðB2Þ

SðiÞ → SðiÞ; with probability qiS→SðtÞ ¼ (1 − viAðtÞ − viBðtÞ þ viAðtÞviBðtÞ)=ZiðtÞ; ðB3Þ

where

viAðtÞ ¼ 1 −
Y
j∈∂i

ð1 − αAji1½σjðtÞ ¼ A�Þ; ðB4Þ

viBðtÞ ¼ 1 −
Y
j∈∂i

ð1 − αBji1½σjðtÞ ¼ B�Þ; ðB5Þ

Zi ¼ 1 − viAðtÞviBðtÞ; ðB6Þ

and σiðtÞ denotes the status of node i at time t. For two subsets ΘA ⊂ ∂i and ΘB ⊂ ∂i, the transmission probabilities
introduced in Eqs. (B1)–(B3) can be explicitly written as follows:

qiS→Aðt;ΘA;ΘB; fτAk ; τBk gk∈∂iÞ

¼ (1 −
Q

j∈ΘA
ð1 − αAji1½τAj ≤ t�Þ)Ql∈ΘB

ð1 − αBli1½τBl ≤ t�ÞQ
j∈ΘA

ð1 − αAji1½τAj ≤ t�Þ þQ
l∈ΘB

ð1 − αBli1½τBl ≤ t�Þ −Q
j∈ΘA;l∈ΘB

ð1 − αAji1½τAj ≤ t�Þð1 − αBli1½τBl ≤ t�Þ ; ðB7Þ

qiS→Bðt;ΘA;ΘB; fτAk ; τBk gk∈∂iÞ

¼
Q

j∈ΘA
ð1 − αAji1½τAj ≤ t�Þ(1 −Q

l∈ΘB
ð1 − αBli1½τBl ≤ t�Þ)Q

j∈ΘA
ð1 − αAji1½τAj ≤ t�Þ þQ

l∈ΘB
ð1 − αBli1½τBl ≤ t�Þ −Q

j∈ΘA;l∈ΘB
ð1 − αAji1½τAj ≤ t�Þð1 − αBli1½τBl ≤ t�Þ ; ðB8Þ

qiS→Sðt;ΘA;ΘB; fτAk ; τBk gk∈∂iÞ

¼
Q

j∈ΘA
ð1 − αAji1½τAj ≤ t�ÞQl∈ΘB

ð1 − αBli1½τBl ≤ t�ÞQ
j∈ΘA

ð1 − αAji1½τAj ≤ t�Þ þQ
l∈ΘB

ð1 − αBli1½τBl ≤ t�Þ −Q
j∈ΘA;l∈ΘB

ð1 − αAji1½τAj ≤ t�Þð1 − αBli1½τBl ≤ t�Þ : ðB9Þ

Given the usual parametrization of marginals and messages miðτAi ; τBi Þ, only the following messages can be nonzero for
this dynamics: miðτAi ; �Þ, mið�; τBi Þ, and mið�; �Þ. The dynamic messages are then defined as follows:

Pi
AðtÞ ¼

X
τAi ≤t

mi
t;tðτAi ; �Þ ¼ Pi

Aðt − 1Þ þmi
t;tðt; �Þ; ðB10Þ

Pi
BðtÞ ¼

X
τBi ≤t

mi
t;tð�; τBi Þ ¼ Pi

Bðt − 1Þ þmi
t;tð�; tÞ; ðB11Þ

Pi
SðtÞ ¼ mi

t;tð�; �Þ; ðB12Þ

with the initial conditions mi
t;tð0; �Þ ¼ Pi

Að0Þ and mi
t;tð�; 0Þ ¼ Pi

Bð0Þ.
As discussed in Appendix A, the complexity of a general DBP message evaluation requires Oðt2dÞ steps, where d is the

node degree. Under the mutually exclusive scenario, some of the combinations of flipping times are forbidden since a node
cannot be simultaneously activated under both A and B processes. To reflect this structure, we rewrite DBP equations for
t > 0 in a computationally suboptimal but compact way:
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mi
t;tðt; �Þ ¼ Pi

Sð0Þ
X
ΘA⊂∂i;
ΘB⊂∂i;

ΘS¼∂inðΘA∪ΘBÞ

X
fτAk gk∈ΘA

X
fτBl gl∈ΘB

�Yt−2
t0¼0

qiS→Sðt0;ΘA;ΘB; fτAk ; τBk gk∈∂iÞ
�
qiS→Aðt − 1;ΘA;ΘB; fτAk ; τBk gk∈∂iÞ

×
Y
k∈ΘA

mk→i
t−1;t−1ðτAk ; �Þ

Y
l∈ΘB

ml→i
t−1;t−1ð�; τBl Þ

Y
n∈ΘS

mn→i
t−1;t−1ð�; �Þ; ðB13Þ

mi
t;tð�; tÞ ¼ Pi

Sð0Þ
X
ΘA⊂∂i;
ΘB⊂∂i;

ΘS¼∂inðΘA∪ΘBÞ

X
fτAk gk∈ΘA

X
fτBl gl∈ΘB

�Yt−2
t0¼0

qiS→Sðt0;ΘA;ΘB; fτAk ; τBk gk∈∂iÞ
�
qiS→Bðt − 1;ΘA;ΘB; fτAk ; τBk gk∈∂iÞ

×
Y
k∈ΘA

mk→i
t−1;t−1ðτAk ; �Þ

Y
l∈ΘB

ml→i
t−1;t−1ð�; τBl Þ

Y
n∈ΘS

mn→i
t−1;t−1ð�; �Þ; ðB14Þ

mi
t;tð�; �Þ ¼ Pi

Sð0Þ
X
ΘA⊂∂i;
ΘB⊂∂i;

ΘS¼∂inðΘA∪ΘBÞ

X
fτAk gk∈ΘA

X
fτBl gl∈ΘB

�Yt−1
t0¼0

qiS→Sðt0;ΘA;ΘB; fτAk ; τBk gk∈∂iÞ
�

×
Y
k∈ΘA

mk→i
t−1;t−1ðτAk ; �Þ

Y
l∈ΘB

ml→i
t−1;t−1ð�; τBl Þ

Y
n∈ΘS

mn→i
t−1;t−1ð�; �Þ: ðB15Þ

DBP messages in the expressions above are computed in a similar way, where subsets ΘA and ΘB are chosen from ∂inj:

mi→j
t;t ðt; �Þ ¼ Pi

Sð0Þ
X

ΘA⊂∂inj;
ΘB⊂∂inj;

ΘS¼∂inðj∪ΘA∪ΘBÞ

X
fτAk gk∈ΘA

X
fτBl gl∈ΘB

�Yt−2
t0¼0

qiS→Sðt0;ΘA;ΘB; fτAk ; τBk gk∈∂iÞ
�
qiS→Aðt − 1;ΘA;ΘB; fτAk ; τBk gk∈∂iÞ

× Pi
Sð0Þ

Y
k∈ΘA

mk→i
t−1;t−1ðτAk ; �Þ

Y
l∈ΘB

ml→i
t−1;t−1ð�; τBl Þ

Y
n∈ΘS

mn→i
t−1;t−1ð�; �Þ; ðB16Þ

mi→j
t;t ð�; tÞ ¼ Pi

Sð0Þ
X

ΘA⊂∂inj;
ΘB⊂∂inj;

ΘS¼∂inðj∪ΘA∪ΘBÞ

X
fτAk gk∈ΘA

X
fτBl gl∈ΘB

�Yt−2
t0¼0

qiS→Sðt0;ΘA;ΘB; fτAk ; τBk gk∈∂iÞ
�
qiS→Bðt − 1;ΘA;ΘB; fτAk ; τBk gk∈∂iÞ

×
Y
k∈ΘA

mk→i
t−1;t−1ðτAk ; �Þ

Y
l∈ΘB

ml→i
t−1;t−1ð�; τBl Þ

Y
n∈ΘS

mn→i
t−1;t−1ð�; �Þ; ðB17Þ

mi→j
t;t ð�; �Þ ¼ Pi

Sð0Þ
X

ΘA⊂∂inj;
ΘB⊂∂inj;

ΘS¼∂inðj∪ΘA∪ΘBÞ

X
fτAk gk∈ΘA

X
fτBl gl∈ΘB

�Yt−1
t0¼0

qiS→Sðt0;ΘA;ΘB; fτAk ; τBk gk∈∂iÞ
�

×
Y
k∈ΘA

mk→i
t−1;t−1ðτAk ; �Þ

Y
l∈ΘB

ml→i
t−1;t−1ð�; τBl Þ

Y
n∈ΘS

mn→i
t−1;t−1ð�; �Þ: ðB18Þ

In Sec. II of the main text, we numerically show that these equations are exact on tree graphs.

APPENDIX C: APPROXIMATE DMP
EQUATIONS FOR MUTUALLY EXCLUSIVE

COMPETITIVE PROCESSES

In the search of low-complexity equations that could be
used on general graphs, in this section we derive approxi-
mate DMP equations for mutually exclusive competitive
processes. As outlined in the main text, our approximation
scheme is based on the idea that in the absence of
renormalization, the dynamics of each process follows

the dynamics of a simple SI process. Hence, we derive
equations that perform the renormalization procedure at the
level of dynamic marginals.
Let us start by reminding the equations for the SI model.

We closely follow the notations used in Refs. [32,93]. For a
single process A, let θi→j

A ðtÞ denote the probability that no
infection message A has been passed from node i to node j
until time t, and let ϕi→j

A ðtÞ denote the probability that no
infection message A has been passed until time t − 1, while
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node i is infected with A at time t. Exact DMP equations for
a single-process SI model read [32]

Pi
SðtÞ ¼ Pi

Sð0Þ
Y
k∈∂i

θk→i
A ðtÞ; ðC1Þ

Pi
AðtÞ ¼ 1 − Pi→j

S ðtÞ; ðC2Þ

Pi→j
S ðtÞ ¼

Y
k∈∂inj

θk→i
A ðtÞ; ðC3Þ

Pi→j
A ðtÞ ¼ 1 − Pi→j

S ðtÞ; ðC4Þ

θi→j
A ðtÞ ¼ θi→j

A ðt − 1Þ − αAjiϕ
i→j
A ðt − 1Þ; ðC5Þ

ϕi→j
A ðtÞ ¼ ð1 − αAjiÞϕi→j

A ðt − 1Þ þ ½Pi→j
A ðtÞ − Pi→j

A ðt − 1Þ�:
ðC6Þ

For the two competitive and mutually exclusive proc-
esses A and B, we approximate the total spreading as a
product of two independent spreading processes that follow
Eqs. (C1)–(C6). Our goal is to derive approximate dynamic
marginals, which we denote by P̂i

SðtÞ, P̂i
AðtÞ, and P̂i

BðtÞ. For
simplicity, let us assume that αAij < 1, and hence θi→j

A type
messages are nonzero (treatment of the case of determin-
istic spreading is straightforward and results in several
additional equations). Under the chosen approximation, the
non-normalized probability of staying in the susceptible
status can be written as

P̃i→j
S ðtÞ ¼ P̂i→j

S ðt − 1Þ
Y

k∈∂inj

θk→i
A ðtÞθk→i

B ðtÞ
θk→i
A ðt − 1Þθk→i

B ðt − 1Þ : ðC7Þ

Under this approximation, the transition to status A
happens when the target node is susceptible, and the B
infection is not transmitted:

P̃i→j
A ðtÞ ¼ P̂i→j

S ðt − 1Þ
� Y
k∈∂inj

�
1 −

αBϕ
k→i
B ðt − 1Þ

θk→i
B ðt − 1Þ

�

×

�
1 −

Y
k∈∂inj

�
1 −

αAϕ
k→i
A ðt − 1Þ

θk→i
A ðt − 1Þ

���

þ P̂i→j
A ðt − 1Þ;

P̃i→j
B ðtÞ ¼ P̂i→j

S ðt − 1Þ
� Y
k∈∂inj

�
1 −

αAϕ
k→i
A ðt − 1Þ

θk→i
A ðt − 1Þ

�

×

�
1 −

Y
k∈∂inj

�
1 −

αBϕ
k→i
B ðt − 1Þ

θk→i
B ðt − 1Þ

���

þ P̂i→j
B ðt − 1Þ: ðC8Þ

We then compute the renormalized messages for the three
statuses P̂i→j

S=A=BðtÞ:

P̂i→j
S=A=BðtÞ ¼

P̃i→j
S=A=BðtÞ

P̃i→j
S ðtÞ þ P̃i→j

A ðtÞ þ P̃i→j
B ðtÞ : ðC9Þ

The dynamic marginals are calculated iteratively in a
similar fashion:

P̃i
SðtÞ ¼ P̂i

Sðt − 1Þ
Y
k∈∂i

θk→i
A ðtÞθk→i

B ðtÞ
θk→i
A ðt − 1Þθk→i

B ðt − 1Þ ;

P̃i
AðtÞ ¼ P̂i

Sðt − 1Þ
�Y
k∈∂i

�
1 −

αBϕ
k→i
B ðt − 1Þ

θk→i
B ðt − 1Þ

�

×

�
1 −

Y
k∈∂i

�
1 −

αAϕ
k→i
A ðt − 1Þ

θk→i
A ðt − 1Þ

���

þ P̂i
Aðt − 1Þ;

P̃i
BðtÞ ¼ P̂i

Sðt − 1Þ
�Y
k∈∂i

�
1 −

αAϕ
k→i
A ðt − 1Þ

θk→i
A ðt − 1Þ

�

×

�
1 −

Y
k∈∂i

�
1 −

αBϕ
k→i
B ðt − 1Þ

θk→i
B ðt − 1Þ

���

þ P̂i
Bðt − 1Þ;

Pi
S=A=BðtÞ ¼

P̃i
S=A=BðtÞ

P̃i
SðtÞ þ P̃i

AðtÞ þ P̃i
BðtÞ

: ðC10Þ

We numerically study the performance of these approxi-
mate DMP equations in the main text.

APPENDIX D: EXACT AND DMP EQUATIONS
FOR COLLABORATIVE PROCESSES

1. DBP equations for collaborative processes

Let us start by recalling the transition rules for the
collaborative spreading, as discussed in the main text:

SðiÞ þ AðjÞ⟶
αAji

AðiÞ þ AðjÞ; ðD1Þ

SðiÞ þ BðjÞ⟶
αBji

BðiÞ þ BðjÞ; ðD2Þ

AðiÞ þ BðjÞ⟶
αBAji

ABðiÞ þ BðjÞ; ðD3Þ

AðiÞ þ BðjÞ⟶
αABij

AðiÞ þ ABðjÞ: ðD4Þ

We start by specifying the transition kernel
WiðτAi ; τBi ; fτAk ; τBk gk∈∂iÞ based on the dynamic rules
(D1)–(D4):
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WiðτAi ; τBi ; fτAk ; τBk gk∈∂iÞ ¼ Pi
Sð0Þ1½τAi < τBi �fSðiÞ⟶

τAi AðiÞ⟶τ
B
i ABðiÞg|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ð1Þ

ðD5Þ

þPi
Sð0Þ1½τBi < τAi �fSðiÞ⟶

τBi BðiÞ⟶τ
A
i ABðiÞg|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ð2Þ

ðD6Þ

þPi
Sð0Þ1½τAi ¼ τBi �fSðiÞ ⟶

τAi ¼τBi ABðiÞg|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ð3Þ

ðD7Þ

þPi
A� ð0Þ1½τAi ¼ 0�1½τBi > 0�fAðiÞ⟶τ

B
i
ABðiÞg|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ð4Þ

ðD8Þ

þPi
B� ð0Þ1½τBi ¼ 0�1½τAi > 0�fBðiÞ⟶τ

A
i ABðiÞg|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ð5Þ

ðD9Þ

þPi
ABð0Þ1½τAi ¼ τBi ¼ 0�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ð6Þ

: ðD10Þ

In the expression above, it is assumed that when τAi ¼ � or τBi ¼ �, the corresponding transition does not happen during the
given observation window, or, alternatively, it happens eventually, beyond the observation horizon. Here, Pi

Sð0Þ, Pi
A�ð0Þ,

Pi
B� ð0Þ, and Pi

ABð0Þ denote probabilities that at initial time, node i is initialized in the statuses S, A exclusively, B
exclusively, or AB, respectively.
We can now provide explicit forms of the expressions that correspond to the transitions inside curly brackets; specifically,

in the following, we refer to the numbered items in (D5)–(D10). In the case τAi ¼ � and τBi ¼ �, we have

ð1Þ ¼ Pi
Sð0Þ1½τAi < τBi �1½τAi > 0�

YτAi −2
t0¼0

Y
k∈∂i

ð1 − αAki1½τAk ≤ t0�Þ
�
1 −

Y
k∈∂i

ð1 − αAki1½τAk ≤ τAi − 1�Þ
�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A-activation with prob αAki at time τAi

×
YτAi −1
t00¼0

Y
k∈∂i

ð1 − αBki1½τBk ≤ t00�Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
no B-activation with prob αBki by τAi

YτBi −2
t000¼τAi

Y
k∈∂i

ð1 − αBAki 1½τBk ≤ t000�Þ
�
1 −

Y
k∈∂i

ð1 − αBAki 1½τBk ≤ τBi − 1�Þ
�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
B-activation with prob αBAki at time τBi

; ðD11Þ

ð2Þ ¼ Pi
Sð0Þ1½τBi < τAi �1½τBi > 0�

YτBi −2
t0¼0

Y
k∈∂i

ð1 − αBki1½τBk ≤ t0�Þ
�
1 −

Y
k∈∂i

ð1 − αBki1½τBk ≤ τBi − 1�Þ
�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
B-activation with prob αBki at time τBi

×
YτBi −1
t00¼0

Y
k∈∂i

ð1 − αAki1½τAk ≤ t00�Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
no A-activation with prob αAki by τBi

YτAi −2
t000¼τBi

Y
k∈∂i

ð1 − αABki 1½τAk ≤ t000�Þ
�
1 −

Y
k∈∂i

ð1 − αABki 1½τAk ≤ τAi − 1�Þ
�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A-activation with prob αABki at time τAi

; ðD12Þ
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ð3Þ ¼ Pi
Sð0Þ1½τAi ¼ τBi �1½τAi > 0�

YτAi −2
t0¼0

Y
k∈∂i

ð1 − αAki1½τAk ≤ t0�Þ
�
1 −

Y
k∈∂i

ð1 − αAki1½τAk ≤ τAi − 1�Þ
�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A-activation with prob αAki at time τAi

×
YτAi −2
t0¼0

Y
k∈∂i

ð1 − αBki1½τBk ≤ t0�Þ
�
1 −

Y
k∈∂i

ð1 − αBki1½τBk ≤ τAi − 1�Þ
�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
B-activation with prob αBki at time τBi

; ðD13Þ

ð4Þ ¼ Pi
A�ð0Þ1½τBi > 0�1½τAi ¼ 0�

YτBi −2
t0¼0

Y
k∈∂i

ð1 − αBAki 1½τBk ≤ t0�Þ
�
1 −

Y
k∈∂i

ð1 − αBAki 1½τBk ≤ τBi − 1�Þ
�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
B-activation with prob αBAki at time τBi

; ðD14Þ

ð5Þ ¼ Pi
B� ð0Þ1½τAi > 0�1½τBi ¼ 0�

YτAi −2
t0¼0

Y
k∈∂i

ð1 − αABki 1½τAk ≤ t0�Þ
�
1 −

Y
k∈∂i

ð1 − αABki 1½τAk ≤ τAi − 1�Þ
�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A-activation with prob αABki at time τAi

; ðD15Þ

ð6Þ ¼ Pi
ABð0Þ1½τAi ¼ 0�1½τBi ¼ 0�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

no activation in status AB

: ðD16Þ

If either τAi ¼ � or τBi ¼ �, the activation above is
replaced by an absence of activation. For instance, in the
case of τBi ¼ �, the last term in Eq. (D11) would read

Yt
t000¼τAi

Y
k∈∂i

ð1 − αBAki 1½τBk ≤ t000�Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

absence of B-activation with prob αBAki at time τBi

ðD17Þ

for the ðtþ 1; tþ 1Þ trajectory of node i.
The DBP equations for collaborative processes are given

by Eqs. (A3) and (A4) using the WiðτAi ; τBi ; fτAk ; τBk gk∈∂iÞ
defined above. In what follows, we explain how to derive
the equivalent low-complexity DMP equations for the
collaborative processes from the DBP equations (A3)
and (A4), state their full iterative form, and finally expand
the exact DMP equations around the noninteracting point,
which yields approximate DMP equations that have a more
compact form and a lower algorithmic complexity.

2. Definitions of dynamic messages

Let us introduce the mathematical definitions for the
dynamic messages as the functions of fundamental
probabilities on time trajectories, mi→j

TA;TB
ðτAi ; τBi Þ≡

mi→j
TA;TB

ðτAi ; τBi k�; �Þ, which will be used in the computations
scheme below. First, it is useful to consider reduced
marginals:

μiAðtÞ ¼
X
τBi

mi
t;tðt; τBi Þ ¼ Pi

AðtÞ − Pi
Aðt − 1Þ; ðD18Þ

μiBðtÞ ¼
X
τAi

mi
t;tðτAi ; tÞ ¼ Pi

BðtÞ − Pi
Bðt − 1Þ: ðD19Þ

They have the physical meaning of probabilities of indi-
vidual activation with one of the processes, when we are
not concerned with the activation by the other process. In a
similar way, we also define reduced messages:

μi→j
A ðtÞ ¼

X
τBi

mi→j
t;t ðt; τBi Þ ¼ Pi→j

A ðtÞ − Pi→j
A ðt − 1Þ; ðD20Þ

μi→j
B ðtÞ ¼

X
τAi

mi→j
t;t ðτAi ; tÞ ¼ Pi→j

B ðtÞ − Pi→j
B ðt − 1Þ: ðD21Þ

Similarly to dynamicmarginals (A5)–(A8), one can define
the aggregated dynamic messages. In principle, we can
define them for a general fixed dynamics ðτAj ; τBj Þ of the
“cavity” node j, but in what follows, we only use the
messages for the fixed dynamics ðτAj ; τBj Þ ¼ ð�; �Þ:

Pi→j
S ðtÞ ¼

X
τAi >t

X
τBi >t

mi→j
TA;TB

ðτAi ; τBi Þ ¼ mi→j
t;t ð�; �Þ; ðD22Þ

Pi→j
A ðtÞ ¼

X
τBi

X
τAi ≤t

mi→j
TA;TB

ðτAi ; τBi Þ ¼
X
τAi ≤t

μi→j
A ðτAi Þ; ðD23Þ

Pi→j
B ðtÞ ¼

X
τBi

X
τBi ≤t

mi→j
TA;TB

ðτAi ; τBi Þ ¼
X
τBi ≤t

μi→j
B ðτBi Þ; ðD24Þ
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Pi→j
AB ðtÞ ¼

X
τAi ≤t

X
τBi ≤t

mi→j
t;t ðτAi ; τBi Þ: ðD25Þ

These quantities have the samephysical interpretation, except that they are definedon the “cavity”graphwherenode j follows a
fixed ðτAj ; τBj Þ dynamics.
Let us also define the following dynamic messages that are weighted combinations of messages:

θk→i
A;B ðtA; tBÞ ¼

X
τAk

X
τBk

YtA−1
t0¼0

ð1 − αAki1½τAk ≤ t0�Þ
YtB−1
t00¼0

ð1 − αBki1½τBk ≤ t00�Þmk→i
TA;TB

ðτAk ; τBk Þ; ðD26Þ

θk→i
A;B;ABðtA; tB; tAB; τAi Þ ¼

X
τAk

X
τBk

YtA−1
t0¼0

ð1 − αAki1½τAk ≤ t0�Þ
YtB−1
t00¼0

ð1 − αBki1½τBk ≤ t00�Þ

×
YtAB−1
t000¼τAi

ð1 − αBAki 1½τBk ≤ t000�Þmk→i
TA;TB

ðτAk ; τBk Þ; ðD27Þ

θk→i
B;A;BAðtB; tA; tBA; τBi Þ ¼

X
τAk

X
τBk

YtB−1
t0¼0

ð1 − αBki1½τBk ≤ t0�Þ
YtA−1
t00¼0

ð1 − αAki1½τAk ≤ t00�Þ

×
YtBA−1
t000¼τBi

ð1 − αABki 1½τAk ≤ t000�Þmk→i
TA;TB

ðτAk ; τBk Þ; ðD28Þ

θk→i
AB ðtBÞ ¼ θk→i

A;B;ABð0; 0; tB; 0Þ ¼
X
τBk

YtB−1
t0¼0

ð1 − αBAki 1½τBk ≤ t0�Þμk→i
B ðτBk Þ; ðD29Þ

θk→i
BA ðtAÞ ¼ θk→i

B;A;BAð0; 0; tA; 0Þ ¼
X
τAk

YtA−1
t0¼0

ð1 − αABki 1½τAk ≤ t0�Þμk→i
A ðτAk Þ: ðD30Þ

These messages have the meaning of the probabilities that node k did not send A and B activation signals to node i on the
“cavity” graph where node i follows a fixed ð�; �Þ dynamics.
Next, we define the following quantities:

ϕk→i
A ðtA; tBÞ ¼

X
τAk

X
τBk

1½τAk ≤ tA�
YtA−1
t0¼0

ð1 − αAki1½τAk ≤ t0�Þ
YtB−1
t00¼0

ð1 − αBki1½τBk ≤ t00�Þmk→i
TA;TB

ðτAk ; τBk Þ; ðD31Þ

ϕk→i
B ðtA; tBÞ ¼

X
τAk

X
τBk

1½τBk ≤ tB�
YtA−1
t0¼0

ð1 − αAki1½τAk ≤ t0�Þ
YtB−1
t00¼0

ð1 − αBki1½τBk ≤ t00�Þmk→i
TA;TB

ðτAk ; τBk Þ; ðD32Þ

ϕk→i
A;B ðtA; tBÞ ¼

X
τAk

X
τBk

1½τAk ≤ tA�1½τBk ≤ tB�
YtA−1
t0¼0

ð1 − αAki1½τAk ≤ t0�Þ
YtB−1
t00¼0

ð1 − αBki1½τBk ≤ t00�Þmk→i
TA;TB

ðτAk ; τBk Þ; ðD33Þ
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ϕk→i
A;B;ABðtA; tB; tAB; τAi Þ ¼

X
τAk

X
τBk

1½τBk ≤ tAB�
YtA−1
t0¼0

ð1 − αAki1½τAk ≤ t0�Þ
YtB−1
t00¼0

ð1 − αBki1½τBk ≤ t00�Þ

×
YtAB−1
t000¼τAi

ð1 − αBAki 1½τBk ≤ t000�Þmk→i
TA;TB

ðτAk ; τBk Þ; ðD34Þ

ϕk→i
B;A;BAðtB; tA; tBA; τBi Þ ¼

X
τAk

X
τBk

1½τAk ≤ tBA�
YtB−1
t0¼0

ð1 − αBki1½τBk ≤ t0�Þ
YtA−1
t00¼0

ð1 − αAki1½τAk ≤ t00�Þ

×
YtBA−1
t000¼τBi

ð1 − αABki 1½τAk ≤ t000�Þmk→i
TA;TB

ðτAk ; τBk Þ; ðD35Þ

ϕk→i
AB ðtBÞ ¼

X
τBk

1½τBk ≤ tB�
YtB−1
t0¼0

ð1 − αBAki 1½τBk ≤ t0�Þμk→i
B ðτBk Þ;

ðD36Þ

ϕk→i
BA ðtAÞ ¼

X
τAk

1½τAk ≤ tA�
YtA−1
t0¼0

ð1 − αABki 1½τAk ≤ t0�Þμk→i
A ðτAk Þ:

ðD37Þ

These messages have the meaning of the probabilities that
node k did not send A and B activation signals to node i on
the “cavity” graph where node i follows a fixed ð�; �Þ
dynamics, but node k is in an active status itself.
Finally, we define auxiliary expressions

θk→i
B ðt;tÞ¼

X
τBk

Yt−1
t00¼0

ð1−αBki1½τBk ≤ t00�Þmk→i
TA;TB

ðt;τBk Þ; ðD38Þ

θk→i
A ðt;tÞ¼

X
τAk

Yt−1
t0¼0

ð1−αAki1½τAk ≤ t00�Þmk→i
TA;TB

ðτAk ;tÞ: ðD39Þ

3. Update equations for dynamic messages

We start with the definition

Pi
Sðtþ 1Þ ¼ mi

tþ1;tþ1ð�; �Þ: ðD40Þ

From the DBP equations on time trajectories (A3), we get

mi
tþ1;tþ1ð�; �Þ
¼

X
fτAk ;τBk gk∈∂i

Wið�; �; fτAk ; τBk gk∈∂iÞ

×
Y
k∈∂i

mk→i
t;t ðτAk ; τBk k�; �Þ; ðD41Þ

where

Wið�; �; fτAk ; τBk gk∈∂iÞ

¼
Y
k∈∂i

Yt
t0¼0

ð1 − αAki1½τAk ≤ t0�Þ
Yt
t00¼0

ð1 − αBki1½τBk ≤ t00�Þ:

ðD42Þ

Using the definition (D26),

Pi
Sðtþ 1Þ ¼ Pi

Sð0Þ
Y

k∈∂inj
θk→i
A;B ðtþ 1; tþ 1k�; �Þ: ðD43Þ

For simplicity, let us denote θk→i
A;B ðtþ1; tþ1Þ≡θk→i

A;B ðtþ1;
tþ1k�;�Þ. With this simplified notation, we finally write

Pi
Sðtþ 1Þ ¼ Pi

Sð0Þ
Y

k∈∂inj
θk→i
A;B ðtþ 1; tþ 1Þ: ðD44Þ

We use the same simplified notation for all quantities
of the type #k→ið…Þ≡ #k→ið…k�; �Þ. Using the previously
defined quantities ϕA, ϕB, and ϕA;B, through Eqs. (D31)–
(D33), we derive the following update equations:

θk→i
A;B ðtþ 1; tþ 1Þ ¼ θk→i

A;B ðt; tÞ − αAkiϕ
k→i
A ðt; tÞ

− αBkiϕ
k→i
B ðt; tÞ þ αAkiα

B
kiϕ

k→i
A;B ðt; tÞ:

ðD45Þ

Using the equality 1½τAk ≤ tA� ¼ 1½τAk ≤ tA − 1�þ
1½τAk ¼ tA�, we further get

ϕk→i
A ðt; tÞ ¼ ð1 − αAkiÞϕk→i

A ðt − 1; tÞ þ θk→i
B ðt; tÞ; ðD46Þ

ϕk→i
B ðt; tÞ¼ ð1−αBkiÞϕk→i

B ðt−1; t−1Þþθk→i
A ðt; tÞ; ðD47Þ

where θA and θB have been defined above. Finally,
using
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ϕk→i
A ðt − 1; tÞ ¼ ϕk→i

A ðt − 1; t − 1Þ þ ð1 − αBkiÞϕk→i
A;B ðt − 1; t − 1Þ; ðD48Þ

ϕk→i
B ðt; t − 1Þ ¼ ϕk→i

B ðt − 1; t − 1Þ þ ð1 − αAkiÞϕk→i
A;B ðt − 1; t − 1Þ; ðD49Þ

we obtain

ϕk→i
A ðt; tÞ ¼ ð1 − αAkiÞϕk→i

A ðt − 1; t − 1Þ − αBkið1 − αAkiÞϕk→i
A;B ðt − 1; t − 1Þ þ θk→i

B ðt; tÞ; ðD50Þ

ϕk→i
B ðt; tÞ ¼ ð1 − αBkiÞϕk→i

B ðt − 1; t − 1Þ − αAkið1 − αBkiÞϕk→i
A;B ðt − 1; t − 1Þ þ θk→i

A ðt; tÞ: ðD51Þ
Additionally,

ϕk→i
A;B ðt; tÞ ¼ ð1 − αAkiÞð1 − αBkiÞϕk→i

A;B ðt − 1; t − 1Þ −mk→i
t;t ðt; tÞ ðD52Þ

þ
X
τAk≤t

Yt−1
t0¼0

ð1 − αAki1½t0 ≥ τAk �Þmk→i
t;t ðτAk ; tÞ ðD53Þ

þ
X
τBk≤t

Yt−1
t0¼0

ð1 − αBki1½t0 ≥ τBk �Þmk→i
t;t ðt; τBk Þ; ðD54Þ

where mk→i
t;t ðτAk ; τBk Þ≡mk→i

t;t ðτAk ; τBk k�; �Þ. Finally, we need to compute, iteratively, θk→i
A ðt; tÞ and θk→i

B ðt; tÞ:

θk→i
A ðt; tÞ ¼ θk→i

A ðt − 1; tÞ − αAki
X

τAk≤t−1

Yt−2
t0¼0

ð1 − αAki1½t0 ≥ τAk �Þmk→i
t;t ðτAk ; tÞ; ðD55Þ

θk→i
B ðt; tÞ ¼ θk→i

B ðt; t − 1Þ − αBki
X

τBk≤t−1

Yt−2
t0¼0

ð1 − αBki1½t0 ≥ τBk �Þmk→i
t;t ðt; τBk Þ; ðD56Þ

where, by definition, θk→i
A ð0; tÞ ¼ μk→i

B ðtÞ ¼ Pk→i
B ðtÞ−

Pk→i
B ðt − 1Þ, and similarly θk→i

B ðt; 0Þ ¼ μk→i
A ðtÞ ¼

Pk→i
A ðtÞ − Pk→i

A ðt − 1Þ. Initial and border conditions of that
type can be directly obtained from the definitions of the
dynamic messages and their connections to messages on
time trajectories.
From the scheme above, we still need to compute the

update equations for the marginals and the messages on
time trajectories of the type mi

t;tðτAi ; τBi Þ and mi→j
t;t ðτAi ; τBi Þ.

The derivation of the equations for these messages is given
below. Once the full or reduced marginals on time
trajectories are computed, the dynamic marginals of interest
are easy to compute according to the following equations:

Pi
AðtÞ ¼

X
t0≤t

μiAðt0Þ; ðD57Þ

Pi
BðtÞ ¼

X
t0≤t

μiBðt0Þ; ðD58Þ

Pi
ABðtÞ ¼

X
t0≤t;t00≤t

mi
t0;t00 ðt0; t00Þ ¼ Pi

AðtÞ þ Pi
BðtÞ þ Pi

SðtÞ − 1:

ðD59Þ

4. Computation of mi
t;tðτAi ;τBi Þ and mi→j

t;t ðτAi ;τBi Þ
It is convenient to break down the computation depend-

ing on a particular combination of ðτAi ; τBi Þ, including the
cases of times 0 and �. We provide a detailed derivation of
one of the most general cases; all the others can be treated
similarly. Let us consider the case of finite-time ðτAi ; τBi Þ.
Several cases of the type depicted in Fig. 9 need to be
considered. For the sake of illustration, we consider the
subcase � ≠ τBi > τAi > 0.
Using Fact 2, the simplified DBP equations read

mi
t;tðτAi ; τBi Þ ¼

X
fτAk ;τBk gk∈∂i

WiðτAi ; τBi ; fτAk ; τBk gk∈∂iÞ

×
Y
k∈∂i

mk→i
t−1;t−1ðτAk ; τBk Þ ðD60Þ

and

mi→j
t;t ðτAi ; τBi Þ ¼

X
fτAk ;τBk gk∈∂inj

WiðτAi ; τBi ; fτAk ; τBk gk∈∂inj; τAj ¼ �;

τBj ¼ �Þ
Y

k∈∂inj
mk→i

t−1;t−1ðτAk ; τBk Þ: ðD61Þ
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Using the definitions for the dynamics in the case considered, i.e., term (1) in WiðτAi ; τBi ; fτAk ; τBk gk∈∂iÞ, as well as for the
dynamic messages (26), we obtain

mi
t;tðτAi ; τBi Þ ¼ Pi

Sð0Þ
�Y
k∈∂i

θk→i
A;B;ABðτAi − 1; τAi ; τ

B
i − 1; τAi Þ −

Y
k∈∂i

θk→i
A;B;ABðτAi − 1; τAi ; τ

B
i ; τ

A
i Þ

−
Y
k∈∂i

θk→i
A;B;ABðτAi ; τAi ; τBi − 1; τAi Þ þ

Y
k∈∂i

θk→i
A;B;ABðτAi ; τAi ; τBi ; τAi Þ

�
; ðD62Þ

and, in the same way,

mi→j
t;t ðτAi ; τBi Þ ¼ Pi

Sð0Þ
� Y
k∈∂inj

θk→i
A;B;ABðτAi − 1; τAi ; τ

B
i − 1; τAi Þ −

Y
k∈∂inj

θk→i
A;B;ABðτAi − 1; τAi ; τ

B
i ; τ

A
i Þ

−
Y

k∈∂inj
θk→i
A;B;ABðτAi ; τAi ; τBi − 1; τAi Þ þ

Y
k∈∂inj

θk→i
A;B;ABðτAi ; τAi ; τBi ; τAi Þ

�
: ðD63Þ

Through the definition, we immediately get

θk→i
A;B;ABðtA; tB; tAB þ 1; τAi Þ ¼ θk→i

A;B;ABðtA; tB; tAB; τAi Þ − 1½τAi ≤ tAB�αBAki ϕk→i
A;B;ABðtA; tB; tAB; τAi Þ; ðD64Þ

where the former quantity is defined through Eq. (D34). Working with this definition, we get the following update equation
for ϕk→i

A;B;ABðtA; tB; tAB; τAi Þ:
ϕk→i
A;B;ABðtA; tB; tAB; τAi kτAi ; τBi Þ ¼ ð1 − αBAki Þϕk→i

A;B;ABðtA; tB; tAB − 1; τAi kτAi ; τBi Þ

þ
X
τAk

YtA−1
t0¼0

ð1 − αAki1½τAk ≤ t0�Þ
YtB−1
t00¼0

ð1 − αBki1½τBk ≤ t00�Þmk→i
tAB;tABðτAk ; tABÞ: ðD65Þ

The term
QtB−1

t00¼0
ð1 − αBki1½τBk ≤ t00�Þ is not active for the times considered here and is equal to 1 because τBk ¼ tAB and

tAB ≥ tB; hence, we get the final update equation

FIG. 9. Three cases to consider for the marginals and messages for the time trajectory ðτAi ; τBi Þ.
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ϕk→i
A;B;ABðtA; tB; tAB; τAi Þ ¼ ð1 − αBAki Þϕk→i

A;B;ABðtA; tB; tAB − 1; τAi Þ

þ
X
τAk≤tAB

YtA−1
t0¼0

ð1 − αAki1½τAk ≤ t0�Þmk→i
tAB;tABðτAk ; tABÞ þmk→i

tAB;tABð�; tABÞ; ðD66Þ

where all mk→i
tAB;tABðt0; t00Þ are known from previous step computations.

5. Exact DMP equations for collaborative processes

In this section, we summarize the derivation procedure outlined above and state the full form of the DMP equations for
collaborative processes.

(i) Initial conditions from the problem definition:

Pi
Sð0Þ; Pi

A� ð0Þ; Pi
B� ð0Þ; Pi

ABð0Þ: ðD67Þ

(ii) Initialization of dynamic messages:

mi
0;0ð0; 0Þ ¼ Pi

ABð0Þ; mi
0;0ð0; �Þ ¼ Pi

A� ð0Þ; mi
0;0ð�; 0Þ ¼ Pi

B� ð0Þ; ðD68Þ

mi→j
0;0 ð0; 0Þ ¼ Pi

ABð0Þ; mi→j
0;0 ð0; �Þ ¼ Pi

A� ð0Þ; mi→j
0;0 ð�; 0Þ ¼ Pi

B� ð0Þ; ðD69Þ

μiAð0Þ ¼ Pi
Að0Þ; μiBð0Þ ¼ Pi

Bð0Þ; ðD70Þ

θk→i
A;B ð0; 0Þ ¼ θk→i

A;B;ABð0; 0Þ ¼ θk→i
B;A;BAð0; 0Þ ¼ θk→i

AB ð0; 0Þ ¼ θk→i
BA ð0; 0Þ ¼ 1; ðD71Þ

ϕk→i
A ð0; 0Þ ¼ Pk

Að0Þ; ϕk→i
B ð0; 0Þ ¼ Pk

Bð0Þ; ϕk→i
A;B ð0; 0Þ ¼ Pk

ABð0Þ; ðD72Þ

ϕk→i
AB ð0Þ ¼ Pk

Bð0Þ; ϕk→i
BA ð0Þ ¼ Pk

Að0Þ: ðD73Þ

(iii) Border conditions for dynamic messages:

θk→i
A ð0; tÞ ¼ μk→i

B ðtÞ; θk→i
B ðt; 0Þ ¼ μk→i

A ðtÞ; ðD74Þ

θk→i
A;B;ABðtA; tB; tAB; τAi Þ ¼ θk→i

A;B ðtA; tBÞ for tAB ≤ τAi ; ðD75Þ

θk→i
B;A;BAðtB; tA; tBA; τBi Þ ¼ θk→i

A;B ðtA; tBÞ for tBA ≤ τBi ; ðD76Þ

ϕk→i
A;B;ABðtA; tB; tAB; τAi Þ ¼ ϕk→i

B ðtA; tBÞ for tAB ¼ tB and tAB ≤ τAi ; ðD77Þ

ϕk→i
B;A;BAðtB; tA; tBA; τBi Þ ¼ ϕk→i

A ðtA; tBÞ for tBA ¼ tA and tBA ≤ τBi ;

ðtrue but no need to enforceÞ θk→i
AB ðtBÞ ¼ θk→i

A;B;ABð0; 0; tB; 0Þ; θk→i
BA ðtAÞ ¼ θk→i

B;A;BAð0; 0; tA; 0Þ: ðD78Þ

(iv) Expression for the dynamic marginals:

Pi
AðtÞ ¼

X
t0≤t

μiAðt0Þ; ðD79Þ

Pi
BðtÞ ¼

X
t0≤t

μiBðt0Þ; ðD80Þ

Pi
SðtÞ ¼ mi

t;tð�; �Þ ¼ Pi
Sð0Þ

Y
k∈∂inj

θk→i
A;B ðt; tÞ; ðD81Þ
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Pi
ABðtÞ ¼

X
t0≤t;t00≤t

mi
t0;t00 ðt0; t00Þ ¼ Pi

AðtÞ þ Pi
BðtÞ þ Pi

SðtÞ − 1: ðD82Þ

(v) Update equations:

μiAðtÞ ¼
X
t0≤t

mi
t;tðt; t0Þ þmi

t;tðt; �Þ; ðD83Þ

μiBðtÞ ¼
X
t0≤t

mi
t;tðt0; tÞ þmi

t;tð�; tÞ; ðD84Þ

μi→j
A ðtÞ ¼

X
t0≤t

mi→j
t;t ðt; t0Þ þmi→j

t;t ðt; �Þ; ðD85Þ

μi→j
B ðtÞ ¼

X
t0≤t

mi→j
t;t ðt0; tÞ þmi→j

t;t ð�; tÞ; ðD86Þ

mi
t;tðτAi ; τBi Þ ¼

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

Pi
A�ð0Þ

� Q
k∈∂i

θk→i
AB ðτBi − 1Þ− Q

k∈∂i
θk→i
AB ðτBi Þ

�
if τAi ¼ 0; τBi ≠ 0

Pi
B� ð0Þ

� Q
k∈∂i

θk→i
BA ðτAi − 1Þ− Q

k∈∂i
θk→i
BA ðτAi Þ

�
if τBi ¼ 0; τAi ≠ 0

Pi
Sð0Þ

� Q
k∈∂i

θk→i
A;B;ABðτAi − 1; τAi ; τ

B
i − 1; τAi Þ−

Q
k∈∂i

θk→i
A;B;ABðτAi − 1; τAi ; τ

B
i ; τ

A
i Þ

−
Q
k∈∂i

θk→i
A;B;ABðτAi ; τAi ; τBi − 1; τAi Þ þ

Q
k∈∂i

θk→i
A;B;ABðτAi ; τAi ; τBi ; τAi Þ

�
if τBi > τAi > 0

Pi
Sð0Þ

� Q
k∈∂i

θk→i
B;A;BAðτBi − 1; τBi ; τ

A
i − 1; τBi Þ−

Q
k∈∂i

θk→i
B;A;BAðτBi − 1; τBi ; τ

A
i ; τ

B
i Þ

−
Q
k∈∂i

θk→i
B;A;BAðτBi ; τBi ; τAi − 1; τBi Þ þ

Q
k∈∂i

θk→i
B;A;BAðτBi ; τBi ; τAi ; τBi Þ

�
if τAi > τBi > 0

Pi
Sð0Þ

� Q
k∈∂i

θk→i
A;B ðτAi − 1; τAi − 1Þ− Q

k∈∂i
θk→i
A;B ðτAi − 1; τAi Þ

−
Q
k∈∂i

θk→i
A;B ðτAi ; τAi − 1Þ þ Q

k∈∂i
θk→i
A;B ðτAi ; τAi Þ

�
if τAi ¼ τBi ≠ 0

Pi
A�ð0Þ Q

k∈∂i
θk→i
AB ðtÞ if τAi ¼ 0; τBi ¼ �

Pi
B� ð0Þ Q

k∈∂i
θk→i
BA ðtÞ if τBi ¼ 0; τAi ¼ �

Pi
Sð0Þ

� Q
k∈∂i

θk→i
A;B;ABðτAi − 1; τAi ; t; τ

A
i Þ−

Q
k∈∂i

θk→i
A;B;ABðτAi ; τAi ; t; τAi Þ

�
if τAi > 0; τBi ¼ �

Pi
Sð0Þ

� Q
k∈∂i

θk→i
B;A;BAðτBi − 1; τBi ; t; τ

B
i Þ−

Q
k∈∂i

θk→i
B;A;BAðτBi ; τBi ; t; τBi Þ

�
if τBi > 0; τAi ¼ �

Pi
Sð0Þ

Q
k∈∂i

θk→i
A;B ðt; tÞ if τAi ¼ �; τBi ¼ �:

ðD87Þ
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The update expressions for the messages mi→j
t;t ðτAi ; τBi Þ are similar to the expressions for the marginals mi

t;tðτAi ; τBi Þ
above, except ∂i is replaced with ∂inj:

mi→j
t;t ðτAi ; τBi Þ ¼

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

Pi
A� ð0Þ

� Q
k∈∂inj

θk→i
AB ðτBi − 1Þ − Q

k∈∂inj
θk→i
AB ðτBi Þ

�
if τAi ¼ 0; τBi ≠ 0

Pi
B� ð0Þ

� Q
k∈∂inj

θk→i
BA ðτAi − 1Þ − Q

k∈∂inj
θk→i
BA ðτAi Þ

�
if τBi ¼ 0; τAi ≠ 0

Pi
Sð0Þ

� Q
k∈∂inj

θk→i
A;B;ABðτAi − 1; τAi ; τ

B
i − 1; τAi Þ −

Q
k∈∂inj

θk→i
A;B;ABðτAi − 1; τAi ; τ

B
i ; τ

A
i Þ

−
Q

k∈∂inj
θk→i
A;B;ABðτAi ; τAi ; τBi − 1; τAi Þ þ

Q
k∈∂inj

θk→i
A;B;ABðτAi ; τAi ; τBi ; τAi Þ

�
if τBi > τAi > 0

Pi
Sð0Þ

� Q
k∈∂inj

θk→i
B;A;BAðτBi − 1; τBi ; τ

A
i − 1; τBi Þ −

Q
k∈∂inj

θk→i
B;A;BAðτBi − 1; τBi ; τ

A
i ; τ

B
i Þ

−
Q

k∈∂inj
θk→i
B;A;BAðτBi ; τBi ; τAi − 1; τBi Þ þ

Q
k∈∂inj

θk→i
B;A;BAðτBi ; τBi ; τAi ; τBi Þ

�
if τAi > τBi > 0

Pi
Sð0Þ

� Q
k∈∂inj

θk→i
A;B ðτAi − 1; τAi − 1Þ − Q

k∈∂inj
θk→i
A;B ðτAi − 1; τAi Þ

−
Q

k∈∂inj
θk→i
A;B ðτAi ; τAi − 1Þ þ Q

k∈∂inj
θk→i
A;B ðτAi ; τAi Þ

�
if τAi ¼ τBi ≠ 0

Pi
A� ð0Þ Q

k∈∂inj
θk→i
AB ðtÞ if τAi ¼ 0; τBi ¼ �

Pi
B� ð0Þ Q

k∈∂inj
θk→i
BA ðtÞ if τBi ¼ 0; τAi ¼ �

Pi
Sð0Þ

� Q
k∈∂inj

θk→i
A;B;ABðτAi − 1; τAi ; t; τ

A
i Þ −

Q
k∈∂inj

θk→i
A;B;ABðτAi ; τAi ; t; τAi Þ

�
if τAi > 0; τBi ¼ �

Pi
Sð0Þ

� Q
k∈∂inj

θk→i
B;A;BAðτBi − 1; τBi ; t; τ

B
i Þ −

Q
k∈∂inj

θk→i
B;A;BAðτBi ; τBi ; t; τBi Þ

�
if τBi > 0; τAi ¼ �

Pi
Sð0Þ

Q
k∈∂inj

θk→i
A;B ðt; tÞ if τAi ¼ �; τBi ¼ �:

ðD88Þ

The dynamic messages entering the expressions above are updated as follows:

θk→i
A;B ðtþ 1; tþ 1Þ ¼ θk→i

A;B ðt; tÞ − αAkiϕ
k→i
A ðt; tÞ − αBkiϕ

k→i
B ðt; tÞ þ αAkiα

B
kiϕ

k→i
A;B ðt; tÞ; ðD89Þ

θk→i
A;B ðtþ 1; tÞ ¼ θk→i

A;B ðt; tÞ − αAkiϕ
k→i
A ðt; tÞ; ðD90Þ

θk→i
A;B ðt; tþ 1Þ ¼ θk→i

A;B ðt; tÞ − αBkiϕ
k→i
B ðt; tÞ; ðD91Þ
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ϕk→i
A;B ðt; tÞ ¼ ð1 − αAkiÞð1 − αBkiÞϕk→i

A;B ðt − 1; t − 1Þ −mk→i
t;t ðt; tÞ

þ
X
τAk≤t

Yt−1
t0¼0

ð1 − αAki1½t0 ≥ τAk �Þmk→i
t;t ðτAk ; tÞ þ

X
τBk≤t

Yt−1
t0¼0

ð1 − αBki1½t0 ≥ τBk �Þmk→i
t;t ðt; τBk Þ; ðD92Þ

ϕk→i
A ðt − 1; tÞ ¼ ϕk→i

A ðt − 1; t − 1Þ þ ð1 − αBkiÞϕk→i
A;B ðt − 1; t − 1Þ; ðD93Þ

ϕk→i
B ðt; t − 1Þ ¼ ϕk→i

B ðt − 1; t − 1Þ þ ð1 − αAkiÞϕk→i
A;B ðt − 1; t − 1Þ; ðD94Þ

ϕk→i
A ðt; tÞ ¼ ð1 − αAkiÞϕk→i

A ðt − 1; t − 1Þ − αBkið1 − αAkiÞϕk→i
A;B ðt − 1; t − 1Þ þ θk→i

B ðt; tÞ; ðD95Þ

ϕk→i
B ðt; tÞ ¼ ð1 − αBkiÞϕk→i

B ðt − 1; t − 1Þ − αAkið1 − αBkiÞϕk→i
A;B ðt − 1; t − 1Þ þ θk→i

A ðt; tÞ; ðD96Þ

θk→i
A ðt; tÞ ¼ θk→i

A ðt − 1; tÞ − αAki
X

τAk≤t−1

Yt−2
t0¼0

ð1 − αAki1½t0 ≥ τAk �Þmk→i
t;t ðτAk ; tÞ; ðD97Þ

θk→i
B ðt; tÞ ¼ θk→i

B ðt; t − 1Þ − αBki
X

τBk≤t−1

Yt−2
t0¼0

ð1 − αBki1½t0 ≥ τBk �Þmk→i
t;t ðt; τBk Þ; ðD98Þ

θk→i
AB ðtþ 1Þ ¼ θk→i

AB ðtÞ − αBAki ϕ
k→i
AB ðtÞ; ðD99Þ

θk→i
BA ðtþ 1Þ ¼ θk→i

BA ðtÞ − αABki ϕ
k→i
BA ðtÞ; ðD100Þ

ϕk→i
AB ðtÞ ¼ ð1 − αBAki Þϕk→i

AB ðt − 1Þ þ μk→i
B ðtÞ; ðD101Þ

ϕk→i
BA ðtÞ ¼ ð1 − αABki Þϕk→i

BA ðt − 1Þ þ μk→i
A ðtÞ; ðD102Þ

θk→i
A;B;ABðtA; tB; tAB þ 1; τAi Þ ¼ θk→i

A;B;ABðtA; tB; tAB; τAi Þ − 1½τAi ≤ tAB�αBAki ϕk→i
A;B;ABðtA; tB; tAB; τAi Þ; ðD103Þ

θk→i
B;A;BAðtB; tA; tBA þ 1; τBi Þ ¼ θk→i

B;A;BAðtB; tA; tBA; τBi Þ − 1½τBi ≤ tBA�αABki ϕk→i
B;A;BAðtB; tA; tBA; τBi Þ; ðD104Þ

ϕk→i
A;B;ABðtA; tB; tAB; τAi Þ ¼ ð1 − αBAki Þϕk→i

A;B;ABðtA; tB; tAB − 1; τAi

þ
X
τAk≤tAB

YtA−1
t0¼0

ð1 − αAki1½τAk ≤ t0�Þmk→i
tAB;tABðτAk ; tABÞ þmk→i

tAB;tABð�; tABÞ; ðD105Þ

ϕk→i
B;A;BAðtB; tA; tBA; τBi Þ ¼ ð1 − αABki Þϕk→i

B;A;BAðtB; tA; tBA − 1; τBi Þ

þ
X
τBk≤tBA

YtB−1
t0¼0

ð1 − αBki1½τBk ≤ t0�Þmk→i
tBA;tBAðtBA; τBk Þ þmk→i

tBA;tBAðtBA; �Þ: ðD106Þ

(vi) Order of the updates:
(1) Only once, at time zero: initialize messages.
(2) If initialization is not given for a message, its initial value is fixed through a border condition (reduction to a different

message) and will need to be initialized in this way for each update.
(3) Update ϕ’s.
(4) Update θ’s.
(5) Update m messages and marginals.
(6) Update μ messages and marginals.
(7) Compute dynamic marginals Pi

SðtÞ; Pi
AðtÞ; Pi

BðtÞ; Pi
ABðtÞ.
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APPENDIX E: APPROXIMATE DMP EQUATIONS
FOR COLLABORATIVE PROCESSES

From the dynamic rules for the interacting spreading
processes (D1)–(D4), we notice that the special case of
transmission probabilities αABij ¼ αAij and αBAij ¼ αBij corre-
sponds to noninteracting spreading processes: Activation
by one process does not change the activation dynamics for
the other. In this case, the DMP equations should simplify
into the product of two independent SI-like processes:

mi
t;tðτAi ; τBi Þ ¼ μiAðτAi ÞμiBðτBi Þ: ðE1Þ

We use this observation to produce a simplified version of
DMP equations, expanding exact equations for interacting

spreading processes around the noninteracting point.
Several expansions are possible, including the most
straightforward one where we expand to a certain order
in αAij − αABij and αBij − αBAij , which will result in bulky
expressions. Instead, here we produce a simplified set of
DMP equations by keeping certain first-order corrections in
the update equations only, so the resulting equations are
similar to the SI-type equations. Using the approximation

mi
t;tðτAi ; τBi Þ ≈ μiAðτAi ÞμiBðτBi Þ ðE2Þ

and the general expression

μiAðtÞ ¼ P̂i→j
A ðtÞ − P̂i→j

A ðt − 1Þ ¼
X
t0≤t

mi
t;tðt; t0Þ þmi

t;tðt; �Þ ¼
X
t0≤t−1

mi
t;t−1ðt; t0Þ þmi

t;t−1ðt; �Þ; ðE3Þ

we compute the corresponding contribution of each term. For simplicity, in what follows, we assume that αij < 1, and hence
θk→i-type messages are nonzero (the treatment of the case of deterministic spreading is straightforward and results in several
additional equations).

(i) Simplified approximate computation of mi
t;t−1ðt; �Þ: We start with the following approximations in the dynamic

messages:

θk→i
A;B ðtA; tBÞ ¼

X
τAk

X
τBk

YtA−1
t0¼0

ð1 − αAki1½τAk ≤ t0�Þ
YtB−1
t00¼0

ð1 − αBki1½τBk ≤ t00�Þmk→i
TA;TB

ðτAk ; τBk Þ ≈ θ̂k→i
A ðtAÞθ̂k→i

B ðtÞ; ðE4Þ

ϕk→i
A ðtA; tBÞ

¼
X
τAk

X
τBk

1½τAk ≤ tA�
YtA−1
t0¼0

ð1 − αAki1½τAk ≤ t0�Þ
YtB−1
t00¼0

ð1 − αBki1½τBk ≤ t00�Þmk→i
TA;TB

ðτAk ; τBk Þ ≈ ϕ̂k→i
A ðtAÞθ̂k→i

B ðtÞ: ðE5Þ

The update equation

θk→i
A;B ðtþ 1; tÞ ¼ θk→i

A;B ðt; tÞ − αAkiϕ
k→i
A ðt; tÞ ðE6Þ

becomes, under this approximation,

θ̂k→i
A ðtþ 1Þθ̂k→i

B ðtÞ ¼ θ̂k→i
A ðtÞθ̂k→i

B ðtÞ − αAkiϕ̂
k→i
A ðtÞθ̂k→i

B ðtÞ; ðE7Þ

or simply

θ̂k→i
A ðtþ 1Þ ¼ θ̂k→i

A ðtÞ − αAkiϕ̂
k→i
A ðtÞ: ðE8Þ

Using these simplified expressions, after some algebra, we get

mi
t;t−1ðt; �Þ ¼ Pi

Sð0Þ
�Y
k∈∂i

θk→i
A;B ðt − 1; t − 1Þ −

Y
k∈∂i

θk→i
A;B ðt; t − 1Þ

�
ðE9Þ

≈Pi
Sð0Þ

�Y
k∈∂i

θ̂k→i
A ðt − 1Þθ̂k→i

B ðt − 1Þ −
Y
k∈∂i

θ̂k→i
A ðtÞθ̂k→i

B ðt − 1Þ
�

ðE10Þ
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≈Pi
Sð0Þ

�Y
k∈∂i

θ̂k→i
A ðt − 1Þθ̂k→i

B ðt − 1Þ −
Y
k∈∂i

θ̂k→i
A ðtÞθ̂k→i

B ðt − 1Þ
�
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: ðE13Þ

(ii) Simplified approximate computation of
P

t0≤t−1m
i
t;t−1ðt; t0Þ: Similarly, we start with the approximations in the

dynamic messages:
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B;A;BAðtB; t0; tBA; t0Þ ¼

X
τAk
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τBk

YtB−1
t¼0

ð1 − αBki1½τBk ≤ t�Þ
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ð1 − αABki 1½τAk ≤ t000�Þmk→i
TA;TB

ðτAk ; τBk Þ ðE14Þ

≈ θ̂k→i
A ðtBAÞθ̂k→i

B ðtBÞ; ðE15Þ

ϕk→i
B;A;BAðtB; t0; tBA; t0Þ ¼

X
τAk

X
τBk

1½τAk ≤ tBA�
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A ðtBAÞθ̂k→i

B ðtBÞ; ; ðE17Þ

θk→i
BA ðtAÞ ¼

X
τAk

YtA−1
t0¼0

ð1 − αABki 1½τAk ≤ t0�Þμk→i
A ðτAk Þ ≈ θ̂k→i

A ðtAÞ: ðE18Þ

The approximate version of the update equations,

θk→i
B;A;BAðtB; t0; tBA þ 1; t0Þ ¼ θk→i

B;A;BAðtB; t0; tBA; t0Þ − 1½t0 ≤ tBA�αABki ϕk→i
B;A;BAðtB; t0; tBA; t0Þ; ðE19Þ

then reads

θ̂k→i
A ðtBA þ 1Þθ̂k→i

B ðtBÞ ¼ θ̂k→i
A ðtBAÞθ̂k→i

B ðtBÞ − 1½t0 ≤ tBA�αABki ϕ̂k→i
A ðtBAÞθ̂k→i

B ðtBÞ; ðE20Þ

or simply

θ̂k→i
A ðtBA þ 1Þ ¼ θ̂k→i

A ðtBAÞ − 1½t0 ≤ tBA�αABki ϕ̂k→i
A ðtBAÞ: ðE21Þ
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Using these simplified expressions, after some algebra, we get
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(iii) Final form of the approximate DMP equations: The final update equations that we need,

ϕk→i
A ðt; tÞ ¼ ð1 − αAkiÞϕk→i

A ðt − 1; tÞ þ θk→i
B ðt; tÞ; ðE28Þ

with

θk→i
B ðt; tÞ ≈ μk→i

A ðtÞθ̂k→i
B ðtÞ; ðE29Þ

give

ϕ̂i→j
A ðtÞ ¼ ϕ̂i→j

A ðt − 1Þ − αAijϕ̂
i→j
A ðt − 1Þ þ P̂i→j

A ðtÞ − P̂i→j
A ðt − 1Þ: ðE30Þ

Combining all of the computations above, we finally obtain the following approximate form of the DMP equations,
which should provide a good approximation around the noninteracting point:

P̂i
SðtÞ ¼ Pi

Sð0Þ
Y

k∈∂inj
θ̂k→i
A ðtÞθ̂k→i

B ðtÞ; ðE31Þ

θ̂i→j
A ðtÞ ¼ θ̂i→j

A ðt − 1Þ − αAijϕ̂
i→j
A ðt − 1Þ; ðE32Þ

θ̂i→j
B ðtÞ ¼ θ̂i→j

B ðt − 1Þ − αBijϕ̂
i→j
B ðt − 1Þ; ðE33Þ
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ϕ̂i→j
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A ðt − 1Þ; ðE34Þ
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In the main text, we numerically establish the approximation power of these equations. In what follows, we use these
approximate DMP equations for performing optimization due to their simpler form and lower computational complexity.

APPENDIX F: OPTIMIZATION OF MUTUALLY EXCLUSIVE COMPETITIVE PROCESSES

For competitive processes, we study two optimization problems—the multiagent seeding problem and disease
containment. The only difference between the two is the objective function. For disease containment, the objective
function to be maximized is O ¼ P

i (1 − PB
i ðTÞ), and for the multiagent seeding problem, O ¼ P

i (1 − PS
i ðTÞ). The

budget constraint at time zero is enforced by the Lagrange multiplier λbu as

B ¼ λbu
�
Bν −

X
i

νið0Þ
�
; ðF1Þ

where permitted ν < νi < ν̄ value restrictions are enforced by the term

P ¼ ϵ
X
i

( logðν̄ − νið0Þ)þ log (νið0Þ − νÞ): ðF2Þ

In this case, the restrictions used are ν̄ ¼ 1 and ν ¼ 0.
Initial conditions are forced through a set of Lagrange multipliers λ for the various parameter values:
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The DMP equations for the dynamics are forced through a set of Lagrange multipliers,
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Derivatives with respect to the dynamics parameters give rise to the optimization (dynamical) equations for the Lagrange
multipliers. The case described here is that of the containment problem (minimizing spread of an adversarial process):
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−λŜi ðtþ 1Þ

Y
k∈∂i

θk→i
A ðtþ 1Þθk→i

B ðtþ 1Þ
θk→i
A ðtÞθk→i

B ðtÞ − λÂi ðtþ 1Þ
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ij ðtþ 1Þ − λÂijðtþ 1Þ�1½t ≠ T� þ λAijðtÞ − 1½t ≠ 0�½λϕA

ij ðtÞ�;

∂L
∂Pi

AðtÞ
¼ ½−λÂi ðtþ 1Þ�1½t ≠ T� þ λAi ðtÞ;

∂L
∂P̂i→j

A ðtÞ ¼ λÂijðtÞ þ 1½t ≠ 0�
�
−λAijðtÞ

P̂i→j
S ðtÞ þ P̂i→j

B ðtÞ
(P̂i→j

S ðtÞ þ P̂i→j
A ðtÞ þ P̂i→j

B ðtÞ)2 þ λSijðtÞ
P̂i→j
S ðtÞ

(P̂i→j
S ðtÞ þ P̂i→j

A ðtÞ þ P̂i→j
B ðtÞ)2

þ λBijðtÞ
P̂i→j
B ðtÞ

(P̂i→j
S ðtÞ þ P̂i→j

A ðtÞ þ P̂i→j
B ðtÞ)2

�
;

∂L
∂P̂i

AðtÞ
¼ λÂi ðtÞ þ 1½t ≠ 0�

�
−λAi ðtÞ

P̂i
SðtÞ þ P̂i

BðtÞ
(P̂i

SðtÞ þ P̂i
AðtÞ þ P̂i

BðtÞ)2
þ λSi ðtÞ

P̂i
SðtÞ

(P̂i
SðtÞ þ P̂i

AðtÞ þ P̂i
BðtÞ)2

þ λBi ðtÞ
P̂i
BðtÞ

(P̂i
SðtÞ þ P̂i

AðtÞ þ P̂i
BðtÞ)2

�
;

∂L
∂θi→j

A ðtÞ ¼ λθAij ðtÞ − 1½t ≠ T�(λθAij ðtþ 1Þ)þ
X
a∈∂jni

λŜjaðtþ 1ÞPj→a
S ðtÞ 1

θi→j
A ðtÞ

Y
l∈∂jna

θl→j
A ðtþ 1Þθl→j

B ðtþ 1Þ
θl→j
A ðtÞθl→j

B ðtÞ 1½t ≠ T�

−
X
a∈∂jni

λŜjaðtÞPj→a
S ðt − 1Þ 1

θi→j
A ðtÞ

Y
l∈∂jna

θl→j
A ðtÞθl→j

B ðtÞ
θl→j
A ðt − 1Þθl→j

B ðt − 1Þ 1½t ≠ 0� þ λŜj ðtþ 1ÞPj
SðtÞ

1

θi→j
A ðtÞ

×
Y
l∈∂j

θl→j
A ðtþ 1Þθl→j

B ðtþ 1Þ
θl→j
A ðtÞθl→j

B ðtÞ 1½t ≠ T� − λŜj ðtÞPj
Sðt − 1Þ 1

θi→j
A ðtÞ

Y
l∈∂j

θl→j
A ðtÞθl→j

B ðtÞ
θl→j
A ðt − 1Þθl→j

B ðt − 1Þ 1½t ≠ 0�

−
X
a∈∂jni

λÂjaðtþ 1ÞPj→a
S ðtÞ

�
1 −

αAϕ
i→j
A

ðθi→j
A ðtÞÞ2

Y
l∈∂jna;i

�
1 −

αAϕ
l→j
A ðtÞ

θl→j
A ðtÞ

�� Y
l∈∂jna

�
1 −

αBϕ
l→j
B ðtÞ

θl→j
B ðtÞ

�
1½t ≠ T�
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−
X
a∈∂jni

λB̂jaðtþ 1ÞPj→a
S ðtÞ

�
αAϕ

i→j
A

ðθi→j
A ðtÞÞ2

Y
l∈∂jna;i

�
1 −

αAϕ
l→j
A ðtÞ

θl→j
A ðtÞ

���
1 −

Y
l∈∂jna

�
1 −

αBϕ
l→j
B ðtÞ

θl→j
B ðtÞ

��
1½t ≠ T�

− λÂj ðtþ 1ÞPj
SðtÞ

�
1 −

αAϕ
i→j
A

ðθi→j
A ðtÞÞ2

Y
l∈∂jni

�
1 −

αAϕ
l→j
A ðtÞ

θl→j
A ðtÞ

��Y
l∈∂j

�
1 −

αBϕ
l→j
B ðtÞ

θl→j
B ðtÞ

�
1½t ≠ T�

− λB̂j ðtþ 1ÞPj
SðtÞ

�
αAϕ

i→j
A

ðθi→j
A ðtÞÞ2

Y
l∈∂jni

�
1 −

αAϕ
l→j
A ðtÞ

θl→j
A ðtÞ

���
1 −

Y
l∈∂j

�
1 −

αBϕ
l→j
B ðtÞ

θl→j
B ðtÞ

��
1½t ≠ T�; ðF5Þ

∂L
∂ϕi→j

A ðtÞ ¼ λϕA
ij ðtÞ þ ½pλθAij ðtþ 1Þ þ ðαA − 1ÞλϕA

ij ðtþ 1Þ�1½t ≠ T�

−
X
a∈∂jni

λÂjaðtþ 1ÞPj→a
S ðtÞ

� Y
l∈∂jna

�
1 −

αBϕ
l→j
B ðtÞ

θl→j
B ðtÞ

���
1þ αA

θi→j
A ðtÞ

Y
l∈∂jna;i

�
1 −

αAϕ
l→j
A ðtÞ

θl→j
A ðtÞ

��
1½t ≠ T�

þ
X
a∈∂jni

λB̂jaðtþ 1ÞPj→a
S ðtÞ αA

θi→j
A ðtÞ

� Y
l∈∂jna;i

�
1 −

αAϕ
l→j
A ðtÞ

θl→j
A ðtÞ

���
1 −

Y
l∈∂jna

�
1 −

αBϕ
l→j
B ðtÞ

θl→j
B ðtÞ

��
1½t ≠ T�

− λÂj ðtþ 1ÞPj
SðtÞ

�Y
l∈∂j

�
1 −

αBϕ
l→j
B ðtÞ

θl→j
B ðtÞ

���
1þ αA

θi→j
A ðtÞ

Y
l∈∂jni

�
1 −

αAϕ
l→j
A ðtÞ

θl→j
A ðtÞ

��
1½t ≠ T�

þ λB̂j ðtþ 1ÞPj
SðtÞ

αA
θi→j
A ðtÞ

� Y
l∈∂jni

�
1 −

αAϕ
l→j
A ðtÞ

θl→j
A ðtÞ

���
1 −

Y
l∈∂j

�
1 −

αBϕ
l→j
B ðtÞ

θl→j
B ðtÞ

��
1½t ≠ T� ðF6Þ

∂L
∂νið0Þ ¼ −λbuð0Þ − λÂi ð0Þ − λAi ð0Þ −

X
j

λÂijð0Þ −
X
j

λAijð0Þ −
X
j

λϕA
ij ð0Þ

þ λŜi ð0Þ þ λSi ð0Þ þ
X
j

λŜijð0Þ þ
X
j

λSijð0Þ þ ϵ

�
1

νið0Þ −
1

1 − νið0Þ
�

¼ 0: ðF7Þ

The equations for ∂L=∂Pi→j
B ðtÞ, ∂L=∂Pi

BðtÞ, ∂L=∂P̂i→j
B ðtÞ, ∂L=∂P̂i

BðtÞ, ∂L=∂θi→j
B ðtÞ, and ∂L=∂ϕi→j

B ðtÞ are similar to
their A process counterparts, with an exchange of variables A ↔ B.
For simplicity, one can write Eq. (F7) as

∂L
∂νið0Þ ¼ −λbuð0Þ þ ψ i þ ϵ

�
1

νið0Þ −
1

1 − νið0Þ
�

¼ 0: ðF8Þ

The same method as in Ref. [76] is used here to solve the quadratic equation (F8), writing νið0Þ as a function of ψ i:

νið0Þ ¼ λbuð0Þ þ ψ i − 2ϵ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
( − λbuð0Þ þ ψ i)

2 þ 4ϵ2
p

−2λbuð0Þ þ 2ψ i
: ðF9Þ

In this scenario, the positive square root solution satisfies restriction (F2). Given the budget restriction, one can obtain νið0Þ
numerically through X

i

νið0Þ ¼ Bν: ðF10Þ

One can use the following update procedure to obtain the optimal solution iteratively:
Step 1: Carry out the forward iteration using the given initial conditions, Eqs. (C7)–(C10).
Step 2: Compute all Lagrangian multipliers at t ¼ T.
Step 3: Compute λSijðt − 1Þ; λSi ðt − 1Þ; λAi ðt − 1Þ; λBi ðt − 1Þ; λϕA

ij ðt − 1Þ; λϕB
ij ðt − 1Þ using the obtained Lagrangian multi-

pliers at time t from Eqs. 216 and (F6).
Step 4: Compute λAijðt − 1Þ; λBijðt − 1Þ; λÂi ðt − 1Þ; λB̂i ðt − 1Þ; λŜi ðt − 1Þ using the obtained Lagrangian multipliers and
Eqs. 216 and (F6).

Step 5: Compute λÂijðt − 1Þ; λB̂ijðt − 1Þ; λŜijðt − 1Þ using the obtained Lagrangian multipliers and Eqs. 216 and (F6).

Step 6: Compute λθAij ðt − 1Þ; λθBij ðt − 1Þ using the obtained Lagrangian multipliers.
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Step 7: Repeat steps 1–5 back in time until all Lagrangian multipliers have been obtained for the range t ¼ 0;…; T.
Step 8: Solve Eqs. (F9) and (F10) numerically and update νi.
Step 9: Repeat steps 1–8 until convergence.
Step 10: Calculate the posterior marginals on the basis of the messages using Eq. (C10).
A similar approach is used in collaborative processes using the corresponding equations for the dynamics and the

Lagrange multipliers’ dynamics.

APPENDIX G: OPTIMIZATION OF COMPETITIVE PROCESSES—EXAMPLE

We also demonstrate the efficacy of the DMP-optimal algorithm on the denser network of the 1994 world metal trade
network [95]] shown in Fig. 10. The network consists of 80 countries; we ignore their respective trade volumes and use the
dense topology for the current example. The infection probabilities used for the two processes are αA ¼ αB ¼ 0.5; the
budget for B is 1, allocated at node 1 (Argentina) at t ¼ 0, and a budget of 1 per time step is assigned using the DMP-
optimal strategy for process A within the time window of T ¼ 3. The results are shown in Fig. 11, where the subfigures

FIG. 10. The 1994 network of world trade in metal. The size of the nodes represents their degree [94].
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represent the containment of process B at different times. The heat bar represents the dominating process per node through
the value Pi

AðtÞ − Pi
BðtÞ. Red and blue represent dominating processes A and B, respectively.

APPENDIX H: OPTIMIZATION OF COLLABORATIVE PROCESSES

Optimization in collaborative processes is highly relevant in many health-related problems such as the coepidemic of
HIVand tuberculosis, and in the marketing of correlated products or opinions. In the coepidemic case, identifying the most
catastrophic health-risk scenario is an important aspect of evaluating the risk of a coepidemic event; however, in the
marketing area, the aim is the best joint advertising campaign.
We consider two main scenarios in our model: (a) the multiagent seeding problem, i.e., computing the optimal allocation

of one agent, which minimizes the number of susceptible vertices at a certain time T for a given spread of the second agent;
(b) optimal allocation of vaccines against one of the processes for maximizing the impact on the spread of both processes.
Assume we do not have any vaccines for HIV, but vaccines for tuberculosis are available (such as Bacillus Calmette-Gurin
[96]). The optimization problem would be articulated as follows: Given a certain budget of vaccines for tuberculosis, what is
the best vaccination policy to minimize the spreading of both?
The Lagrangian used is similar to the one of the competitive case but with different dynamics and initial conditions. The

dynamics equations are enforced through a set of Lagrange multipliers λ as before:

FIG. 11. Example of optimization of competitive processes on the 1994 network of world trade in metal. The infection parameters
used for the two processes are αA ¼ αB ¼ 0.5; the budget for B is 1, allocated at node 1 (Argentina) at t ¼ 0. A budget of 1 per time step
is deployed using the DMP-optimal strategy for process A for a time window of T ¼ 3. The subfigures represent the containment of
process B at the different times: (a) t ¼ 1; (b) t ¼ 2; and (c) t ¼ 3. The heat bar represents the dominating process per node through the
value Pi

AðtÞ − Pi
BðtÞ. Red and blue represent dominating processes A and B, respectively.
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D¼
X
ij

XT−1
t¼0

λθAij ðtþ 1Þ½θi→j
A ðtþ 1Þ− θi→j

A ðtÞ þ αAϕ
i→j
A ðtÞ�

þ
X
ij

XT−1
t¼0

λθBij ðtþ 1Þ½θi→j
B ðtþ 1Þ− θi→j

B ðtÞ þ αBϕ
i→j
B ðtÞ�

þ
X
ij

XT−1
t¼0

λSijðtþ 1Þ
�
Pi→j
S ðtþ 1Þ−Pi

Sð0Þ
Y

k∈∂inj
θk→i
A ðtþ 1Þθk→i

B ðtþ 1Þ
�

þ
X
ij

XT−1
t¼0

λϕA
ij ðtþ 1Þ½ϕi→j

A ðtþ 1Þ−ϕi→j
A ðtÞ þ αAϕ

i→j
A ðtÞ−Pi→j

A ðtþ 1Þ þPi→j
A ðtÞ�

þ
X
ij

XT−1
t¼0

λϕB
ij ðtþ 1Þ½ϕi→j

B ðtþ 1Þ−ϕi→j
B ðtÞ þ αBϕ

i→j
B ðtÞ−Pi→j

B ðtþ 1Þ þPi→j
B ðtÞ�

þ
X
ij

XT−1
t¼0

λAijðtþ 1Þ
�
Pi→j
A ðtþ 1Þ−Pi→j

A ðtÞ−Pi→j
S ðtÞ

�
1−

Y
k∈∂inj

�
1−

αAϕ
k→i
A ðtÞ

θk→i
A ðtÞ

��

−Pi→j
B� ðtÞ

�
1−

Y
k∈∂inj

�
1−

αABϕ
k→i
A ðtÞ

θk→i
A ðtÞ

���

þ
X
ij

XT−1
t¼0

λBijðtþ 1Þ
�
Pi→j
B ðtþ 1Þ−Pi→j

B ðtÞ−Pi→j
S ðtÞ

�
1−

Y
k∈∂inj

�
1−

αBϕ
k→i
B ðtÞ

θk→i
B ðtÞ

��

−Pi→j
A� ðtÞ

�
1−

Y
k∈∂inj

�
1−

αBAϕ
k→i
B ðtÞ

θk→i
B ðtÞ

���

þ
X
ij

XT−1
t¼0

λABij ðtþ 1Þ½Pi→j
AB ðtþ 1Þ−Pi→j

A ðtþ 1Þ−Pi→j
B ðtþ 1Þ−Pi→j

S ðtþ 1Þ þ 1�

þ
X
ij

XT−1
t¼0

λA�
ij ðtþ 1Þ½PAi→j

�
ðtþ 1Þ−Pi→j

A ðtþ 1Þ þPi→j
AB ðtþ 1Þ�

þ
X
ij

XT−1
t¼0

λB�
ij ðtþ 1Þ½Pi→j

B� ðtþ 1Þ−Pi→j
B ðtþ 1Þ þPi→j

AB ðtþ 1Þ�

þ
X
i

XT−1
t¼0

λSi ðtþ 1Þ
�
Pi
Sðtþ 1Þ−Pi

Sð0Þ
Y
k∈∂i

θk→i
A ðtþ 1Þθk→i

B ðtþ 1Þ
�

þ
X
i

XT−1
t¼0

λABi ðtþ 1Þ½Pi
ABðtþ 1Þ−Pi

Aðtþ 1Þ−Pi
Bðtþ 1Þ−Pi

Sðtþ 1Þ þ 1�

þ
X
i

XT−1
t¼0

λAi ðtþ 1Þ
�
Pi
Aðtþ 1Þ−Pi

AðtÞ−Pi
SðtÞ

�
1−

Y
k∈∂i

�
1−

αAϕ
k→i
A ðtÞ

θk→i
A ðtÞ

��
−Pi

B� ðtÞ
�
1−

Y
k∈∂i

�
1−

αABϕ
k→i
A ðtÞ

θk→i
A ðtÞ

���

þ
X
i

XT−1
t¼0

λBi ðtþ 1Þ
�
Pi
Bðtþ 1Þ−Pi

BðtÞ−Pi
SðtÞ

�
1−

Y
k∈∂i

�
1−

αBϕ
k→i
B ðtÞ

θk→i
B ðtÞ

��
−Pi

A� ðtÞ
�
1−

Y
k∈∂i

�
1−

αBAϕ
k→i
B ðtÞ

θk→i
B ðtÞ

���

þ
X
i

XT−1
t¼0

λA�
i ðtþ 1Þ½Pi

A�ðtþ 1Þ−Pi
Aðtþ 1Þ þPi

ABðtþ 1Þ� þ
X
i

XT−1
t¼0

λB�
i ðtþ 1Þ½Pi

B� ðtþ 1Þ−Pi
Bðtþ 1Þ þPi

ABðtþ 1Þ�:

ðH1Þ
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The initial conditions in this case are of the form

I ¼
X
ij

λθAij ð0Þ(θi→j
A ð0Þ − 1)þ

X
ij

λθBij ð0Þ(θi→j
B ð0Þ − 1)

þ
X
ij

λϕA
ij ð0Þ(ϕi→j

A ð0Þ − νið0Þð1 − δσið0Þ;BÞ)þ
X
ij

λϕB
ij ð0Þ(ϕi→j

B ð0Þ − δσið0Þ;B)

þ
X
ij

λSijð0Þ(Pi→j
S ð0Þ − 1þ νið0Þð1 − δσið0Þ;BÞ þ δσið0Þ;B)

þ
X
ij

λAijð0Þ(Pi→j
A ð0Þ − νið0Þð1 − δσið0Þ;BÞ)þ

X
ij

λBijð0Þ(Pi→j
B ð0Þ − δσið0Þ;B)þ

X
ij

λABij ð0ÞPi→j
AB ð0Þ

þ
X
ij

λA�
ij ð0Þ(Pi→j

A� ð0Þ − νið0Þð1 − δσið0Þ;BÞ)þ
X
ij

λB�
ij ð0Þ(Pi→j

B� ð0Þ − δσið0Þ;B)

þ
X
i

λSi ð0Þ(Pi
Sð0Þ − 1þ νið0Þð1 − δσið0Þ;BÞ þ δσið0Þ;B)

þ
X
i

λA�
i ð0Þ(Pi

A� ð0Þ − νið0Þð1 − δσið0Þ;BÞ)þ
X
i

λB�
i ð0Þ(Pi

B�ð0Þ − δσið0Þ;B)

þ
X
i

λAi ð0Þ(Pi
Að0Þ − νið0Þð1 − δσið0Þ;BÞ)þ

X
i

λBi ð0Þ(Pi
Bð0Þ − δσið0Þ;B)þ

X
i

λABi ð0ÞPi
ABð0Þ: ðH2Þ

APPENDIX I: OPTIMIZATION OF VACCINE ALLOCATION

The multiprocess seeding problem in the collaborative case has a similar structure to that of the containment task in
competitive processes. The vaccine allocation problem is of a slightly different nature. There are many ways in which it can
be formulated; the model illustrated below is the one we have chosen to use.
If a node receives a unit of vaccine before being exposed to infected neighbors, it will be immune to that process (denoted

as B in our model), which means the infection message from its neighbor will decrease to 0. However, sometimes a node
receives part of a unit of vaccine; specifically, if one allocates a certain amount of vaccine, say, b to a node, the probability of
it being infected will decrease to αB − b (bounded by 0 from below), where αB is the initial infection parameter. Meanwhile,
the parameter αBA will also decrease to αBA − b. Therefore, the budget for vaccines can be expressed by the budget for
decreasing αB and αBA in Eqs. (E31)–(E37), which now take the following form:

θi→j
B ðtÞ − θi→j

B ðt − 1Þ ¼ −(αB − bðjÞ)ϕi→j
B ðt − 1Þ

ϕi→j
B ðtÞ − ϕi→j

B ðt − 1Þ ¼ −(αB − bðjÞ)ϕi→j
B ðt − 1Þ þ Pi→j

B ðtÞ − Pi→j
B ðt − 1Þ

Pi
BðtÞ ¼ Pi

Bðt − 1Þ þ Pi
Sðt − 1Þ

�
1 −

Y
k∈∂i

�
1 −

ðαB − bðiÞÞϕk→i
B ðt − 1Þ

θk→i
B ðt − 1Þ

��

þ Pi
A� ðt − 1Þ

�
1 −

Y
k∈∂i

�
1 −

ðαBA − bðiÞÞϕk→i
B ðt − 1Þ

θk→i
B ðt − 1Þ

��
;

Pi→j
B ðtÞ ¼ Pi→j

B ðt − 1Þ þ Pi→j
S ðt − 1Þ

�
1 −

Y
k∈∂inj

�
1 −

(αB − bðiÞ)ϕk→i
B ðt − 1Þ

θk→i
B ðt − 1Þ

��

þ Pi→j
A� ðt − 1Þ

�
1 −

Y
k∈∂inj

�
1 −

ðαBA − bðiÞÞϕk→i
B ðt − 1Þ

θk→i
B ðt − 1Þ

��
: ðI1Þ

The budget restriction in this case is

B ¼ λbu
X
i

(bðiÞ − Bu); ðI2Þ

where Bu is the total vaccination budget. Another restriction for bðiÞ allocated on a node (not exceeding the infection
probability) is expressed similarly to before as
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P ¼ ϵ½log (bðiÞ)þ log (αB − bðiÞ)�: ðI3Þ

Finally, the derivative of the part of the Lagrangian that enforces the dynamics D is differentiated with respect to bðiÞ,
which is required to complete the set of equations

∂D
∂bðiÞ ¼

XT−1
t¼0

�
−
X
k∈∂i

λθBki ðtþ 1Þϕk→i
B ðtÞ −

X
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λϕB
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B ðtÞ

þ
X
j
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S ðtÞ

� X
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B ðtÞ
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B ðtÞ

Y
k∈∂inj;l

�
1 −
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B ðtÞ

θk→i
B ðtÞ

��

þ
X
j
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A� ðtÞ

� X
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ϕl→i
B ðtÞ

θl→i
B ðtÞ

Y
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�
1 −

(αBA − bðiÞ)ϕk→i
B ðtÞ

θk→i
B ðtÞ

��

þ λBi ðtþ 1ÞPi
SðtÞ

�X
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ϕl→i
B ðtÞ

θl→i
B ðtÞ

Y
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�
1 −
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��
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�
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���
: ðI4Þ

The same procedure [following Eq. (F8)] can be imple-
mented for the optimization in this case.
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