Comment on “Interaction-induced dephasing of Aharonov-Bohm oscillations”
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In Ref.!, Ludwig & Mirlin (LM) have studied the decay
of Aharonov-Bohm (AB) harmonics of the conductance
of a weakly disordered metallic ring of perimeter L, due
to decoherence from electron-electron interaction. They
obtained the result [eq. (16)]
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C, involves the ratio of the perimeter and the length of
the connecting wires (7 = 0 corresponds to infinitely long
connecting wires). The ratio C/Cy varies monotonously
between 1 and C;/Cy = 1/v2. v is the density of
states and D the diffusion constant. Lt = /D/T is the
thermal length. We have introduced the Nyquist length
Ly = (1yD?/T)"/3. We argue here that, in eq. (1), the
prefactor oc T~7/4, is incorrect.
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Path integral formulation.— The starting point of LM is
the path integral formulation introduced in Ref.?2. The
AB harmonics (6g2) can be cast in the form :
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with the constraint that the pair of paths, put end to
end, have a winding n around the ring (the fields 64 2(¢),
t’ € [0, 1], live inside the ring). R = L/(2m) is the radius.
The potential V (61, 62) accounts for decoherence due to
electron-electron interaction. The path integral is then
estimated by semiclassical arguments. As noticed by LM
the dominant classical paths satisfy 65'(t') = —65(t')
with initial and final conditions ©®; = 0 and O, = 7.
Then for n = 1 “the problem is reduced to that of a
particle of mass m = R?/D tunneling with zero energy
in the potential V(8) = V(0,—0) = ifg@(l — )" with
6 € [0, 7]. To simplify we consider here the limit of long
connecting wires (7 = 0) since the temperature depen-
dence of the prefactor is not expected' to depend on
~. They obtained Z,, e "Simst where it is the ac-
tion given above. Our statement is that LM have not
used properly the semiclassical method to estimate the
remaining prefactor. We first recall their estimation.

LM’s prefactor.— LM wrote that the prefactor have three
origins. (A) Fluctuations around classical paths : each

path integral brings a factor v/mw where w ~ /T/(voR).

This gives a factor mw ~ Sipst. (B) Fluctuations around
optimal initial and final points lead to a factor S L. (C)

inst*
Fluctuations around the optimal time leads to a factor

topt/V/Sinst Where topy ~ wl ~ /R/T is the time
needed by the instanton to cross the quadratic barrier.
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Z,’s final prefactor is therefore! gp:t ~ ;03 7ipr7a Which

leads to (1) after multiplication by D?/(RT).
Path integral for series of quadratic barriers.— We show

that the points (A) and (C) lead to a wrong result when
applied to the simpler calculation of the path integral
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where the field x lives on R and V() is a periodic poten-
tial (to mimic the ring) given by ax(1 — x) for x € [0, 1].
If @ > 1 we can compute the path integral with semi-
classical approximation. For n = 1, the result is dom-
inated by the instanton crossing the barrier in a time
topt = m/(2y/a) with the action Sinst = §v/a. It is well
known that semiclassical method must be used with care
when initial and final points are turning points (where
energy= V(x)). In this case, in the neighbourhood of
the turning points, the semiclassical solution must be
matched to the exact solution for a linear potential (given
by Airy functions). We obtain® :
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Now we compare this expression with the result obtained
by following LM’s arguments. According to points (A)
and (C) (here we do not integrate over initial and fi-

nal points), the prefactor should be /mw topt/v/Sinst
where m = 1/2 and w = 2+/a, therefore LM’s arguments

yield the incorrect result C(1,0) ~ a'/4 “(:/22 e~ Sinst =

afl/zefsinst.

Correct AAS and AB amplitudes for v ~ 0.— It was
shown in Ref.® that the relation Z, = %C(n, 0) is ex-
act for v = 0. In this case harmonics of the Al'tshuler-
Aronov-Spivak (AAS) oscillations is precisely given by
(Agp) ~ —C(n,0) with @ = (L/Lx)3. This leads to
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AAS oscillations are related to the AB oscillations by
(0g2) ~ (£2)?(Agn). Therefore, for L > Ly :
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The expected temperature dependence of AB harmonics
is (5g2) ~ T—4/3e=nL**T"* Regults (5,6) hold for v <
11(%)3/2 as shown in Ref.”.

Effect of the connecting arms.— Note that LM’s path in-
tegral (2) is an approximation since it neglects the pos-
sibility for the trajectories to explore the arms. This
approximation is reasonable for Ly <« L. Therefore in
LM’s calculation, the presence of the connecting arms
appears through their parameter 7 entering in V' (61, 62)
only. As a consequence the path integral they consider
is very similar to the one for an isolated ring (moreover
exactly the same for v = 0).

The leads can have several effects : (i) In the regime
Ly > L, winding trajectories spend most time in the
arms, which modifies strongly the winding properties
and affects decoherence®5. (i) In the regime Ly < L,
short arms are responsible for additional temperature-
dependent preexponential factors for two reasons. First,
if arms are shorter that the phase coherence length
(l« < Ly), winding trajectories feel the reservoirs®®.
This cannot be taken into account within LM’s scheme
of approximations. Second, as pointed by LM, short leads
(I < L) induce inhomogeneous cooperon inside the ring
which also brings some additional Ly dependent factor
[their eq. (A.1), factor (B) above]. However, as it was dis-
cussed in Ref.”, this can only occurs in situations rather
irrealistic experimentally, if one wants to avoid the first
effect (since it should conciliate Ly < L, I, > Ly and
lo < L). As a conclusion, results (5,6) for v ~ 0 seem
more appropriate in practice.
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