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In Ref.1, Ludwig & Mirlin (LM) have studied the decay
of Aharonov-Bohm (AB) harmonics of the conductance
of a weakly disordered metallic ring of perimeter L, due
to decoherence from electron-electron interaction. They
obtained the result [eq. (16)]
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Cγ involves the ratio of the perimeter and the length of
the connecting wires (γ = 0 corresponds to infinitely long
connecting wires). The ratio Cγ/C0 varies monotonously

between 1 and C1/C0 = 1/
√

2. ν0 is the density of

states and D the diffusion constant. LT =
√

D/T is the
thermal length. We have introduced the Nyquist length
LN = (ν0D

2/T )1/3. We argue here that, in eq. (1), the
prefactor ∝ T−7/4, is incorrect.

Path integral formulation.– The starting point of LM is
the path integral formulation introduced in Ref.2. The
AB harmonics 〈δg2

n〉 can be cast in the form :
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with the constraint that the pair of paths, put end to
end, have a winding n around the ring (the fields θ1,2(t

′),
t′ ∈ [0, t], live inside the ring). R = L/(2π) is the radius.
The potential V (θ1, θ2) accounts for decoherence due to
electron-electron interaction. The path integral is then
estimated by semiclassical arguments. As noticed by LM
the dominant classical paths satisfy θcl

1 (t′) = −θcl
2 (t′)

with initial and final conditions Θ1 = 0 and Θ2 = π.
Then for n = 1 “the problem is reduced to that of a
particle of mass m = R2/D tunneling with zero energy
in the potential V (θ) = V (θ,−θ) = 4RT

ν0D θ(1 − θ
π )” with

θ ∈ [0, π]. To simplify we consider here the limit of long
connecting wires (γ = 0) since the temperature depen-
dence of the prefactor is not expected1 to depend on
γ. They obtained In ∝ e

−nSinst where Sinst is the ac-
tion given above. Our statement is that LM have not
used properly the semiclassical method to estimate the
remaining prefactor. We first recall their estimation.

LM’s prefactor.– LM wrote that the prefactor have three
origins. (A) Fluctuations around classical paths : each

path integral brings a factor
√

mω where ω ∼
√

T/(ν0R).
This gives a factor mω ∼ Sinst. (B) Fluctuations around
optimal initial and final points lead to a factor S−1

inst. (C)
Fluctuations around the optimal time leads to a factor
topt/

√
Sinst where topt ∼ ω−1 ∼

√

ν0R/T is the time
needed by the instanton to cross the quadratic barrier.

In’s final prefactor is therefore1 topt√
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∼ ν
3/4
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T 3/4R1/4 which

leads to (1) after multiplication by D2/(R4T ).

Path integral for series of quadratic barriers.– We show
that the points (A) and (C) lead to a wrong result when
applied to the simpler calculation of the path integral
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where the field χ lives on R and V(χ) is a periodic poten-
tial (to mimic the ring) given by aχ(1− χ) for χ ∈ [0, 1].
If a ≫ 1 we can compute the path integral with semi-
classical approximation. For n = 1, the result is dom-
inated by the instanton crossing the barrier in a time
topt = π/(2

√
a) with the action Sinst = π

8

√
a. It is well

known that semiclassical method must be used with care
when initial and final points are turning points (where
energy= V(χ)). In this case, in the neighbourhood of
the turning points, the semiclassical solution must be
matched to the exact solution for a linear potential (given
by Airy functions). We obtain4 :
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Now we compare this expression with the result obtained
by following LM’s arguments. According to points (A)
and (C) (here we do not integrate over initial and fi-
nal points), the prefactor should be

√
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√
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where m = 1/2 and ω = 2
√

a, therefore LM’s arguments

yield the incorrect result C(1, 0) ∼ a1/4 a−1/2
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e
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Correct AAS and AB amplitudes for γ ≃ 0.– It was

shown in Ref.3 that the relation In = L2

2DC(n, 0) is ex-
act for γ = 0. In this case harmonics of the Al’tshuler-
Aronov-Spivak (AAS) oscillations is precisely given by
〈∆gn〉 ∼ −C(n, 0) with a = (L/LN)3. This leads to
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for L ≫ LN (5)
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AAS oscillations are related to the AB oscillations by
〈δg2
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L )2〈∆gn〉. Therefore, for L ≫ LN :
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The expected temperature dependence of AB harmonics

is 〈δg2
n〉 ∼ T−4/3

e
−nL3/2T 1/2

. Results (5,6) hold for γ .
11( L

LN
)3/2 as shown in Ref.7.

Effect of the connecting arms.– Note that LM’s path in-
tegral (2) is an approximation since it neglects the pos-
sibility for the trajectories to explore the arms. This
approximation is reasonable for LN ≪ L. Therefore in
LM’s calculation, the presence of the connecting arms
appears through their parameter γ entering in V (θ1, θ2)
only. As a consequence the path integral they consider
is very similar to the one for an isolated ring (moreover
exactly the same for γ = 0).

The leads can have several effects : (i) In the regime
LN ≫ L, winding trajectories spend most time in the
arms, which modifies strongly the winding properties
and affects decoherence3,5. (ii) In the regime LN ≪ L,
short arms are responsible for additional temperature-
dependent preexponential factors for two reasons. First,
if arms are shorter that the phase coherence length
(la ≪ LN), winding trajectories feel the reservoirs3,5.
This cannot be taken into account within LM’s scheme
of approximations. Second, as pointed by LM, short leads
(la ≪ L) induce inhomogeneous cooperon inside the ring
which also brings some additional LN dependent factor
[their eq. (A.1), factor (B) above]. However, as it was dis-
cussed in Ref.7, this can only occurs in situations rather
irrealistic experimentally, if one wants to avoid the first
effect (since it should conciliate LN ≪ L, la ≫ LN and
la ≪ L). As a conclusion, results (5,6) for γ ≃ 0 seem
more appropriate in practice.
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