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Presentation

• The exercices you must do are marked by a “*”.

• The french on-line version (http://lptms.u-psud.fr/christophe_texier/) contains a
few supplementary exercices.

Useful formulas

Gaussian integrals

An integral related to Γ(1/2), ∫
R
dx e−

1
2
ax2

=

√
2π

a
(0.1)

An integral related to Γ(3/2), ∫
R
dxx2 e−

1
2
ax2

=
1

a

√
2π

a
(0.2)

More generally ∫ ∞

0
dxxn e−

1
2
ax2

=
1

2

(
2

a

)n+1
2

Γ

(
n+ 1

2

)
(0.3)

where Γ(z) is the Gamma function (see below). The Fourier transform of the Gaussian :∫
R
dx e−

1
2
ax2+ikx =

√
2π

a
e−

1
2a

k2 (0.4)

The Euler Gamma function

Γ(z)
def
=

∫ ∞

0
dt tz−1 e−t for Re z > 0 (0.5)

Remark : All integrals of the type
∫∞
0 dxxa e−Cxb

can be expressed using the Γ function.
The fonctionnal relation (easy to show) :

Γ(z + 1) = z Γ(z) (0.6)

allows to analytically extend the Γ function to the other half of the complex plane, Re z ⩽ 0.
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Particular values : Γ(1) = 1 & Γ(1/2) =
√
π and therefore by iteration

Γ(n+ 1) = n! (0.7)

Γ(n+
1

2
) =

√
π

2n
(2n− 1)!! (0.8)

where (2n− 1)!!
def
= 1× 3× 5× · · · × (2n− 1) = (2n)!

(2n)!! and (2n)!!
def
= 2× 4× · · · × (2n) = 2nn!.

The Euler Beta function

B(µ, ν) =

∫ 1

0
dt tµ−1(1− t)ν−1 = 2

∫ π/2

0
dθ sin2µ−1 θ cos2ν−1 θ =

Γ(µ)Γ(ν)

Γ(µ+ ν)
(0.9)

Stirling formula

Γ(z + 1) ≃
√
2πz zz e−z i.e ln Γ(z + 1) = z ln z − z +

1

2
ln(2πz) +O(1/z) (0.10)

which will be useful to calculate ln(n!) ≃ n lnn− n where d
dn ln(n!) ≃ lnn.

Volume of the hypersphere

VD =
πD/2

Γ(D2 + 1)
(0.11)

Binomial formula

(x+ y)N =
N∑

n=0

Cn
N xn yN−n où Cn

N ≡
(
N
n

)
def
=

N !

n!(N − n)!
(0.12)

and its extension

(x1 + · · ·+ xM )N =
∑

m1,··· ,mM
t.q.

∑
k mk=N

N !

m1! · · ·mM !
xm1
1 · · ·xmM

M (0.13)

Other useful integrals∫ ∞

0
dx

xα−1

ex − 1
= Γ(α) ζ(α) where ζ(α) =

∞∑
n=1

n−α (0.14)

is the Euler zeta function. We have ζ(2) = π2

6 , ζ(3) ≃ 1.202, ζ(4) = π4

90 , etc.∫ ∞

0
dx

x4

sh2 x
=

π4

30
(0.15)

(we can infer it from the previous relation with α = 4).
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TD 1 : Random walks and the central limit theorem

1.1 Binomial law and random walk (*)

We consider a walker who can move on some axis : at each time step he chooses to go either
right with probability p ∈ [0, 1], either left with probability q = 1− p (see Fig. 1.1). Each step
is independent of the previous one.

x

=1−q p p

−2 −1 0... +1 +2 ...

time

x

Figure 1.1: Walker on an axis. Right : We randomly generate 20 symmetric walks each con-
taining 100 steps.

A. Binomial law.

1/ Distribution.– After M steps, what is the probability ΠM (n) than the walker has made n
steps to the right ? Check the normalisation.

2/ Expression of the moments.– Express the kth moment, i.e.
〈
nk
〉
, as a summmation

(beware that the number of steps n is the random variable while M is just a parameter of the
problem). Do you know how to calculate this summation ?

3/ Calculation of the moments : generating function.– We introduce an auxiliary func-
tion, called “generating function”,

GM (s)
def
= ⟨sn⟩ , (1.1)

function of the variable s which could be complex.

a) If we assume that the function GM (s) is known, how can we infer from it the moments ?

b) For the previously determined binomial law ΠM (n), calculate explicitly GM (s) ; deduce ⟨n⟩
and ⟨n2⟩ and the variance Var(n)

def
= ⟨n2⟩ − ⟨n⟩2. Compare the fluctuations to its average value.

c)Optional : we introduce another definition for the generating function : WM (β)
def
= lnGM (e−β),

where β is called “conjugate variable” (of the random variable). Check that the expansion
WM (β) = −β ⟨n⟩ + (β2/2)Var(n) + · · · (this provides the variance more quickly). We can try
to justify more generally this expansion by comparing the definitions of GM (s) and WM (β).

4/ Limit M → ∞.– In this question we analyze directly the distribution in the limit M → ∞.
Using the Stirling formula, expand lnΠM (n) around its maximum n = n∗. Justify that ΠM (n)
is approximately a gaussian in the limit M → ∞ (give a condition on p). Draw carefully the
shape of the distribution.

B. Walker.– We return to the walker’s study, whose position on the axis is x. The length of a
step is a.

1/ Express x according to the number of steps to the right n. Deduce the first two moments of
x (using the results of part A).
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2/ Drift velocity.– The walker waits for a time τ between two steps. Express the drift velocity

V
def
= lim

t→∞

⟨x⟩t
t

(1.2)

as a function of a, τ and the probability p ; ⟨x⟩t denotes the average at the time t = Mτ .

3/Diffusion constant.– In order to characterize the spread of the walker distribution, we
introduce the diffusion constant

D
def
= lim

t→∞

〈
x2
〉
t
− ⟨x⟩2t
2t

(1.3)

Express D as a function of the parameters of the problem.

4/ Continuum limit.– The position is treated as a continuous random variable. Give the
expression of the probability density Pt(x) of the walker’s position at time t. Check the nor-
malization (in the case p = 1/2, we can discuss the precise relationship between ΠM (n) and
Pt(x)).

C. Steps are continuous random variables – Universality.– We consider another model
of a random walk : the position of the walker is no longer constrained to be on a latice of
points but can take a continuously varying value in R. At each time interval, he makes a step
distributed with the law p(h)

1/ Justify that the distribution of the position at time t obeys the recursive relation

Pt+τ (x) =

∫
dh p(h)Pt(x− h) . (1.4)

We now choose one of the two methods proposed below to solve this equation.

2/ Method 1 : for the gaussian symmetric walk– We consider a symmetric Gaussian
law p(h) = (

√
2π σ)−1 exp

{
−h2/(2σ2)

}
. Using a known result on the convolution of Gaussians,

deduce PMτ (x). Give the expression of the diffusion constant as a function of τ and σ.

time

x

Figure 1.2: 50 walks generated with 100 steps distributed according a Gaussian law.

3/ Method 2 : for the general case.– We do not specify the explicit form of the law p(h).
We make only two fairly weak assumptions: his first two “ moments ” are finite, ⟨h⟩ < ∞ and
⟨h2⟩ < ∞. We consider “small ” time intervals, τ → 0, and “small” steps (the width of p(h)
goes to zero).

a) Give examples of p(h) (with different types of decay at large h such as exponential, power
law, ...).

b) We make the assumption that the distribution Pt(x) is a function that varies “slowly” with
t (at the scale of τ) and with x (at the scale h). In the integral equation (1.4), expand Pt+τ (x)
to first order in τ and Pt(x− h) and to second order in h.
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c) We suppose that the three parameters τ ∝ ϵ, ⟨h⟩ ∝ ϵ et ⟨h2⟩ ∝ ϵ are proportional to the
parameter ϵ → 0+ and tend simultaneously to zero. Show that we obtain a partial differential
equation for Pt(x), which we write in terms of V and D.

d) Give the solution to the partial differential equation (the simplest method to solve it is to
Fourier transform the equation in space).

e) Optional : Properties of the random walk.– We note ht the step made on time t (given
by the distribution law p(h)). We assume ⟨ht⟩ = 0 to simplify the discussion. We note x(t)
the “process”. Its evolution is controled by x(t + τ) = x(t) + ht. In the continuum limit, how

⟨
[
x(t+ δt)− x(t)

]2⟩ depends on δt ? Discuss the continuity and differentiability of the random
process x(t) in the continuum limit.

4/ Universality.– Explain why the different models of random walks all lead to the same
universal distribution law Pt(x), in the limit of a large number of steps (or equivalently in the
limit ϵ → 0).

D. The d-dimensionnal case and application.

1/ We consider a walker in Rd. At every step he is now making a jump δ⃗x = h1 e⃗1 + · · ·+hd e⃗d,
where hi are d independent random variables, described by the same symmetric law p(h). Deduce
the distribution of the walker’s position in Rd (we will use the result of question C for d = 1).

2/ Express ⟨x⃗ 2⟩, as a function of the diffusion constant defined above in the one-dimensional
case (it is convenient to consider ⟨xixj⟩ for i = j and i ̸= j).

3/ Joint law versus marginal] law.–
x⃗ ∈ R2 is distributed by the Gaussian law obtained in the limit of a large number of jumps.

How to go from the joint distribution Pt(x, y) to the marginal law Qt(r) of r =
√

x2 + y2 ?
Compare the calculation of ⟨x⃗ 2⟩ from Pt(x, y) and Qt(r). Compute the average value ⟨r⟩ and
the typical value rtyp (for which Qt(r) is maximum). Plot Qt(r) with care.

4/ Application : molecule in a gas.–
Typically, in a gas at room temperature, a molecule has a velocity v ≈ 500 m/s and has

shocks with other molecules every τ ≈ 2 ns. Compare the typical distance covered between two
shocks with the typical distance to the nearest molecule (for p = 1 atm, T = 300 K). Compare
the diffusive motion of the molecule after one second (number of shocks, typical distance finally
traveled), with the ballistic motion.
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TD 2 : Phase space and ergodicity

2.1 Evolution in phase space and the Liouville theorem

We discuss various properties of the temporal evolution of the phase space distribution for a
conservative system. To simplify, we consider the one-dimensional situation (the extension to
the multi-dimensional case and/or to several particles, is straightforward): a particle whose
dynamics is described by the Hamilton function H(q, p).

The exercice can be found at http://lptms.u-psud.fr/christophe_texier/
enseignements/enseignement-en-licence/l3-physique-statistique/

p

q

Figure 2.1: Three trajectories of a small volume in phase space are represented : the temporal
evolution keeps the measure dqdp invariant.

2.2 The H theorem

In the previous exercise, we mentioned the existence of various equilibrium measures in phase
space. It remains to understand why and how the system relaxes to equilibrate. This is the
purpose of this exercise and the next two.

The exercice can be found at http://lptms.u-psud.fr/christophe_texier/
enseignements/enseignement-en-licence/l3-physique-statistique/

2.3 Chaos and ergodicity

In this exercise, we show that the deterministic evolution of an isolated system can lead to
ergodicity, assuming certain conditions on the (chaotic) nature of the dynamics.

Exercice available at http://lptms.u-psud.fr/christophe_texier/enseignements/
enseignement-en-licence/l3-physique-statistique/
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Figure 2.2: Left : Poincaré sections at y = 0 for different values of the parameter λ (in the
plane (x, px)). Each color correspond to a different trajectory. Right : Trajectory in the physical
space (x, y) for λ = 0 and λ = −0.8. (Figures by Nicolas Pavloff, LPTMS).

2.4 Ergodicity for a sphere in a fluid

We are going to study the relaxation toward equilibrium for a toy model describing a small
sphere subject to an elastic force in a fluid. There are different confining techniques that can
be used to achieve. We can, for example, anchor the particle to surface by a polymeric linker
(Fig. 2.3) or we can use a laser that, if the particle is made of a dielectric material, acts a
confining trap (this setup is known as optical tweezers).

x

Figure 2.3: Particle anchored to a surface by a polymeric linker.

We restrict our-self to the one dimensional case. In this case, the particle follow the evolution
as obtained by the Newton equations motion:

ẋ(t) = v(t) (2.1)

mv̇(t) = −γ v(t)− k x(t) + F (t) , (2.2)

where k is the elastic constant and γ is the friction coefficient due to the presence of the liquid.
F (t)is a random force that models the fluctuations of the fluid (in particular ⟨F (t)⟩ = 0).

We can identify (at least) two characteristic time scales: the period associated to the elastic
force, T = 2π

√
m/k, and τrelax = m/γ that characterizes velocity relaxation. We are going to

focus on the over-damped regime τrelax ≪ T , i.e. the limit of strong friction γ and small elastic
constant k.

A. Velocity relaxation.–
For short times, we can neglect the elastic force, i.e. we can set k = 0 in eq. (2.2). We are

going to discretize the equation of evolution of velocity by defining: Vn ≡ v(nτ) where τ is an
arbitrary small non-physical time scale such that τ ≪ τrelax.
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1/ Show that Vn+1 = λVn + ξn and express λ and ξn as a function of the previously introduced
quantities.

2/
In which physical conditions is it possible to assume that the forces F (nτ) at different times

are decorrelated, i.e. ⟨F (nτ)F (mτ)⟩ ∝ δn,m ?

We are going to assume that all the forces F (nτ) are independent and identically dis-
tributed according to a Gaussian distribution of variance

〈
F (nτ)2

〉
= σ2/τ .

3/ Show that

Vn = λn V0 +

n−1∑
k=0

λk ξn−k (2.3)

Assuming that V0 is a random variable (independent also of ξn), derive the variance of Vn.
Derive, also, the distribution of Vn assuming that V0 is a Gaussian variable. Consider the case
τ ≪ τrelax = m/γ, justify that distribution of the velocity v(nτ) ≡ Vn becomes independent of
the initial conditions in the limit n = t/τ → ∞ (show that the exact condition is t ≫ τrelax). In
this situation v(t) has reached his stationary distribution.

4/ Fluctuation-Dissipation relation (Einstein).– In the course, we will show that average
kinetic energy is directly related to the temperature by ⟨Ec⟩ = (1/2)kBT where kB is the
Boltzmann constant. Derive a relation between the friction coefficient γ, the force fluctuation
amplitudes σ and the temperature.

5/ Derive the velocity marginal distribution Peq(v) at equilibrium as a function of T

B. Position relaxation.– In the limit τrelax ≪ T , we can neglect the the acceleration term in
the Newton equation :

0 ≃ −γ ẋ(t)− k x(t) + F (t) . (2.4)

Without performing any supplementary calculations, discuss the statistical properties of x(t)
at “large” times. Show that the equilibrium distribution of the position is given by

P̃eq(x) ∝ e−Ep(x)/(kBT ) , (2.5)

where Ep is the potential energy.
Assuming that position and velocity are independent, derive ρeq(x, p), the equilibrium dis-

tribution in phase space.

2.5 Trom time average to statistical average – Example of the 1D harmonic
oscillator(*)

The Hamiltonian of a classical one-dimensional harmonique oscialltor is given by:

H(x, p) =
p2

2m
+

1

2
mω2x2 (2.6)

where m is the mass of the particle and ω the angular frequency.

A. Classical mechanics.– We are going to analyze the oscillator in the classical mechanics
framework.

1/ Verify that, using Hamilton equations, we obtain the expected equations of motion. Solve
these equations for the following initial conditions:

x(t = 0) = x0 et p(t = 0) = 0 (2.7)
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2/ Describe the phase space of the system and plot its trajectory. What is the energy E for this
trajectory?

3/ Evaluate the fraction of time that the particles spends in a position between x and x+ dx.
We are going to write down the result as w(x) dx where w(x) is the probability density of the
position.

B. Statistical physics.–
We are going to recover the previous result following a completely different route. We assume

that the energy of the particle is continuous and can only be known within the interval between
E and E + dE.

1/ In phase space, draw the surface where the accessible states of the systems are found.

2/ We make the hypothesis of that all microstates (defined in the previous question) are equi-
probable. Evaluate the probability that the particle can be found at a position between x and
x+ dx.
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TD 3 : Density of states

3.1 Two-level systems (*)

A single two-level system is characterised by two eigenstates, denoted |+ ⟩ and |−⟩, with energies
ε± = ±ε0 where ε0 is a microscopic scale. An example is a spin in magnetic field.

We consider N such two-level systems, identical and independent (for example N spins 1/2

at the nodes of a crystal). We denote ε
(i)
σ the energy of subsystem i, with σ = + or −, and

E =
∑N

i=1 ε
(i)
σi the total energy.

1/ Energy spectrum : Describe the microstates of the system. Writing E = Mε0, how does
the integer M vary ?

2/ If the energy is fixed, give the number N± of subsystems in state |±⟩. Deduce the degeneracy
gM of level EM = Mε0. Relate gM to the density of states ρ(EM ).

3/ We consider the limit N ≫ 1. Find an approximation for ln gM by using the Stirling formula
(assuming N± ≫ 1). Plot ln gM as a function of EM . Show that the density of states is Gaussian
for E ≪ Nε0,

ρ(E) ≃ ρ(0) e−E2/(2Nε20) . (3.1)

Compare the width of the function to the width of the full spectrum. What is the total number
of states ? Deduce the value of ρ(0).

Optional : Using lnN ! = N lnN −N + 1
2 ln(2πN) +O(N−1), recover ρ(0) more directly.

3.2 Volume of a hypersphere (*)

A hypersphere of radius R in Rd is the domain defined by x21+x22+· · ·+x2d ⩽ R2. By studying the

integral
∫
Rd dx⃗ e

−x⃗ 2
, calculate the surface of the hypersphere Sd(R) and show that the volume

is given by

Vd(R) = VdR
d where Vd =

πd/2

Γ(d2 + 1)
(3.2)

is the volume of the sphere of unit radius (consider the cases d = 1, 2, and 3).

Hint: (i) Use separability of integral ; (ii) Use rotational invariance of the function integrated.

3.3 Density of states of free particles (*)

We consider a gas of N free atoms in a cubic box of volume V = L3. The Hamiltonian of the
system is

H =
N∑
i=1

p⃗i
2

2m
. (3.3)

1/ Distinguishable atoms.– By (incorrectly) considering the atoms as distinguishable, show
that the volume Φdisc(E) of phase space occupied by states of energy less than E is

Φ(E) =
1

Γ(3N2 + 1)

(
E

ϵ0

)3N/2

where ϵ0
def
=

2πℏ2

mL2
(3.4)
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2/ Undistinguishable atoms.– Identical atoms are indistinguishable. Give Φindisc(E) and
simplify the result with the help of the Stirling formula. Find the corresponding density of
states.

Numerical example: Calculate ϵ0 (in J and then in eV) for helium atoms in a box of size
L = 1 m.

3.4 Density of state of a free relativistic particle (*)

1/ Non relativistic case.– Recall the density of states for a non relativistic free particle,
ε
k⃗
= ℏ2k⃗ 2/(2m) (see previous exercice).

2/ Ultrarelativist case.– Compute the density of states for an ultrarelativist particle, with
ε
k⃗
= ℏ||⃗k|| c.

Indication : Use the representation ρ(ε) =
∑

k⃗
δ(ε− ε

k⃗
).

3/ Relativist case.– (Optional) Using the semi-classical rule, compute the density of states

for a massive relativist particle, ε
k⃗

=

√
(ℏk⃗c)2 +m2c4. Recover the two previous limiting

behaviours.

3.5 Classical and quantum harmonic oscillators (*)

We consider a system of N independent identical 1D harmonic oscillators. The Hamiltonian of
the system is

H =

N∑
i=1

(
p2i
2m

+
1

2
mω2q2i

)
. (3.5)

1/ Semi-classical treatment.– We suppose that the oscillators are classical.

a/ We denote by V(E) the volume occupied by states of energy ⩽ E in phase space (the
dimension of which will be specified). Express V(E) in terms of the constant V2N , the volume
of the hypersphere of unit radius (exercise 3.2).

b/ Using the semi-classical hypothesis that a quantum state occupies a cell of volume hN in
phase space, calculate the number of quantum states of energy less than E (written Φ(E)), and
then the density of states ρ(E).

2/ Quantum treatment.– We now suppose that the N oscillators are quantum mechanical.
We know that the energy levels of each oscillator are nondegenerate and given by εn = (n +
1/2)ℏω (where n is an integer ⩾ 0).

a/ Calculate the number of accessible states of the system when its energy is equal to E.

Indications: We wish to calculate the number of different ways of choosing N nonnegative
integers (n1, n2, n3...nN ) such that their sum

∑N
i=1 ni equals a given integer M . To do so we

use the following method: each choice may be represented by a diagram of n1 balls, then one
bar, then n2 balls, then one bar, . . . The total number of balls is M and the total number of bars
is N − 1. Permutations of balls and bars each among themselves do not count. Only matter the
number of different ways of placing N − 1 bars in a linear array of M balls.

c/ Calculate the quantum density of states of the system. Show that, in the limit E ≫ Nℏω,
one recovers the semi-classical result of question (2).

13



Appendix 2.A: Semi-classical rule for counting states in phase space

When the degrees of freedom can be described in classical terms, the semi-classical rule
allows to determine the density of states very efficiently : this is the case for translation
degrees of freedom of atomes, but not for a spin 1/2 which has no classical equivalent.

For a system with D degrees of freedom the phase space of vectors
(q1, · · · , qD, p1, · · · , pD) has dimension 2D. The correspondence between classical and
quantum counting of micro-states is ensured by considering that one quantum state occupies
a volume hD in classical phase space.

Integrated density of states.– LetH({qi, pi}) be the Hamiltonian governing the dynamics
of a system. We denote by Φ(E) the number of micro-states of energy less than E. In the
semi-classical limit, we have

Φ(E) =
1

hD

∫
H({qi,pi})⩽E

D∏
i=1

dqidpi ≡
1

hD

∫ D∏
i=1

dqidpi θH (E −H({qi, pi})) (3.6)

where θH(x) is the Heaviside function.

Density of states.– The density of states is given by

ρ(E) = Φ′(E) (3.7)

i.e. ρ(E)dE represents the number of quantum states of energy in the interval [E,E+dE).

Indistinguishable particles.– If the system contains N indistinguishable particles (for
instance an ideal gas of N particles moving in three-dimensional space, D = 3N), we
must multiply by an extra factor 1/N ! to take into account the fact that the particles
are indistinguishable (i.e. that micro-states differing only by a permutation of particles are
equivalent):

Φindist(E) =
1

N !
Φdist(E) (3.8)

Notice, however, that this expression accounts only partially for the symmetrization postu-
late of quantum mechanics. The full consequences of the latter will be studied in detail in
tutorials 8 and 9.
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TD 4 : Fundamental postulate and the microcanonical ensemble

4.1 The monoatomic ideal gas and the Sackur-Tetrode formula (*)

We consider a ideal gas of N atoms confined in a box of volume V and we are going to treat it
classically.

1/ Remind the definition of the integrated density of states Φ(E) for the mono-atomic gas (see
previous TD) or recalculate it.

2/ Remind the definition of the microcanonical entropy S∗. Explain why we can use the ex-
pression

S∗ ≃ kB ln
[
Φ(E)

]
(4.1)

and give its limits. Derive the Sackur-Tetrode formula (1912).

S∗(E, V,N) = NkB

[
5

2
+ ln

(
V

N

[
mE

3πℏ2N

]3/2)]
(4.2)

3/ Show that S∗ can be written as S∗ = 3NkB ln
(
a∆x∆p/h

)
, where ∆x is a distance and ∆p

a momentum. Interpret this result.

4/ Calculate the microcanonical temperature T ∗ and pressure p∗. Derive an expression of
the entropy as a function of the number density n = N/V and the de Broglie wavelength

ΛT
def
=
√
2πℏ2/ (mkBT ). Discuss the validity of of Eq. 4.2.

Numerical example: Calculate ∆x, ∆p, and ∆x∆p/h for a helium gas at normal temperature
and pressure. Find S∗/NkB.

4.2 Extensivity and Gibbs Paradox (*)

We are going to discuss in details the role of indistinguishability in the entropy calculation of
the classical perfect gas.

1/ Extensivity.– Formulate the extensivity property that must be satisfied by the microcanon-
ical entropy S∗(E, V,N) of the gas.

2/ “Distinguishable Atoms”.– Toward the end of the 19th century, there was no logical
explanation for the factor 1/N ! related to indistinguishability of the atoms in the calculation of
the integrated density of states.

a/ Give the integral Φdisc(E) for the density of states of a gas composed of N atoms (you may
use exercice 3.3). Calculate the corresponding microcanonical entropy S∗

dist.

b/ Gibbs paradox.– We consider two identical volumes of the same gas separated by a wall.
Calculate the difference between the entropy of this system and the entropy of the system with
the wall removed.

∆Smixing = S∗
disc(2E, 2V, 2N)− 2S∗

disc(E, V,N) . (4.3)

Why do we say that this result is paradoxal?

c/ Indistinguishability.– Compare S∗
disc(E, V,N) to the Sackur-Tetrode formula in Eq. 4.2.

Discuss the extensivity in the two cases. Verify that if we calculate the entropy of mixing using
S∗
indisc(E, V,N), we have ∆Smixing = 0.
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4.3 Paramagnetic crystal - Negative (absolute) temperatures (*)

We consider a system of N spin 1/2 particles located on the sites of a crystal lattice. Each
particle has a magnetic moment µ⃗ = γS⃗, where γ is the gyro-magnetic factor. This system is
submitted to an uniform magnetic field B⃗ = Bu⃗z. We suppose that the interaction between the
spins is much smaller than the interaction of the spins with the external magnetic field.
We write ϵ± = ∓ϵB the energies of the two quantum states of a spin where ϵB = γℏB/2. In a
configuration, we are a going to call N+ and N− the spins aligned parallel and anti-parallel to
B⃗.

1/ Give the expression for N+ and N− in terms of N , B, ϵB, and E (total energy of the system).

2/ Calculate the number of states Ω(E,N,B) at constant energy. Do we have to take into
account indistinguishably?

3/ Derive an expression for the microcanonical entropy S∗ of the system when N+ ≫ 1 and
N− ≫ 1. Sketch S as a function of the energy E.

4/ Calculate the microcanonical temperature T ∗ of the system as a function of the energy, plot
it and discuss its sign. Describe the state of the system when E → Emin and E → Emax and
discuss the sign of T ∗ in the two cases.

Figure 4.1: A typical record of nuclear magnetic inversion. The magnetization of the sample is
tested every 30s by NMR. Vertical bands on the graph represent 1mn. On the left is sketched
a typical signal of normal thermal equilibrium (T ≈ 300 K) revealing the magnetization of
the sample. Subsequently, the magnetic field is reversed during a short time (T ≈ −350K).
The nuclear spins ”follow” the field and then relax toward the ”normal” thermal equilibrium
via a zero magnetization (at this point, the temperature goes from T = −∞ to T = ∞). This
inversion is observed in lithium fluoride crystals. This behavior is possible because the relaxation
time between nuclear spins (t1 ∼ 10−5 s) is very short compared to the relaxation time between
the spins and the lattice (t2 ∼ 5 mn). When the field is rapidly reversed during a time between
t1 and t2, the system of nuclear spins can reach the thermal equilibrium and exhibit an absolute
negative temperature. Reference : E. M. Purcell and R. V. Pound, Phys. Rev. 81, 279 (1951).

4.4 The (absolute) negative temperatures are hotter ! (*)

In the previous exercise, we derived the microcanonical temperature for a crystal of nuclear
spins. We are going to call this temperature T ∗

mag(E) since it is associated to the magnetic
energy.
Population inversion corresponding to negative temperatures has been indeed observed in a
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crystal of lithium fluoride. In this system, the spin relaxation time, due to spin-spin interactions
is very short (τ1 ∼ 10−5s ) with respect to the relaxation time due to the interactions between
spins and lattice vibrations (τ2 ∼ 300s ). As a consequence, the spins can reach some partial
equilibrium well before they are ultimately thermalized by the lattice vibrations. In the experi-
ment, the crystal is placed into a magnetic field that is abruptly flipped. As a consequence we
are in a state of negative temperature for a time of the order of τ2.
In this exercise, we are going to model the thermal coupling between the spins and the lattice
vibrations. To this end, we are going to describe the lattice vibrations as a collection of 3N
identical harmonic oscillators (Einstein Model).

Hvib =
3N∑
i=1

(
p2i
2m

+
1

2
mω2q2i

)
(4.4)

We can consider the oscillators as distinguishable as each atom (indistinguishable) is linked
to a specific (distinguishable) lattice sites. The vibration are going to be treated classically.

1/ Calculate the number of micro-states accessible for the vibrational energy ϕvib(E). Derive
the associated entropy S∗

vib and temperature T ∗
vib

2/ Discuss the thermal contact between the nuclear spins and the lattice vibrations. In partic-
ular, compare the situations in which the initial magnetic temperature T ∗

mag(E) is positive and
negative. Justify that negative temperatures are hotter than the positive ones.

4.5 Thermal contact between two cubic boxes

Exercice available at http://lptms.u-psud.fr/christophe_texier/enseignements/
enseignement-en-licence/l3-physique-statistique/

4.6 Isothermal and isotropic curves of a perfect gas

Exercice avaialble at http://lptms.u-psud.fr/christophe_texier/enseignements/
enseignement-en-licence/l3-physique-statistique/

Remark : See also chapter 5 of : C. Texier & G. Roux, Physique statistique, Dunod, 2017.
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TD 5 : System in contact with a thermostat – Canonical
ensemble

5.1 The crystal of spin 1/2 (*)

We summarize (quickly) the study of the N identical spin 1/2 crystal placed at the nodes of
a crystal lattice (TD 4). Each spin can be in two quantum states |±⟩, of energy ε± = ∓εB,
where εB = γℏB/2 ≡ m0B. We assume the interactions between the spins to be negligible, which
allows to suppose them independent. The crystal is in contact with a thermostat that sets its
temperature at T .

1/ What are the microstates for a single spin ? And for the crystal ? Justify that the canonical
partition function of the crystal is simply connected to that of a spin as : Zcristal = (zspin)

N .
What is the probability p± for a single spin to be in the quantum state |±⟩ ? Plot these two
probabilities as a function of T and give an interpretation.

2/ Calculate explicitly Zcristal then deduce the average magnetic energy of the E
c
crystal as a

function of T . Compare to the microcanonical calculation of T ∗ based on E (Exercice 4.3).

3/ Give the average magnetization of the crystal M(T,B) (without any further calculations)
and plot it as a function of B. Interprete.
4/ Compare with the microcanonical case (TD 4). What is the interest of the canonical formal-
ism?

5.2 Monoatomic ideal gas (*)

We study again the ideal gas (cf. exercice 4.1). We assume that the gas contains N atoms in a
fixed volume V but at a fixed temperature T , i.e., we will use the canonical ensemble. We treat
the problem classically.

1/ Using the semiclassic summation rule in phase space (see appendix), show that the canonical
partition function of gas is of the form

Z =
1

N !
(zatome)

N ∼ eN
(zatome

N

)N
(5.1)

and express zatome as a function of the thermal De Broglie length ΛT
def
=
√

2πℏ2/(mkBT ).

A.N. : Calculate ΛT for Helium atoms at room temperature..

2/ Deduce the free energy of the gas in the thermodynamic limit. Express this result such that
it clearly exhibits the extensivity property of the free energy.

3/ Calculate the average energy of the gas as well as its heat capacity. We recall the definition
of the heat capacity,

CV
def
=

∂E
c
(T, V,N)

∂T
(i.e. CV =

(
∂E
∂T

)
V,N

dans les (horribles) notations de la thermo) (5.2)

Calculate the energy fluctuations of the system, Var(E)
def
= E2

c −
(
E

c)2
(recall the relation with

CV ). Compare the fluctuations to the average value of the energy.

4/ Calculate the canonical pressure of the system. Provide your comments.

5/ Calculate the canonical entropy of the system. Compare this result to the Sackur-Tetrode
formula.
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6/ Calculate the chemical potential of the gas µc.

7/ Validity of the semiclassical treatment : By analyzing Sc, identify the regime of validity
of the semiclassical calculation. Define a scale of density (function of T ) over which the present
analysis is no longer valid. Equivalently, identify a temperature scale T∗ (function of n), below
which the classical calculation is not justified. What is the chemical potential at the threshold
of validity?

5.3 The diatomic perfect gas (*)

The thermodynamics of a gas of diatomic molecules is studied here. In addition to the obvious
physical interest of the exercise, it will allow us to illustrate two important points :

• The factorization of the canonical partition function for separable problems.

• The quantum freezing of certain degrees of freedom at low temperature.

Each molecule (two atoms, i.e. 6 degrees of freedom) has three degrees of freedom of trans-
lation, two degrees of freedom of rotation and a degree of freedom of vibration. We introduce
P⃗ the total momentum, ℓ⃗ the orbital moment characterizing the rotation of the molecule, and
(r, pr), a couple of canonically conjugated variables describing the vibration of the molecule (rel-
ative coordinates). In the vicinity of the equilibrium state for the bond, r ∼ r∗, the Hamiltonian
of a molecule is of the form :

H ≃ P⃗ 2

2M
+

ℓ⃗ 2

2I
+

p2r
2mr

+
1

2
mrω

2(r − r∗)
2 − Ebond . (5.3)
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Figure 5.1: Heat Capacity of a hydrogen gas HD (deuterium-hydrogene). Trot
def
= ℏ2/2kBI et

Tvib
def
= ℏω/kB. From : R. Balian, “From microscopic to macroscopic I”.

1/ Give the (quantum) spectra of translation, rotation and vibration energies. Show that the
partition function for a molecule can factorize as :

z = ztrans zrot zvib e
βEbond . (5.4)

Give the explicit expression of the partition functions (as sums). Recall how the partition
function of the gas is expressed in terms of z in the Maxwell-Boltzmann approximation.

2/ The high temperature classical regime.
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a) Calculate the canonical partition function of the gas Z in the semi-classical approximation
(ℏ → 0), when all the degrees of freedom are treated classically (either by replacing the sums
on the quantum numbers by integrals, or by using directly the semiclassical rule). Discuss the
validity of the result (condition(s) on T ).

b) Deduce the average energy and then the heat capacity of the gas within this limit. Compare
to the experimental data (Fig. 5.1).

3/ Quantum freezing.— At lower temperatures the different degrees of freedom can not
always be treated classically.

a) What happens to the average vibration energy in the limit kBT ≪ ℏω ? Same question for
the average energy of rotation when kBT ≪ ℏ2/I.
b) Starting with expressions of partition functions zrot et zvib, give an approximation of the
average energies of rotation and vibration for T → 0.

c) Deduce the shape of the heat capacity of the gas as a function of temperature (it will be
admitted that ℏ2/I ≪ ℏω). Comment the figure 5.1.

5.4 The Langevin paramagnet (*)

We intend to find the equation of state of a paramagnetic material, i.e. the relation between
the total magnetic moment M⃗ of the material, the temperature T , and the external magnetic
field B⃗ applied to the material. We consider N independent atoms, fixed at the sites of a crystal
lattice. Each atom has a magnetic moment m⃗ of constant modulus, that we treat as a classical
vector.

Let us start with a single atom. The spatial orientation of the magnetic moment of each
atom is specified by two angles θ and φ. When a magnetic field B⃗ is applied along the z axis,
each atom acquires a potential energy

Hmag = −m⃗ · B⃗ = −m0 B cos θ , (5.5)

where m0 = ||m⃗||. If each atom has a moment of inertia equal to I, then its dynamics is governed
by the Hamiltonian1

H =
1

2 I

(
p2θ +

p2φ

sin2 θ

)
+Hmag . (5.6)

1. Calculate the canonical partition function associated with H. Write the result in the form
z = zkinzmag où zmag = 1 pour B = 0. Show that zcin = Vol/Λ̃2

T where Λ̃T denotes the
thermal length and Vol an accessible volume. Express zmag as a function of x = βm0B.

2. Give the expression for the probability density w(θ, φ) that the magnetic moment points
in the direction (θ, φ). Check that the probability density is normalized. Sketch w(θ, φ)
vs. θ.

3. Calculate the average magnetic moment, mz
c per atom. We will refer to M = N mz

c as
the total magnetization of the material.

[You may use the result given in the appendix and calculate ∂z/∂B].

4. Discuss the behavior of the magnetization of the paramagnetic material as a function of B
and temperature. Show that the high temperature approximation gives the Curie law :
M ∝ B/T

1We recover this result by considering a pendulum of length l and of mass m : in this case I = ml2 and the
kinetic energy reads Hkin = I

2
[θ̇2 + φ̇2 sin2 θ]. Then pθ = ∂Hcin/∂θ̇ = Iθ̇ and pφ = ∂Hcin/∂φ̇ = Iφ̇ sin2 θ.
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5.5 Quantum mechanical calculation : Brillouin paramagnetism (*)

We now consider a system of N quamntum mechanical magnetic moments. The Hamiltonian
of a particle is given by Hpot [Eq. (5.5)]. The magnetic moment µ⃗ is now an operator that acts

on the quantum states. We call J⃗ the total angular momentum, which is the sum of the orbital
angular momenta and the spins of the electrons for an atom in its ground state. We let J stand
for the associated quantum number.SPIN PARAMAGNETISM OF Cr+++, Fe+++, AND Gd+++ 56i

netic moments for our analysis. This analysis consists
of normalizing the calculated and experimental values
at chosen values of H/T. Although space quantization
and the quenching of orbital angular momentum are un-
mistakably indicated by the good agreement of simple
theory and experiment for the Pg2 state of the free
chromium ion, there appears to be a small, second-
order departure of the experimental results from the
Brillouin function. In searching for the source of the
small systematic deviation, one must consider the
following: (1) experiznental error in the measurement
of M, II, and T, (2) dipole-dipole interaction, (3) ex-
change interaction, (4) incomplete quenching, and (5)
the eGect of the crystalline field splitting on the mag-
netic energy levels. The diamagnetic contribution is,
of course, too small to affect the results.
It is felt that since the moment can be reproduced

to 0.2 percent and the magnitude of II/T is known to
less than 1 percent, especially for 4.21'K, experimental
error as a complete explanation must be discarded.
It is true that the field seen by the ion is the applied
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pzo. 2. Plot of relative magnetic moment, M„vs II/T for
potassium chromium alum. -The heavy solid line is for a Brillouin
curve for g= 2 (complete quenching of orbital angular momentum}
and J=S=3/2, fitted to the experimental data at the highest
value of II/T. The thin solid line is a Brillouin curve for g=2/5,
J=3/2 and L=3 (no quenching). The broken lines are for a
Langevin curve fitted at the highest value of II/T to obtain the
lower curve and fitted at a low value (slope fitting) of fI/2' to
obtain the upper curve
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FiG. 3. Plot of average magnetic moment per ion, p 2fs H/T for
(I) potassium chromium alum (J=$=3/2), (II) iron ammonium
alum (J=S=5/2}, and (III) gadolinium sulfate octahydrate
(J=S=7/2). g=2 in all cases, the normalizing point is at the
highest value of H/T.

Geld with corrections due to the demagnetization factor'
and the Lorentz polarization" (effect of field of neigh-
boring ions). However, since the sample is spherical,
these two opposing corrections cancel" each other in
erst approximation. Therefore, any error thus intro-
duced is a second-order correction to a second-order
eGect which is negligible. For potassium chromium
alum, the chromium ions are greatly separated, prac-
tically eliminating dipole-dipole and exchange inter-
actions (ignoring the possibility of superexchange
based on the existence of excited states of normally
diamagnetic atoms) .
Experiments which were carried out with iron am-

monium alum" (iron in sS@s state for the free ion) and
gadolinium (ssrfs state for free ion) sulfate octahydrate
show (Fig. 3) slight departures from the Brillouin
functions for free spins. Since L is zero for both free ions,
these slight departures which remain for the two ions
are not attributable to incomplete quenching. Energy
levels taken from Kittel and Luttinger" and based on
the effect of a crystalline cubic 6eld through spin-orbit
interaction, ' have been used to calculate magnetic
moments at a few points for iron ammonium alum in

' C. Breit, Amsterdam Acad. Sci. 25, 293 (1922).
'oH. A. Lorentz, Theory of Electrons (G. E. Stechert and

Company, New York, 1909}."C.J. Gorter, Arch. du Musee Teyler 7, 183 (1932).
i2 Contamination and decomposition were carefully avoided."C.Kittel and J. M. Luttinger, Phys. Rev. 73, 162 (1948)."J.H, Van Vleck and W, Q. Penney, Phil. Mag. 17,961 (1934).

Figure 5.2: Magnetic moment per ion (in unit of the Bohr magneton) as a function of B/T
for certain paramagnetic ions : (I) Cr3+, (II) Fe3+ et (III) Gd3+. In all cases g = 2 (because
ℓ = 0). The points are the experimental data and the curves in solid lines correspond to the
results obtained using Brillouin functions [from W. E. Henry, Phys. Rev. 88, 559 (1952)].

The magnetic moment m⃗ of an atom is related to J⃗ by :

m⃗ = gµBJ⃗/ℏ , (5.7)

where µB = qeℏ
2me

≃ −0.927 × 10−23 J.T−1 is the Bohr magneton. The Landé factor g is a

dimensionless constant typically of order one 2.

1. What are the eigenvalues and the eigenvectors of the Hamiltonian of an atom (remember
that the projection Jz of the angular momentum of an atom may take the values mℏ avec
m ∈ {−J,−J + 1, .., J}) ?

2. Calculate the partition function Z of an atom as a function of J and y = βg |µB| JB.
Determine Z for the special case J = 1/2.

2If the angular momentum is due only to the electron spins, we have g = 2. If it is due only to the orbital
angular momentum, we have g = 1, and if it is of mixed origin, then g = 3/2+ [S(S +1)−L(L+1)]/[2J(J +1)],
where S and L are the quantum nimbers of the spin and the orbital angular momentum, respectively. J is the
quantum number associated with the total angular momentum J⃗ = L⃗ + S⃗. The three numbers obeys at the
triangle inequality. See problem 13.1 de C. Texier, Mécanique quantique, Dunod, 2015 (2nde éd.).
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3. What is the probability for an atom to be in the quantum state of quantum number m ?

4. Calculate mx
c and mz

c for arbitrary J and for J = 1/2. Deduce the magnetization M .
Find an expression for M in terms of the Brillouin function

BJ(y)
def
=

d

dy
ln

{
J∑

m=−J

e±my/J

}
=

1 + 1
2J

th
[
(1 + 1

2J )y
] − 1

2J

th( y
2J )

. (5.8)

Near the origin BJ(y) =
J+1
3J y + O(y3) . Show that the high temperature approximation

gives Curie’s law. Show that at low temperature the quantum mechanical result is very
different from the classical result obtained in 5.4 (except for large values of J).

5. Determine from the experimental results sketched above the value of J for each ion.

5.6 Ideal, confined, non-ideal, etc... gases.

We consider a gas of N indistinguishable particles without internal degrees of freedom, enclosed
by a box of volume V in contact with a thermostat at temperature T

1/ Classical canonical distribution

a) Recall how microstates are described classically. The classical dynamic of the system is given
by the Hamiltonian

H({r⃗i, p⃗i}) =
N∑
i=1

p⃗i
2

2m
+ U({r⃗i}) . (5.9)

Give the expression for the canonical distribution, to be denoted by ρc({r⃗i, p⃗i}).
b) How can we obtain the distribution function f that characterizes the position and momentum
of a single particle? We define f(r⃗, p⃗)dr⃗dp⃗ as the probability for a particle to have a position in
a volume dr⃗ at r⃗ and a momentum in a volume dp⃗ at p⃗.

2/ Monoatomic ideal gas

a) Justify briefly that the partition fonction can be factorized according to

Z =
1

N !
zN (5.10)

where z is the partition function for one particle (we recall that z = V/Λ3
T ).

b) Calculate the distribution function f(r⃗, p⃗) explicitly. Derive Maxwell’s law for the distribution
of the particle velocities in the gas.

3/ Other gases.– In this question, we want to test the validity in more general cases of the
results obtained for the monoatomic gas. For each of the following situations, answer these two
questions:

• Does the factorization (5.10) still hold?

• Is the velocity distribution given by Maxwell’s law?

a) Gas confined by an external potential Uext(r⃗).
Application: a rubidium gas is trapped in a harmonic potential created by several lasers. Discuss
the density profile of the gas.
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b) Gas of interacting particules (nonideal gas), i.e. U ̸= 0.

c) Gaz de particules relativistes, i.e. E =
√
p⃗ 2c2 +m2c4.

d) Relativistic ideal gas, i.e. E = ||p⃗||c.
Calculate z explicitly in this case (express z as z = V/Λ3

r where Λr is the relativistic thermal
wavelength). Derive the energy of the gas and its equation of state.

4/ What is the limit of the classical approximation, i.e. of equation (5.10) ? In which cases will
quantum effects will dominate (if T ↗ or ↘ ? If n = N/V ↗ or ↘ ?)

5.7 Partition function of a particule in a box – the role of boundary conditions

The purpose of the exercise is to study the effect of boundary conditions on thermodynamics in
the case of a particle in a box (unidimensional to simplify). In other words, we are interested in
the effect of the quantification of the energy spectrum on the thermodynamic properties.

Exercice available at http://lptms.u-psud.fr/christophe_texier/enseignements/
enseignement-en-licence/l3-physique-statistique/

To go further : exercice 3.4 of C. Texier & G. Roux, Physique statistique, Dunod, 2017.

5.8 Gases of indistinguishable particules in a harmonic well

The purpose of the exercise is to study the effect of indiscernability (i.e., the symmetrization
postulate of quantum mechanics) on the thermodynamic properties of the system. We want to
analyze in detail the validity of semiclassical treatment in the Maxwell-Boltzmann approx-
imation, in particular to identify on which temperature scale this treatment is valid, in a case
where the exact calculation of the partition function identical particles is possible.

Exercice available at http://lptms.u-psud.fr/christophe_texier/enseignements/
enseignement-en-licence/l3-physique-statistique/

To go further : Problem 11.1 of C. Texier & G. Roux, Physique statistique, Dunod, 2017.
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Appendix 5.A : Semiclassical summation rule the phase space

In the canonical ensemble the summation rule discussed in appendix 3.A takes the following
form: for a system with D degrees of freedom and Hamiltonian H({qi, pi}) the partition
function is given by :

Zβ =
1

hD

∫ D∏
i=1

dqidpi e
−βH({qi,pi}) (5.11)

If the particles are indistinguishable, the partition function acquires an additional 1/N !
factor :

Z indisc
β =

1

N !
Zdisc
β (Maxwell-Boltzmann approximation). (5.12)

Annexe 5.B : Canonical average of a physical quantity

Let X be a physical quantity with conjugate parameter ϕ, i.e., there is a term dE = −Xdϕ
in the expression of the energy. The canonical average of X is obtained by deriving the
thermodynamic potential F (T,N, · · · , ϕ, · · · ) with respect to the ”conjugate force” ϕ :

X
c
= −∂F

∂ϕ
(5.13)

Exemple : X → M is the magnetization, ϕ → B the magnetic field. The mean magneti-
zation is given by M

c
= −∂F

∂B .
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TD 6 : Kinetic theory

6.1 Maxwell Distribution (*)

We consider a gas in equilibrium at the temperature T in an enclosure of volume V . We place
ourselves within the framework of classical mechanics.

1/ Describe the microstates of the system. Give the expression of the canonical distribution in
this case.

2/ We introduce f(r⃗, p⃗ ), the density of states in phase space of an atom, which we choose to
normalize as

∫
d3r⃗d3p⃗ f = N . Justify that it has the following form f(r⃗, p⃗ ) = nw(p⃗) where

n = N/V is the average density in the physical space. Give the expression of w(p⃗) and also give
the velocity distribution p(v⃗).

3/ Calculate the average values ⟨vx⟩, ⟨vy⟩, ⟨vz⟩, ⟨v2x⟩, ⟨v2y⟩, ⟨v2z⟩, ⟨vxvy⟩, ⟨v2xv2y⟩ et ⟨εc⟩, où

εc =
1
2mv⃗ 2.

4/ Marginal law of the modulus v = ||v⃗||.– Deduce from p(v⃗) the probability q(v) dv to
find the modulus of the velocity between v and v + dv (use draw the isotropy of p and go to
“spherical coordinates”). Check that the probability distribution so obtained is well normalized.
Calculate the average value ⟨v⟩. Compare to the most likely value of v, the “typical value” vtyp.
Evaluate the standard deviation of v, σv =

√
⟨v2⟩ − ⟨v⟩2. Draw carefully q(v) and indicate ⟨v⟩,

vtyp and σv on the plot.

6.2 Pressure of a gas (*)

We continue the study of the gas initiated in the exercise 6.1. We start from the microscopic
description (kinetic theory) and study the mechanical origin of the pressure exerted on a wall
of the whole volume. The atoms are described by the distribution function f(r⃗, p⃗ ) = nw(p⃗).

1/ We want to calculate the average force F⃗ which is exerted on an area element A of a plane
wall located in x = 0 (the gas being contained on the negative x side). Justify that if we call
dΠ⃗ (+) (resp. dΠ⃗ (−)) the momentum which crosses on average the wall in the direction of the
increasing x (resp. decreasing) during a time dt we have :

F⃗ =
1

dt

(
dΠ⃗ (+) − dΠ⃗ (−)

)
. (6.1)

2/ Show that

dΠ⃗ (+) =
nAdt

m

∫
px>0

d3p⃗ px p⃗ w(p⃗) . (6.2)

Calculate also dΠ⃗ (−) and deduce the expression of F⃗ as an integral in momentumm space.

3/ Show that only the component of F⃗ normal to the wall is non-zero. Infer that The pressure
P is related to the average velocity

〈
v⃗ 2
〉
and to the kinetic energy Ec = N ⟨εc⟩ by :

P =
1

3
nm

〈
v⃗ 2
〉

et PV =
2

3
Ec . (6.3)

Deduce the equation of state of the gas.

4/ We now consider a gas of it photons. We recall that the photons of momentum p⃗ have a
velocity c and a kinetic energy εc = c ||p⃗ ||. As before, we consider that photons have a uniform
density and are characterized by their momentum distribution w(p⃗). By following for the gas of
photons, the same steps than those just followed for the conventional gas, show that we get :

P V =
1

3
Ec .
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By calculating ⟨εc⟩, deduce the equation of state.

6.3 Effusion

A monoatomic gas is confined to a volume V . A small hole of surface A is made in the wall.
Atoms can escape through this hole. The hole is sufficiently small so that we can assume that
the gas is at all times in a state of thermal equilibrium (this hypothesis will be discussed later
in the questions 2 and 4). We may then, in particular, introduce a time-dependent temperature
and time-dependent pressure.

1/ The gas has temperature T and the atomic velocities are described by the Maxwell distri-
bution. Give the number of atoms dN exiting the volume during time interval dt. Discuss the
dependence of dN/dt on N/V and T

2/ Effusion from a volume with fixed temperature. Assume that the volume is in contact
with a thermostat which maintains its temperature. Atoms escape from the volume into vacuum.

(a) Discuss the time dependence of the number of atoms N left in the volume.

(b) Consider a gas of helium in a volume V = 1 ℓ at room temperature. The hole has an area
δS = 1 µm2. How long does it take for half of the atoms to leave the box?

3/ Effusion from an adiabatic wall. We now analyse the effusion problem in a situation
where there is no heat exchange between the box and the external world (adiabatic walls). We
will see that then the temperature of the gas in the box will decrease with time.

(a) Calculate the energy loss of the gas in the box during time interval dt. We note dE/dt
the energy rate lost by the gas per unit time. Calculate the lost energy per atom,
(dE/dt)/(dN/dt) ? Comment this result.

(b) We set λ = A
V

√
kB/(2πm). Show that the evolution of the temperature and the number

of particles in the box is controlled by the two differential equations :

dT

dt
= −λ

3
T 3/2 ,

dN

dt
= −λN T 1/2 .

(c) Solve this system of coupled nonlinear differential equations. Compare with the solution
of question 2.

4/ Effusion between two thermostated boxes. Two boxes (1 and 2) contain a monatomic
gas of same nature. They do not exchange heat and energy transfer may only occur through
particle exchange through a little hole connecting the two boxes. The temperature T1 of box 1
is maintained by a thermostat, and similarly for temperature T2 of box 2. We denote by P1 and
P2 the pressures in the two boxes.

(a) Find a relation between temperatures and pressures expressing stationarity

(b) We assume a stationnary regime. We note IN the common value of the particle current
from the chamber 1 to the chamber 2 and from the chamber 2 to the chamber 1. Justify
that there is then a current of energy IE from the hot source (let’s say the enclosure at the
temperature T2) towards the cold source (the enclosure with temperature T1). Express IE
as a function of IN and T2 − T1.
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(c) If the system were in a state of thermodynamic equilibrium, remember what would be the
condition of thermodynamic equilibrium. Deduce an equation connecting temperatures
and pressures. Why is this condition different from that of question 1 ? (we can use the
result of question 4.a).

5/Uranium enrichment. We consider a gas of uranium hexafluoride UF6 in a box of volume
V pierced by a little hole. The two isotopes 238U and 235U are present in nature in proportions
99.3% and 0.7% respectively. We denote by N1 and N2 the number of molecules of isotope 238U
and 235U , respectively.

(a) Show that the proportion of isotopes 238U and 235U in the gas that has left the box is not
the same.

(b) How many times should the effusion process be repeated in order to reach a proportion of
2.5% of 235U ? The molar mass of fluor is 19 g.
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TD 7 : Thermodynamics of harmonic oscillators

7.1 Lattice vibrations in a solid (*)

The quantification of the spectrum of energies leads to the possible freezing of certain degrees of
freedom (at low temperature). We will see that this observation makes it possible to understand
the low temperature behavior of the heat capacity of solid bodies.

A. Preliminary: : vibrations of a diatomic molecule–We start by analyzing the spectrum
of a single one-dimensional harmonic oscillator, which can for example model the vibrations
of a diatomic molecule. We recall that the spectrum of the energies of a harmonic oscillator of
frequency ω is given by

εn = ℏω
(
n+

1

2

)
pour n ∈ N . (7.1)

1/ Calculate the canonical partition function of an harmonic oscillator.

2/ Deduce the average energy ϵc and the average occupation number nc. Analyze the classical
limit(ℏ → 0) of ϵc. Give a physical interpretation.

3/ Express the specific heat in the form cV (T ) = kB f(ℏω/kBT ), where f(x) is a dimensionless
function. Interpret physically the limit behavior for T → 0 and for T → ∞.

B. Einstein model (1907).– We consider a solid of N atoms, each vibrating around its
equilibrium position (a site of the crystal lattice). The (quantum and/or thermal) fluctuations
induce motions of atoms around their equilibrium position which we assume small. Following
a rough model proposed by Einstein, we model the vibration energy of a solid as a set of 3N
independent and discernable 3 one-dimension harmonic oscillators with the same pulsation ω.

1/ Using the results of part A, give (without further calculation) the expression for the partition
function describing lattice vibrations.

2/ Deduce the total energy of the 3N oscillators (the result for T → ∞ may be obtained more

easily) and the vibrational contribution C
(Einst.)
V (T ) to the heat capacity of the solid.

3/ Compare the limiting behavior of the heat capacity C
(Einst.)
V in Einstein’s model with the

experimental results (see Figure 7.1):

• High temperature (T → ∞) : CV → 3NkB (Dulong & Petit’s law).

• Low temperature (T → 0) : CV ≃ a T + b T 3 with a ̸= 0 for an electric conductor 4 and
a = 00 for an insulator.

C. The Debye model(1912).– The weakness of Einstein’s model, at the origin of the discrep-

ancy between the theoretical expression C
(Einst.)
V (T → 0) and the experimental observations,

lies in the assumption that all oscillators have the same frequency, (i.e., that atoms are inde-
pendent). A more realistic model should account for the fact that, although the atoms may be
described as identical quantum oscillators, they are coupled (strongly interacting due to the
chemical bonds). Nevertheless, the energy may be written as a quadratic form which may in
principle diagonalized, that is, rewritten in the form

H =
3N∑
i=1

(
p2i
2m

+
1

2
mω2

i q
2
i

)
(7.2)

3They are discernable because each one is attached to a specific lattice site (however there are N ! different
ways to attach the indiscernable atoms to the discernable sites.

4The linear contribution C
(elec)
V ≃ aT is related to the electronic contribution to the energy of the crystal. See

for example the chapter 12 of : C. Texier & G. Roux, Physique statistique, Dunod, 2017.
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where (qi, pi) are pairs of conjugate coordinates associated with the vibrational modes of the
crystal (like the modes of a vibrating string). The crystal is characterized by a full spectrum
of distinct eigenfrequencies {ωi} that form a continuous spectrum. The distribution of the
eigenfrequencies is called the spectral density ρ(ω) =

∑
i δ(ω − ωi).

1/ Specific heat.– Express the specific heat formally as a sum of contributions of vibrational
eigenmodes.

2/ Densité spectrale du modèle de Debye.– 2/ A few properties of the spectral
density.– The spectral density ρ(ω) has a finite support [0, ωD], where ωD is the Debye fre-
quency.

a) What is the origin of the upper cutoff and what is the order of magnitude of the wavelength
associated with ωD ?

b) Give a sum rule for
∫ ωD

0 ρ(ω)dω.

c) In the Debye model we assume that the spectral density has the simple form

ρ(ω) =
3V

2π2c3s
ω2 for ω ∈ [0, ωD] (7.3)

Explain the origin of the behavior ρ(ω) ∝ ω2. Applying the sum rule, find a relation between ωD,
the mean atomic density N/V , and the sound velocity cs (compare to the result of question a).

3/ Limiting behavior of CV (T ).

a) Justify the representation CV (T ) = kB
∫ ωD

0 dω ρ(ω) f(ℏω/kBT ). Deduce the high tempera-

ture behavior and compare to C
(Einst.)
V .

b) Justify that in the T → 0 limit only the low frequency behavior of ρ(ω) is important. De-

duce the low temperature behavior of CV (T ). Compare to C
(Einst.)
V and explain the difference

physically. Compare to the experimental data of figure 7.1.
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Figure 7.1: Left : Specific heat of diamond (in cal.mol−1.K−1). Experimental values are com-
pared to the curve resulting from the Einstein model by setting θE = ℏω/kB = 1320 K (from A.
Einstein, Ann. Physik 22, 180 (1907)). Right : Specific heat of solid argon as a function of T 3

(from L. Finegold and N.E. Phillips, Phys. Rev. 177, 1383 (1969)). The straight line is a fit
to the experimental data. Insert: zoom onto the low temperature region.

7.2 Thermodynamics of electromagnetic radiation (*)

We consider a cubic box of volume V containing electromagnetic energy. The system is supposed
in thermodynamic equilibrium.

A. General.

1/ Recall how the eigenmodes of the electromagnetic field in vacuum are labeled.
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2/ Electromagnetic energy.– Using the results of part A of Exercice 7.1, express the av-
erage electromagnetic energy as a sum over the modes: E

c
e−m =

∑
modes ϵ

c
mode. Identify the

contribution of the vacuum, Evacuum (= limT→0E
c
e−m).

3/ Radiation energy.– Radiation corresponds to excitations of electromagnetic field: E
c
radia =

E
c
e−m − Evacuum. Identify the contribution of each mode.

4/ Eigenmode density.– Calculate the spectral density ρ(ω) of eigenfrequencies in the box.

5/ Planck’s law.– Writing the energy density (per unit of volume) as an integral over the
frequencies, 1

V E
c
radia =

∫∞
0 dω u(ω;T ), recover Planck’s law for the spectral energy density

u(ω;T ). Plot u(ω;T ) as a function of ω for two temperatures. Interpret physically the expression
in terms of the average number of excitations in each mode (i.e., in terms of the number of
photons).

6/ The Stefan-Boltzmann law.– Calculate the photon density nγ(T ) and the radiation
energy density utot(T ) =

∫∞
0 dω u(ω;T ).

B. Cosmic Microwave Background Radiation.– About 380 000 years after the big bang
atoms formed and matter became eletrically neutral, i.e., light and matter decoupled: the uni-
verse became “transparent” for radiation. The period between 380 000 year and 100–200 million
years, the time of formation of the first stars and galaxies, is referred to as the “dark ages” of the
universe. After matter-light decoupling, the “Cosmic Microwave Background Radiation” (CMB
or CMBR) has maintained its equilibrium distribution while its temperature has decreased due
to the expansion of the universe.

1/ Today, at time t0 ≈ 14 × 109 years, the CMBR temperature is T = 2.725 K. Calculate the
corresponding photon density nγ(T ) (in mm−3) and the energy density utot(T ) (in eV.cm−3).

2/ “Dark ages” The expansion of the universe between tc ≈ 380 000 years and today has been
mostly dominated by the energy of nonrelativistic matter, which leads to the time dependence
of the CMBR temperature according to5 T (t) ∝ t−2/3. Deduce nγ(T ) (in µm−3) and utot(T )
(in eVµm−3) at time tc.

(Compare this to the temperature at the surface of the sun corresponding to the emitted
radiation, i.e. T = 5700 K).

7.3 Equilibrium between matter and light, and spontaneous emission

In a famous article few years before the birth of quantum mechanics,6 Einstein showed that
consistency between quantum mechanics and statistical mechanics implies an imbalance be-
tween the absorption and emission probability of light between two atomic (or molecular) levels.
The emission probability is larger than the absorption probability due to the phenomenon of
spontaneous emission, which originates in the quantum nature of the electromagnetic field.

1/ Emission and absorption.– We focus on two quantum levels |g ⟩ (ground state) and |e ⟩
(excited state) of an atom (or a molecule). The energy gap is ℏω0. Denote by Pg(t) and Pe(t),
the probability at time t for the atom to be in state |g ⟩ and state |e ⟩, respectively.

• In the vacuum, the atom in its excited state falls back to its ground state at a rate Ae→g

(spontaneous emission).

5Before tc, the expansion of the universe was more dominated by the radiation energy, which leads to T (t) ∝
t−1/2.

6Albert Einstein, “Zur Quantentheorie der Strahlung”, Physikalische Zeitschrift 18, 121–128 (1917).
The article has been reproduced in: A. Einstein, Œuvres choisies. 1. Quanta, Seuil (1989), Papers selected and
presented by F. Balibar, O. Darrigol & B. Jech.
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• When submitted to monochromatic radiation, the atom in its excited state falls back to its
ground state with rate Ae→g + Be→gI(ω0) (spontaneous and stimulated emission), where
I(ω0) is the intensity of the radiation field at frequency ω0.

• The transition rate between the ground state and the excited state is Bg→eI(ω0) (absorp-
tion).

a) Write down the pair of coupled differential equations for Pg(t) and Pe(t).

b) Derive the equilibrium condition.

2/ Thermodynamic equilibrium for matter.– The multiple processes for absorption and
emission are responsible of a thermal equilibrium state between light and matter. In this case,

the equilibrium probabilities P
(eq)
g and P

(eq)
e correspond to the canonical distribution. Provide

P
(eq)
g /P

(eq)
e .

3/ Thermal equilibrium for radiation.– Assuming thermal equilibrium, recall the expression
for the spectral density (Planck’s law) u(ω;T ) (i.e. Vol × u(ω;T )dω is the contribution to the
energy of radiation of the frequencies ∈ [ω, ω + dω]). Henceforth we will assume that the field
intensity is given by Planck’s law, I(ω0) = u(ω0;T ).

4/ Relation between spontaneous emission and stimulated emission/absorption.–

a) Analyze the high temperature behavior of the equation obtained in 1.b and show that Be→g =
Bg→e.

From here on we will simply denote the Einstein coefficients that describe spontaneous and
stimulated emission/absorption by A ≡ Ae→g and B ≡ Be→g = Bg→e.

b) Show that A/B ∝ ω3
0.

c) Why is it easier to make a MASER7 than a LASER ?8

This first prediction by Einstein (1917) on the spontaneous emission rate A was confirmed
only at the end of the 1920s with the development of quantum electrodynamics; in the framework
of this theory Dirac proposed the first microscopic theory for spontaneous emission. 9

Appendix : ∫ ∞

0
dx

xα−1

ex − 1
= Γ(α) ζ(α)

∫ ∞

0
dx

x4

sh2 x
=

π4

30
(7.4)

(you may deduce the second integral from the first one for α = 4). We have ζ(3) ≃ 1.202 and

ζ(4) = π4

90 .

7Microwave Amplification by Stimulated Emmission of Radiation
8The first ammonia MASER was built in 1953 by Charles H. Townes, who adapted the techniques to light in

1962 and received the Nobel prize in 1964.
9P. A. M. Dirac, The quantum theory of the emission and absorption of radiation, Proc. Roy. Soc. London

A114, 243 (1927).
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TD 8 : Grand Canonical ensemble
(Systems in contact with a particle reservoir)

8.1 Ideal Gas (*)

We consider an ideal gas at thermodynamic equilibrium in a volume V . We fix the temperature
T and chemical potential µ.

1/ Extensivity.– Show that the grand potential may be written as

J(T, µ, V ) = V × j(T, µ) . (8.1)

Discuss the physical interpretation of the “volumetric density of the grand potential” j.

2/ Monatomic classical ideal gas.– We consider a dilute gas of particles, for which we may
assume that the Maxwell-Boltzmann approximation is justified. For this question no supple-
mentary hypothesis (the number of the degrees of freedom, their relativistic or nonrelativistic
nature, their dynamics, etc.) will be needed.
We introduce z, the single particle partition function. Justify that z ∝ V .
Show that the grand canonical partition function is

Ξ = exp
[
eβµ z

]
. (8.2)

3/ Deduce N
g
and pg. Show that, under this minimal hypothesis, it is possible to derive the

equation of state of the ideal gas, pV = NkBT .

4/ Energy.– We denote εc the mean energy per particle. Show that

E
g
= N

g
εc . (8.3)

Using Varg(E) =
(
− ∂

∂β + µ
β

∂
∂µ

)
E

g
, show that

Varg(E) = N
g
ε2

c
(8.4)

Compare with the variance of the energy in the canonical ensemble.

5/ Entropy.– Show

Sg = N
g
kB

(
1− ∂ ln z

∂ lnβ
− βµ

)
. (8.5)

6/ Justify z ∝ V . Write z(T, V ) = V/Λ3
T . Express ΛT (up to a dimensionlesss factor) for

non relativistic particles (ε = p⃗ 2/(2m)) and ultra-relativist particles (ε = ||p⃗||c). Recover the
expression of µc(T, n) (using 3). Deduce that the entropy (8.5) coincides with Sackur-Tétrode
formula, i.e. recover the ”equivalence of ensembles”.

8.2 Adsorption of an ideal gas on a solid interface (*)

We consider a container of volume V filled with a
monatomic ideal gas of indistinguishable atoms.
This gas is in contact with a solid interface that
may adsorb (trap) the gas atoms. We model the
interface as an ensemble of A adsorption sites.
Each site can adsorb only one atom, which then
has an energy −ϵ0

32



The system is in equilibrium at a temperature T and we model the adsorbed atoms, i.e. the
adsorbed phase, as a system with a fluctuating number of particles at fixed chemical potential
µ and temperature T . The gas acts as a reservoir.

1/ Derive the grand-canonical partition function ξtrap for a single adsorption site. Deduce the
grand-canonical partition function Ξ(T,A, µ) for all atoms adsorbed on the surface.

2/ We will now explore an alternative route. Derive the canonical partition function Z(T,A,N)
of a collection of N adsorbed atoms (Note: the number of adsorbed atoms N is much smaller
than the number of sites A). Recover the results for Ξ(T,A, µ) obtained in the previous question.

3/ Calculate the average number of adsorbed atoms N as a function of ϵ0, µ, A, and T . From
this, derive the occupation probability θ = N/A of an adsorption site.

4/ The chemical potential µ is fixed by the ideal gas. This may be used to deduce an expression
for the site occupation probability θ as a function of the gas pressure P temperature T (note
that the number of atoms N is much smaller than the number Ngas of gas atoms).
We define a parameter

P0(T ) = kBT

(
2πmkBT

h2

)3/2

exp

{
− ϵ0
kBT

}
,

and will express θ as a function of P and P0(T ).

5/ Langmuir isotherm.– How does the curve θ(P ) behave for different temperatures?

6/ (A question for the brave) Calculate the variance σN that characterizes the fluctuations of
N around its average value. Remember that

σ2
N = (N −N)2 = N2 −N

2

Comment on this result.

8.3 Fluctuations of energy

It has been shown in the main lecture that in the thermodynamic limit, there is equivalence
between the thermodynamic properties predicted in the context of the different ensembles. This
results in relations between averages in the canonical and grand canonical means, for example.

E
g
(T, V, µ) = E

c (
T, V,N

g
(T, V, µ)

)
in the thermodynamic limit (8.6)

We will study what is happening with fluctuations.

A. Probabilistic preliminaries (optional).— Consider a random variable X and its generat-

ing function g(k)
def
=
〈
ekX

〉
. By studying the k → 0 limit, show that Var(X) = ∂2 ln g(k)

∂k2

∣∣∣
k=0

.

B. Canonical ensemble.— We note {Eℓ} the energies of the microstates of the system.

Justify that the canonical variance of energy is given by Varc(E) =
(
− ∂β

)2
lnZ, where Z

is the canonical partition function. Relate Varc(E) to E
c
and deduce the relation

Varc(E) = kBT
2CV . (8.7)

C. Grand canonical ensemble .— We now demonstrate a formula relating the variances of
energy in the canonical and grand canonical ensembles:

Varg(E) = Varc(E) +

(
∂E

c

∂N

)2

Varg(N) (8.8)
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1/ Give a heuristic interpretation of this relationship.

2/ We note Ξ the grand partition function.. Justify the relation

Varg(E) =

(
− ∂

∂β
+

µ

β

∂

∂µ

)2

ln Ξ (8.9)

and relate Varg(E) to E
g
.

3/ Using (8.6), relate the partial derivatives ∂E
g
/∂T and ∂E

g
/∂µ to the partial derivatives of

E
c
.

4/ Deduce (8.8) using the thermodynamic identity

T

(
∂N

∂T

)
µ,V

+ µ

(
∂N

∂µ

)
T,V

=

(
∂E

∂µ

)
T,V

=

(
∂E

∂N

)
T,V

(
∂N

∂µ

)
T,V

. (8.10)

Proof of the identity : Start from dE = TdS − pdV + µdN and use a Maxwell relation for the partial

derivative of S.

D. Application : Monoatomic ideal gas.— Compare the relative fluctuations
√
Var(E)/E

for the three ensembles (microcanonical, canonical and grand-canonical).

8.4 Density fluctuations in a fluid – Compressibility

Let a fluid be thermalized in a box at temperature T . We consider a small volume V inside the
total box of volume Vtot (figure). The number N of particles in the box fluctuates with time.

Vtot

N, V

tot ,N

Figure 8.1: We consider N particles in the small volume V of a fluid.

The exercice can be found at http://lptms.u-psud.fr/christophe_texier/
enseignements/enseignement-en-licence/l3-physique-statistique/
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TD 9 : Interacting systems and phase transitions

9.1 Sublimation

In this exercise we study a simple model of sublimation of a solid (transition from the solid phase
to the gas phase). We will see that statistical physict makes it possible to predict quantitatively
the line describing the equilibrium between the solid and gas phases in the P -T diagram.

The model is based on the following idea : initially, the two phases (gaseous and solid) are
described separately, as two thermostated systems. Then we impose an equilibrium condition
describing the contact (the exchange of atoms between the “systems”).

A. Gas.– The gas has been studied in detail in the exercice 5.2. Justify (briefly) that the

partition function of the gas is given by Zgaz = 1
N !

(
V
Λ3
T

)N
where ΛT is the DeBroglie thermal

length. Deduce the expression of the chemical potential of the gas and its entropy.

B. Model of a solid.– We position ourselves within the framework of the Einstein model:
the solid (of N atoms) is equivalent to a set of 3N harmonic oscillators of the same pulsation
omega. To take into account that the crystalline phase is energetically more favorable than the
gas phase, the minimum energy for each atom is taken equal to −E0 < 0 :

Hsolide =
N∑
i=1

(
p⃗i

2

2m
+

1

2
mω2r⃗i

2 − E0
)

(9.1)

1/ What condition shall satisfy T , ω and E0 for our model to be applicable ?

2/ Calculate the partition function of the solid Zsolide in the semi-classical approximation. Infer
its free energy.

3/ Calculate the average energy of the crystal. Express its chemical potential.

4/ Calculate the entropy of a solid.

C. Equilibrium between phases.

1/ Discuss the equilibrium condition between the gaseous and solid phases, assuming the free
energies of the two phases are known (i.e. as part of the canonical ensemble).

2/ Deduce the equation describing the equilibrium between the phases in the P–T diagram.
Plot carefully Ps(T ) (we recall that a condition of validity of the model is kBT ≪ E0).
3/ Give the expression of the specific heat associated with the sublimation.

D. Experiment.– The sublimation curve of zinc is measured experimentally in the field 500K<
T < 600 K. It has been fitted by

lnPs(T ) = 30.3− 0.5 lnT − 1.6 104

T
(SI units) (9.2)

Is this expression in agreement wit our model ?
Compare the values of the fit with the ones given by the studied model. We provide :

• Molar mass of zinc : M = 65.38 g.mol−1

• NAE0 = 1.3 105 J.mol−1

• ℏω/kB = 240 K
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9.2 Ising chain and transfer matrix (*)

Introduction : The Ising model has been proposed as a simplified model for describing mag-
netic materials. It has many other applications. We consider a set of local magnetic moments
represented by binary variables σi = ±1, attached to the lattice sites of a crystal lattice (here
the index i identifies the lattice sites). The model takes into account the competition between
the interaction between local magnetic moments (favoring the alignment or the anti-alignment
of neighboring spins, depending on the sign of the interaction), the interaction with an external
magnetic field (favoring the alignment with the direction of the field) and thermal fluctuations.

We begin by studying the one-dimensional version of the Ising model with nearest neighbor
interaction, which is exactly solvable :

H({σi}) = −J

N∑
i=1

σi σi+1 −B

N∑
i=1

σi (9.3)

where σN+1 = σ1, which corresponds to the case where N spins are on a ring (figure 9.1).

1
n

N

+1m

...
m

... ...2

J

B

Figure 9.1: Ising spin chain : the up spin (resp. down) corresponds to σn = +1 (resp. σn = −1).

We can show that the canonical partition function takes the form of a trace (here for T = 1)

ZN =
∑
σ1

· · ·
∑
σN

e−H({σi}) = Tr
{
MN

}
with M

def
=

(
eJ+B e−J+B

e−J−B eJ−B

)
(9.4)

(you can check it). We will restore the temperature by doing J → J/T and B → B/T .

1/ Calculate the two eigenvalues of M , denoted λ±, that you could compare. Infer ZN . Check
the consistency of the result for J = 0 by a direct calculation of ZN .

2/ In the thermodynamical limit, N → ∞, compute the free energy per spin f = limN→∞ F/N .

3/ Heat capacity at B = 0.– Calculate f(T, 0). Recall the relation between the average
energy and βF . Deduce the heat capacity per spin noted C(T ). Plot i carefully.

4/ magnetization.– Calculate the magnetization in the general case usingm(T,B) = − ∂
∂Bf(T,B)

(recall the origin of this expression). Plot m(T,B) as a function of B for different temperatures.
Is there a phase transition at finite T as in the mean field treatment of the Ising model ?

5/ Magnetic susceptibility.– The magnetic susceptibility is defined by χ(T )
def
= limB→0

∂m
∂B .

Show that

χ(T ) =
1

T
e2J/T . (9.5)

Interpret physically the decrease at high temperature. Explain the origin of the exponential
factor for J > 0.

9.3 Correlations in the 1D Ising model

In this exercice, we study an important and very general property of the correlation functions,
when approaching a phase transition toward an ordered state. We consider the 1D Ising model
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for N “spins” interacting ferromagnetically, i.e. J > 0, between nearest neighbours :

H({σi}) = −J

N−1∑
i=1

σi σi+1 with σi = ±1 . (9.6)

The model does not have an ordered (ferromagnetic) phase at finite temperature, however its
ground state is ferromagnetic. We will therefore study the behavior of the correlation function
for T → 0.

1/ Can you describe the microstates of the chain ? How many are there?

2/ Partition function. What is the partition function Z1 for a single spin ? Show that the
canonical partition function of the chain of N spins obeys a recursive equation

ZN = 2 ch(βJ)ZN−1 . (9.7)

Deduce the expression of ZN .

3/ Calculate the average canonical energy E
c
and then the specific heat C(T ). Analyze the

limiting behaviours of the latter ; what is the physical origin of the low temperature behavior
? Carefully draw the shape of C(T ) as a function of T .

4/ Correlation functions.– In this question, we want to calculate the correlation function

between two spins G(n) def
= ⟨σi σi+n⟩. In this respect, we introduce a Hamiltonian with N − 1

distinct couplings

H̃({σi}) = −
N−1∑
i=1

Ji σi σi+1 . (9.8)

We note Z̃N the associated canonical partition function.

a) Show that ⟨σi σi+1⟩ = 1

βZ̃N

∂Z̃N
∂Ji

∣∣∣
Ji=J

(be careful, ⟨· · ·⟩ denotes the canonical average associated

with H and not H̃).

b) Show that

G(n) = 1

βnZ̃N

∂nZ̃N

∂Ji∂Ji+1 · · · ∂Ji+n−1

∣∣∣
Ji=J

. (9.9)

c) Calculate explicitly Z̃N inspired by the method of the question 2.

d) Correlation function.– Deduce the expression of the correlation function. We introduce
the correlation length ξ(T ) by writing G(n) = exp(−n/ξ(T )). Provide the expression of ξ(T ).
Analyze its behaviour at low temperature. Give some interpretation.

9.4 Curie-Weiss model: transition Paramagnetic-Ferromagnetic (*)

Another exactly solvable model is when all spins interact in the same way (infinite range inter-
action). We consider N spins described by the Ising Hamiltonian (σi = ±1)

H({σi}) = − J

2N

∑
1⩽i, j⩽N

σiσj −B
N∑
i=1

σi , (9.10)

where J > 0 is the interaction strength (favoring the alignment of spins) and B the external
magnetic field (expressed in unit of energy).

1/ Why was the interaction term divided by N ?
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2/ Describe the microstates. What is the total number of microstates Ωtot ? What is the ground
state for B = 0 ?

3/ Entropy at fixed magnetization.– We introduce the magnetization per spin :

m
def
=

1

N

N∑
i=1

σi (9.11)

a) What are the possible values for m ? What is the number of microstates Ω(m) for a given
m ?

b) Let us introduce the entropy s(m) = (1/N) lnΩ(m) (we set kB = 1 to simplify). Show that
s(m) ≃ s0 − am2 − bm4 for m → 0. Gice the three positive constants s0, a and b.

c) Justify that the sum on the possible value of m can be replaced by an integral
∑

m →
N
2

∫ +1
−1 dm. If we neglect the quartic term in the entropy, we have Ω(m) ≃ A e−Nm2/2 for

m → 0. Provide the constant A.

3/ Show that the hamiltonian can be written as a function of the magnetization, H({σi}) =
N E(m). Provide the expression of the energy per spin E(m). Justify that the canonical
partition function can be written in the form

Z =
N

2

∫ +1

−1
dmΩ(m) e−βN E(m) (9.12)

4/ Let us assume that the expansion of the entropy in question 3 can be justified, s(m) ≃
s0 − am2, at lowest order.

a) Calculate explicitly Z and deduce the expression of the free energy per spin, f(T,B)
def
=

− 1
Nβ lnZ in the thermodynamic limit. Find the critical temperature Tc, below which the trunc-

tion of s(m) at lowest order is no longer justifed.

b) Let us assume that T > Tc. Deduce the entropy of the system Sc = −N∂f/∂T and the heat
capacity CV = T∂Sc/∂T .

c) Curie-Weiss law.– Calculate the average magnetization mc = −∂f/∂B and then magnetic
susceptibility χ(T ) = ∂mc/∂B, as a function of Tc. What happens to the response to the
magnetic field when T → T+

c ? Can you guess what this result suggests for the T < Tc

properties ?

5/ Regime T < Tc. Below Tc, one should consider the expansion s(m) ≃ s0 − am2 − bm4.

a) Justify that the [artition function can now read

Z ∼
∫ +1

−1
dm e−N ϕ(m,B), (9.13)

and provide the expression of the function ϕ(m,B). Plot ϕ(m, 0) and ϕ(m,B) (for B “small”).

b) What do suggest these curves for the behaviour at T < Tc ? Describe the state of the system
if the field is initially positive and decreases until it changes itssign.

6/ Can you physically understand why the mean field model studied here has a phase transition
while the 1D model does not have one ?

9.5 Ising model and gas on a lattice

Ising model : The Ising model is of fundamental importance in statistical physics. Introduced
as a simplified model to describe magnetism (ferromagnetism, antiferromagnetism, etc.), it also
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provides a model for binary alloys, lattice gas, certain socio-economic models (voters, etc.), or
even neural networks. We introduce spin variables” σi = ±1 associated with the N sites of a
network (cubic for example). The Ising model is defined by the Hamiltonian

HIsing = −J
∑
⟨i,j⟩

σiσj −B
∑
i

σi (9.14)

where the first term describes an interaction between neighboring spins (the sum is a sum on
the nearest neighbor sites, i.e. on the bonds of the lattice). If J > 0 (ferromagnetic interaction),
the interaction makes the alignment between spins energetically efficient. The second term
describes the effect of an external magnetic field on which the spins try to align with. At finite
temperature, three effects therefore compete: thermal agitation, the interaction that aligns the
spins between them and the magnetic field that aligns the spins in the direction of B.

T

Tc

m(T,0)

−1

+1

0

B 0
+

B 0
−

Figure 9.2: Magnetization m(T, 0) = − limB→0± limN→∞
1
N

∂
∂BFIsing(T,B,N) of the Ising model

at B = 0, as a function of temperature. At high temperature, T > Tc, the system is in the
paramagnetic phase, characterized by zero magnetization. Tc is the critical temperature below
which spontaneous magnetization appears at zero field (ferromagnetic phase). One or the other
branch is borrowed according to B → 0+ or B → 0−.

We discuss here the relationship with the lattice gas model.

Model of a gas on a lattice : We consider N sites of a lattice, each site can host one atom
at most. We note ni ∈ {0, 1} the number of atoms on site i. By prohibiting more than one
atom per site, we model a strong repulsion between atoms, at short distance. Van der Waals
forces are responsible for a weak attraction at large distances, which is taken into account by
introducing a −4ε energy when two atoms occupy two neighboring sites. The energy of the gas
is

HLG = −4ε
∑
⟨i,j⟩

ninj avec N =
∑
i

ni (9.15)

the total number of atoms

1/ Justify that the study of lattice gas in the grand canonical ensemble is mapped to the Ising
model (in the canonical ensemble). Establish the precise correspondence between the different
parameters and variables of the two models. Show that the two thermodynamic potentials are
connected as

JLG(T, µ,N) +
N

2
(q ε+ µ) = FIsing(T,B,N) , (9.16)

where µ denotes the chemical potential of the gas and q the coordinance of the lattice.

Hint : It can be useful to convert the sum on the bonds into a sum on the sites :
∑

⟨i,j⟩ =
(1/2)

∑
i

∑
j∈v(i) where v(i) is the set of q neighbors of the site i. On a regular lattice, the

number of bonds is therefore linked to the number of sites Nliens = Nq/2 (example : q = 2d on
the cuboc lattice of dimension d, therefore Nliens = Nd).
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2/ Using the mapping between the two models, what information can you deduce for the lattice
gas from the magnetization curve of the figure 9.2 ?

9.6 Ferromagnetic and antiferromagnetic Ising model on a hypercubic lattice
– mean field analysis (*)

We study the properties of magnetism on a hypercubic lattice of N sites, in the frame of the
Ising model. We note q the lattice coordination number (q = 2d for the hypercubic lattice where
d is the dimension).

A. Ferromagnetic interaction.– The Ising Hamiltonian reads

H = −J
∑
⟨i,j⟩

σiσj −B
∑
i

σi (9.17)

where σi = ±1. The interaction J > 0 favors a ferromagnetic order at low temperature. The
first summation is on nearest neighbors lattice sites, ⟨i, j⟩, i.e. on the links of the lattice. The
second summation is on all lattice sites.

B. Antiferromagnetic interaction.– 10 We now consider the Hamiltonian

H = +J
∑
⟨i,j⟩

σiσj −B
∑
i

σi (9.18)

where J > 0, i.e. an interaction favoring the opposite alignments of spins. We admit that
the ordered phase at T = B = 0 corresponds to the Néel order : namely the Ising spins take
alternating values +1 and −1.

The exercice can be found at http://lptms.u-psud.fr/christophe_texier/
enseignements/enseignement-en-licence/l3-physique-statistique/

9.7 The variational approach

We want to base the average field approach on a variational principle, i.e. build an approximate
free energy, which we will note fvar(m), from a clear minimization criterion.

Exercice available on http://lptms.u-psud.fr/christophe_texier/enseignements/

enseignement-en-licence/l3-physique-statistique/

Pour en savoir plus : Cf. exercice 10.3 de C. Texier & G. Roux, Physique statistique, Dunod,
2017.

10A critique of the mean field approach as presented here is at the end of the last exercise.

40

http://lptms.u-psud.fr/christophe_texier/enseignements/enseignement-en-licence/l3-physique-statistique/
http://lptms.u-psud.fr/christophe_texier/enseignements/enseignement-en-licence/l3-physique-statistique/
http://lptms.u-psud.fr/christophe_texier/enseignements/enseignement-en-licence/l3-physique-statistique/
http://lptms.u-psud.fr/christophe_texier/enseignements/enseignement-en-licence/l3-physique-statistique/

	Presentation
	Useful formulas
	TD 1 : Random walks and the central limit theorem
	Binomial law and random walk (*)

	TD 2 : Phase space and ergodicity
	Evolution in phase space and the Liouville theorem
	The H theorem
	Chaos and ergodicity
	Ergodicity for a sphere in a fluid
	Trom time average to statistical average – Example of the 1D harmonic oscillator(*)

	TD 3 : Density of states
	Two-level systems (*)
	Volume of a hypersphere (*)
	Density of states of free particles (*)
	Density of state of a free relativistic particle (*)
	Classical and quantum harmonic oscillators (*)
	Appendix: Semi-classical rule for counting states in phase space

	TD 4 : Fundamental postulate and the microcanonical ensemble
	The monoatomic ideal gas and the Sackur-Tetrode formula (*)
	Extensivity and Gibbs Paradox (*)
	Paramagnetic crystal - Negative (absolute) temperatures (*)
	The (absolute) negative temperatures are hotter ! (*)
	Thermal contact between two cubic boxes
	Isothermal and isotropic curves of a perfect gas 
	TD 5 : System in contact with a thermostat – Canonical ensemble)
	The crystal of spin 1/2 (*)
	Monoatomic ideal gas (*)
	The diatomic perfect gas (*)
	The Langevin paramagnet (*)
	Quantum mechanical calculation : Brillouin paramagnetism (*)
	Ideal, confined, non-ideal, etc... gases.
	Partition function of a particule in a box – the role of boundary conditions
	Gases of indistinguishable particules in a harmonic well
	Appendix : Semiclassical summation rule the phase space
	Appendix : Canonical average of a physical quantity

	TD 6 : Kinetic theory
	 Maxwell Distribution (*)
	Pressure of a gas (*)
	Effusion
	TD 7 : Thermodynamics of harmonic oscillators
	Lattice vibrations in a solid (*)
	Thermodynamics of electromagnetic radiation (*)
	Equilibrium between matter and light, and spontaneous emission

	TD 8 : Grand Canonical ensemble (Systems in contact with a particle reservoir
	Ideal Gas (*)
	Adsorption of an ideal gas on a solid interface (*)
	Fluctuations of energy
	Density fluctuations in a fluid – Compressibility

	TD 9 : Interacting systems and phase transitions
	Sublimation 
	Ising chain and transfer matrix (*)
	Correlations in the 1D Ising model
	Curie-Weiss model: transition Paramagnetic-Ferromagnetic (*)
	Ising model and gas on a lattice
	Ferromagnetic and antiferromagnetic Ising model on a hypercubic lattice – mean field analysis (*)
	The variational approach






