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Abstract

In the presence of a static spatially periodic potential, quantum transport prop-
erties are strongly modified, with counter-intuitive behaviors such as the so-called
Bloch oscillations.

In order to describe transport properties, we take a simple model where – in addition
to a static spatially periodic potential – an homogeneous force is applied on the particles
(modelling an electric field for charged particles or a gravitational field). The dynamics
in the plane perpendicular to the field is unaffected and we can use a simple 1D model:

Ĥ =
p̂2

2m
+ V (x̂)− F (t)x̂ (1)

with m the mass of the particle, F (t) the time-dependent field and V (x) the static po-
tential with period a.

1 Accelerated frame

The applied field breaks the periodicity of the potential. It is however possible to re-
cover spatial periodicity by moving to the accelarated frame. Starting from a state |ψ(t)〉
evolving with an arbitrary Hamiltonian Ĥ(t), one can perform the following unitary trans-
formation:

|ψ̃(t)〉 = Û(t)|ψ(t)〉 (2)

Show that |ψ̃(t)〉 obeys the Schroedinger equation with Hamiltonian:

˜̂
H(t) = Û(t)Ĥ(t)Û †(t) + ih̄

dÛ(t)

dt
Û †(t) (3)

The unitary operator (depending on the arbitrary function p0(t)):

Û1(t) = e−ip0(t)x̂/h̄ (4)

is a translation operator in momentum space such that:

Û1x̂Û
†
1 = x̂, Û1p̂Û

†
1 = p̂+ p0(t) (5)

Show, that for a convenient choice of p0(t), this unitary transformation transforms the
Hamiltonian, eq. 1, into:

Ĥ1(t) =
[p̂− A(t)]2

2m
+ V (x̂) (6)

which is spatially periodic.
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By performing a second unitary transformation, a translation in configuration space:

Û2(t) = e−ix0(t)p̂/h̄ (7)

such that:
Û2x̂Û

†
2 = x̂− x0(t), Û2p̂Û

†
2 = p̂, (8)

show that one obtains, up to a global phase factor which can be eliminated by a third
unitary transformation, an Hamiltonian:

Ĥ2(t) =
p̂2

2m
+ V (x̂− x0(t)) (9)

Show that this Hamiltonian is associated with the classical equation of motion in an
accelerated frame.

2 Bloch theorem

The Hamiltonian Ĥ2(t) being invariant by a translation by a in configuration space,
one can use the (time-dependent) Bloch theorem which states the general solution of
the Schroedinger equation can be chosen as a linear combination of solutions with a fixed
quasi-momentum q of the form eiqxu(x, t) where u(x, t) is a spatially periodic function. For
the original Hamiltonian Ĥ(t), show that it implies that the Bloch structure is preserved
during time evolution, that is that an initial state:

ψ(x, 0) = eixqinitialu(x, 0) (10)

will evolve to:
ψ(x, t) = eixq(t)u(x, t) (11)

where the time-dependent quasi-momentum is given by:

q(t) = qinitial +
1

h̄

∫ t

0
F (t′)dt′ (12)

and the temporal evolution of u given by:

ih̄
d|u(t)〉

dt
= Ĥperiodic[q(t)] |u(t)〉 (13)

with:

Ĥperiodic[q] =
(p̂+ h̄q)2

2m
+ V (x̂) (14)

3 Adiabatic approximation

In order to solve eq. (13), some approximations must be performed. For a not-too-strong
field, q(t) varies slowly and the adiabatic approximation can be used: if the initial state
u(x, 0) is a Bloch wave in the the first band (that is the ground state φ0,qinitial of eq. (14),
the solution of the Schroedinger equation is given by

ψ(x, t) ≈ eixq(t)φ0,q(t)(x) (15)
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For a constant force, show that the temporal evolution is periodic with period:

τB =
2πh̄

aF
(16)

Give a physical interpretation of the corresponding energy h̄ωB = h̄2π/τB in terms of the
tilted lattice potential V (x)− Fx.

One now considers an initial wavapacket built by combining several Bloch waves
φ0,q(x). Show that the temporal evolution remains periodic in the adiabatic approxi-
mation. If the initial distribution in q is centered around a value qinitial narrower than
2π/a, the wavepacket will propagate with a group velocity:

dx̄

dt
= vg(t) =

1

h̄

dE0,q

dq

∣∣∣∣∣
q=q(t)

(17)

where E0,q is the dispersion relation in the first band (lowest eigenvalue of Ĥperiodic[q]).
Show that, in configuration space, the center of the wavepacket oscillates with amplitude:

L =
∆

F
(18)

where ∆ is the width of the first band. These oscillations are called Bloch oscillations.
What happens if the initial distribution in q is not narrower than 2π/a?

4 Deep lattice

What happens for a deep lattice where |V (x)| � h̄2

ma2
?

5 Shallow lattice

Make a schematic plot of the band structure En,q for a shallow lattice where |V (x)| < h̄2

ma2
?

What is the amplitude of the Bloch oscillations? Show that they are very anharmonic for
a very shallow lattice.

Figure 1 shows experimentally recorded velocity distributions of a cold atomic gas in
an optical lattice exposed to a constant uniform force. Interpret these results in terms of
Bloch oscillations? Which phenomenon takes place at t = τB/2? Among the three plots
in the right part of the figure, which one corresponds to the shallowest lattice?

6 Beyond the adiabatic approximation

The previous approach predicts that there is zero long range transport whatever the F
value, that is that the system is always an insulator. However, for V (x)→ 0, one should
recover free particles where the transport is known to be ballistic. The next sections aim
at understanding how to smoothly connect these pictures.

We first consider the situation where no disorder is present. Plot schematically the
band structure in the limit of small V (x). Show that the adiabatic approximation is likely
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Figure 1: Bloch oscillations observed with a cold atomic gas. The left plot shows velocity
distributions recorded at successive times and the right plot the average velocity of the
wavepacket as a function of time, for various lattice strengths. From [2]

Figure 2: The Landau-Zener scenario. When crossing an avoided crossing by changing in
time the parameter λ, the probability of staying in the same state is given by Eq. 20.

to fail at the edge of the Brillouin zone q = ±π/a. For simplicity, we will consider a
periodic potential:

V (x) = V0 sin2(kx) (19)

with k = π/a. In the limit of small V0 (with respect to what?), show that the first band
gap at the edge of the Brillouin zone has a width V0/2. How do other band gaps scale
with V0?

One recalls the Landau-Zener formula, see Fig. 2: the probability of adiabatically
following an avoided crossing (i.e. arrive on the lower branch and stay on it) is given by:

P = 1− exp

(
−π∆E2

2h̄α

)
(20)

where α = dλ
dt

d(E2−E1)
dλ

, with the slopes dE/dt is evaluated far from the avoided crossing.
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Figure 3: Probability of staying in the lowest band. From [3].

Show that the probability of crossing adiabatically the edge of the Brillouin zone is
given by:

P (F ) = 1− e−Fc/F (21)

with Fc the “critical” force given by:

Fc =
π

32

V 2
0

Er

k (22)

with Er = h̄2k2/2m the ”recoil” of ”Fermi” energy of the particle (for cold atoms and
electrons respectively).

In figure 3, the experimentally measured probability of staying in the lowest band is
shown vs. time for V0 = Er and h̄ωB = 0.4Er. Interpret these results.

Even if F < Fc, non-adiabatic processes will limit the lifetime of the of the Bloch
oscillations. What will happen when particles cross daibatically the edge of the Brillouin
zone? Show that a ballistic motion is eventually restored.

7 Effect of disorder; damping of the Bloch oscilla-

tions

Figure 4 shows Bloch oscillations of Strontium atoms under the influence of gravity. The
force is weak enough for non-adiabatic transitions to be negligible. It also shows Bloch
oscillations of electrons in a semiconductor superlattice under the influence of an electric
field. These results show that the Bloch oscillations are damped.

In a (over)-simplified phenomenological model, one can assume that scattering events
randomize the direction of the particle wavevector with a constant rate 1/τ. In the absence
of scattering events, we will assume an harmonic dispersion relation E0,q ∝ cos(qa) and
thus a group velocity v ∝ sin(qa). Show that the average velocity correlation function is:

v(t′)v(t+ t′) = v2 cos(ωBt) (23)

In the presence of scattering, it will become:

v(t′)v(t+ t′) = v2 cos(ωBt) e−t/τ (24)
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Figure 4: Left: Bloch oscillations observed with a cold Sr atomic gas. Successive images
correspond to oscillation 1, 2900, 7500 and 9800. From [4]. Right: Bloch oscillations
observed with electrons in a semiconductor superlattice. From [5].

Compute the diffusion constant and the conductivity of an electron gas. Show that one
recovers the Drude formula when τ � τB and a reduced conductivity otherwise.

8 Observation of Bloch oscillations with electrons

In a good metal like Copper, Silver or Gold, the scattering time τ is of the order of 0.1
ps. Estimate the order of magnitude of the electric field required for observing Bloch
oscillations. Suppose that this electric field produced a current according to the Drude
formula. Estimte how much power would be dissipated per volume...

In semiconductors, the situation is better, but τ is still too short to observe Bloch
oscillations. Explain why semiconductor superlattices make the observation easier (Hint:
Eqs. (16) and (22); see [6] for a review paper).

For the experiment shown in fig. 4, the electric field was of the order of 10 kV/cm and
the period of the superlattice of the order of 10 nm. Compare the theoretical predictions
with the experimental observations.
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