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In this tutorial, we propose to solve the diffusion equation describing the propagation of a wave
in a thick disordered slab. We first establish the “Ohm’s law” T ∼ `/L for the total transmission
of a continuous beam, and discuss the modifications to this law in the presence of absorption in
the medium. We then study how a short incident pulse is affected by wave diffusion in this system.

1 Solution of the diffusion equation in a slab

Figure 1: Transmission of a wave
through a semi-infinite, thick dis-
ordered slab.

We consider an incident, monochromatic beam impinging on
a disordered thick slab of length L and mean free path ` (see
figure). The slab is assumed to be infinite along the transverse
direction r⊥ = (x, y). In this geometry, the average wave
energy density P (q⊥, z, z

′,Ω) =
∫
d2r⊥e

iq⊥·(r⊥−r′
⊥)P (r⊥ −

r′⊥, z, z
′,Ω) at a point z inside the slab obeys the diffusion

equation[
−iΩ +DBq

2
⊥ −DB

∂2

∂z2

]
P (q⊥, z, z

′,Ω) = δ(z − z′), (1)

where z′ ' `, with the (approximate) boundary conditions

P (q⊥, z, z
′,Ω) = 0 for z = 0, L. (2)

We seek a solution of Eq. (1) of the form P (q⊥, z, z
′,Ω) =

∑
nAn(q⊥, z

′,Ω)Ψn(z), where the
Ψn form a complete basis and are chosen normalized:∑

n

Ψn(z)Ψ∗n(z′) = δ(z − z′),
∫ L

0

dz|Ψn(z)|2 = 1. (3)

Find An(q⊥, z
′,Ω) and Ψn(z).

2 Continuous-beam experiment

We first consider a “continuous-beam” experiment where the incident beam is a plane wave (in
optics this models a stationary laser beam). The total, stationary transmission coefficient through
the slab in defined in this case as T = −DB∂zP (q⊥ = 0, z, z′,Ω = 0)|z=L.

1. Using the formula
∑∞
n=1

cosnx
n2+a2 = π

2a
cosh[a(π−|x|)]

sinhπa − 1
2a2 , show that

T =
`

L
. (4)

The decay with 1/L is typical of a diffusion process.

2. Electromagnetic waves propagating in dielectric materials are easily subjected to absorption
(the wave transmits energy to the material), which leads to a reduction of the transmission
coefficient. Assuming that absorption is homogeneous in the material, we take it into account
through an “absorption time” τa, beyond which the wave is absorbed:[

τ−1
a +DBq

2
⊥ −DB

∂2

∂z2

]
P (q⊥, z, z

′) = δ(z − z′). (5)

Express the transmission coefficient T in the presence of absorption as a function of L and
La =

√
τaDB . What is the physical interpretation of La? Give an approximate expression

of T in the limit of strong absorption. Which problem does absorption cause if one wishes
to demonstrate Anderson localization in a continuous-beam experiment?



Figure 2: Left: experimental time-resolved optical transmission through a disordered, diffusive
dielectric sample (compressed TiO2 particles) [1]. Right: time-resolved transmission through a
semi-infinite disordered slab, calculated from the self-consistent theory of localization [2].

3 Time-resolved experiment

We now consider an experimental scenario where the disordered slab is illuminated by a very short
pulse, and we neglect absorption in the medium. In that case, the total time-resolved transmission
through the slab in defined as T (t) = −DB

∫
dΩ
2π e
−iΩt∂zP (q⊥ = 0, z, z′,Ω)|z=L.

1. Compute T (t) and plot it as a function of time. Give a physical interpretation of this curve.

2. Show that at long times we have:

T (t) ' 2π2DB`

L3
exp(−t/tD). (6)

tD is called the Thouless time. What is its physical interpretation? Many such time-resolved
experiments have been carried out with electromagnetic waves. In the left panel of Fig. 2 we
show, for instance, the results obtained in [1] with optical pulses in dielectric media made of
compressed TiO2 particles.

3. The time-resolved transmission coefficient can also be calculated in the regime where Ander-
son localization takes place (i.e. for k` ≤ 1 in three dimensions). This was done in [2], by
solving numerically the self-consistent equations of Anderson localization (see last lecture).
The result is displayed in the right panel of Fig. 2. From this figure, explain what is the
great advantage of a time-resolved experiment compared to the stationary experiment of Sec.
2 for probing Anderson localization.
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