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TD 1 — WAVE DIFFUSION THROUGH FINITE DISORDERED MEDIA
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In this tutorial, we propose to solve the diffusion equation describing the propagation of a wave
in a thick disordered slab. We first establish the “Ohm’s law” T ~ ¢/L for the total transmission
of a continuous beam, and discuss the modifications to this law in the presence of absorption in
the medium. We then study how a short incident pulse is affected by wave diffusion in this system.

1 Solution of the diffusion equation in a slab
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We consider an incident, monochromatic beam impinging on

a disordered thick slab of length L and mean free path ¢ (see ) o o
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direction r; = (z,y). In this geometry, the average wave —_— 0 o Z\ N
energy density P(q,,z,2',Q) = fdQT'Leiql'(“’Tl)P('rL - o © ’ ’
r',2,2',Q) at a point z inside the slab obeys the diffusion o o?© \
equation o °© o o
0? < > \'
7ZQ+DBq2L*DB@ P(ql,Z’Z/,Q):(S(Z*Z/), (1) L

Figure 1: Transmission of a wave

where 2’ ~ ¢, with the (approximate) boundary conditions through a semi-infinite, thick dis-

ordered slab.
P(q,,z,72,Q)=0for z=0,L. (2)

We seek a solution of Eq. (1) of the form P(q,,2,2',Q) =3, An(q,,2',Q)¥,(2), where the
¥, form a complete basis and are chosen normalized:
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Find 4,,(q,,7,Q) and ¥, ().

2 Continuous-beam experiment

We first consider a “continuous-beam” experiment where the incident beam is a plane wave (in
optics this models a stationary laser beam). The total, stationary transmission coefficient through
the slab in defined in this case as T = —Dpd.P(q, =0,2,2",Q =0)|.—L.

1. Using the formula > 7, e = ;—acosﬁi(hﬂ;f‘)] — #, show that
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The decay with 1/L is typical of a diffusion process.

2. Electromagnetic waves propagating in dielectric materials are easily subjected to absorption
(the wave transmits energy to the material), which leads to a reduction of the transmission
coefficient. Assuming that absorption is homogeneous in the material, we take it into account
through an “absorption time” 7,, beyond which the wave is absorbed:
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Express the transmission coefficient 1" in the presence of absorption as a function of L and
L, = V/7,Dp. What is the physical interpretation of L,? Give an approximate expression
of T in the limit of strong absorption. Which problem does absorption cause if one wishes
to demonstrate Anderson localization in a continuous-beam experiment?
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Figure 2: Left: experimental time-resolved optical transmission through a disordered, diffusive
dielectric sample (compressed TiOy particles) [1]. Right: time-resolved transmission through a
semi-infinite disordered slab, calculated from the self-consistent theory of localization [2].

3 Time-resolved experiment

We now consider an experimental scenario where the disordered slab is illuminated by a very short
pulse, and we neglect absorption in the medium. In that case, the total time-resolved transmission
through the slab in defined as T'(t) = —Dp [ $2e~"*9,P(q, =0,z,2',Q)|.—L.

1. Compute T'(t) and plot it as a function of time. Give a physical interpretation of this curve.

2. Show that at long times we have:

7(1) = 28 (/1) ©)

tp is called the Thouless time. What is its physical interpretation? Many such time-resolved
experiments have been carried out with electromagnetic waves. In the left panel of Fig. 2 we
show, for instance, the results obtained in [1] with optical pulses in dielectric media made of
compressed TiO4 particles.

3. The time-resolved transmission coefficient can also be calculated in the regime where Ander-
son localization takes place (i.e. for k¢ < 1 in three dimensions). This was done in [2], by
solving numerically the self-consistent equations of Anderson localization (see last lecture).
The result is displayed in the right panel of Fig. 2. From this figure, explain what is the
great advantage of a time-resolved experiment compared to the stationary experiment of Sec.
2 for probing Anderson localization.
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