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Wave dynamics in random media

TD n°3 : Distribution of the transmission in 1D

and the scaling approach

We consider the transmission through a one-dimensional disordered medium and derive the
distribution of the tranmission probability.

Introduction : transfer matrix.— The solution of the Schrédinger equation can be conve-
niently analysed with a transfer matrix formalism. Transfer matrix relates left amplitudes to

right amplitudes of the wave function
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Figure 1: The transfer matriz relates the left to right amplitudes. I.e. the wave function is
Y(z) = Aef@=21) 1 Be=ik@=2r) ot the left and ¢ (z) = C *@=2r) + D e k(@=2R) ot the right.

The scattering on a potential is characterised by two sets of reflection/transmission ampli-
tudes, (r,t) if a plane wave is sent from the left and (r/,¢') if it is sent from the right (cf. for
instance exercice 5.2 of [1]) :
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with det T = t/t’ (note that v/ /t' = —(r/t)* follows from unitarity). Moreover in 1D ¢ = ¢'. The
transfer matrix conserves the norm Xfo, X = |z|2 — |y|2.

1/ Composition rule.— The first step is to determine the composition rule for the transmission
amplitudes when combining two regions characterised by two transfer matrices T' = T57T7. Show

that :
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Evolution of the transmission.— We search the differential equation for the transmission
probability 7(z) characterising transmission through an interval [0, z] with disorder. We con-
sider a small slice of disordered medium in [z, z + dz], described by reflexion and transmission
amplitudes tg, 79 and 5. We introduce the reflection probability p = lr9|? < 1. If transmission
through [0, 2| is encoded in the coefficients t1, r1 and ], Eq. gives

r()(1 - p)
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where 6 is the sum of the phases of the reflection coefficients. Expanding in powers of p < 1 we
obtain

O0r(z) = 7(x+dx) —7(x) = —2cos(h) T\/ﬁ\/ﬁjt [—7‘(2 —7)+47(1—1) cosQ(O)] p—l—(’)(pgé?
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T(x + 6z) = (4)

Assumptions :



e (p) ~ dx/l, where ¢ is the scattering length (an effective parameter characterising the
strength of the disorder).

e The phase 6 is independent of 7(x), but also of p (of course the second assumption is not

exact) and uniformly distributed.

2/ Express (67) and (672) in terms of averages of functions of 7. Deduce that the transmission
obeys the stochastic differential equation (SDE)

dr(z) = —72 d% + %2(1 o dW(z) (1) (6)

3/ Lyapunov exponent.— Using the It6 formula (cf. appendix), show that

—dinr(z) = d% J-nawE) () (7)

Deduce the relation between the effective parameter ¢ and the Lyapunov exponent .

4/ Distribution of the transmission probability.— We parametrise the transmission prob-
ability as 7(x) = 1/ cosh? u(z). Using that argcoshy = In(y + /y% — 1), show that

de — /ydW(z) (8)

i
d =
u(z) tanh 2u
Considering the limit of large z, find the distribution of u(z). Compare the mean value and the
variance.

5/ The above calculation is adapted from the well-known article [3]. The ad hoc hypothesis
made above is equivalent to the Single Parameter Scaling hypothesis of the gang of four [4].
In the article [5], we have compared (analytically and numerically) 71 = limg_oo = (In [t)()|)
and 7 = lim, o0 2 Var(In [¢(z)]) for the model

d2

H = ) + V() where (V(2)V(2)) =0 d(z —2'). 9)

The result is plotted on the Figure
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Figure 2: The two first cumulants of In |¢(zx)| for o = 1. From [5].

Discuss the relation with the previous results.



Appendix : It6 calculus

We introduce a normalised Wiener process W (t), i.e. (W (t)) =0 and (W ()W (t')) = min (¢,t').
Consider the stochastic differential equation (SDE)

da(t) = A(z(t)) dt + Bx(@)dW(t)  (Ito)

understood with the It6 convention, which refers to a prescription for the equal time correlations :
(f(x(t))dW (t)) = 0. The usual rule for a change of variable is modified according to the It6
formula

dp(a(t) = |A() ¢/ () + 3B ()| dt 4 B@) @) aw(n)  (6)  (10)

(which follows from dW (t)? = dt, roughly speaking).
The related Fokker-Planck equation is

1
O Py(x) = 50323 [B(I)2Pt(l‘)] — 0y [A(z) Pi(2)] .
The relation with the SDE in the Stratonovich convention
dz(t) = A(z(t)) dt + B(z(t)) dW (t) (Stratonovich) ,

describing the same process, is A(z) = A(z) — (1/2)B(x) B'(x). We recall that the Stratonovich
convention is obtained in particular when the Gaussian white noise W’(¢) is the singular limit of
a regular noise. Then the process and the noise at equal time are correlated, (f(z(¢)) dW (¢t)) # 0.
The Stratonovich convention allows to use usual rule for differential calculus, i.e. dp(z(t)) =

¢’ (2(t)) da(t).
For a pedagogical presentation of stochastic calculus, cf. the book of Gardiner [2].
I¥" If you want to learn more :

The existence of a second length scale in the strong disorder regime has been nicely discussed
by Cohen, Roth and Shapiro [6] (cf. this article for references). See also discussion and further
references in the recent article [5].

References

[1] C. Texier, Mécanique quantique, Dunod, Paris, second edition, 2015.

[2] C. W. Gardiner, Handbook of stochastic methods for physics, chemistry and the natural
sciences, Springer, 1989.

[3] P. Anderson, D. J. Thouless, E. Abrahams, and D. S. Fisher, New method for a scaling
theory of localization, Phys. Rev. B 22(8), 3519-3526 (1980).

[4] E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, Scaling theory
of localization: absence of quantum diffusion in two dimensions, Phys. Rev. Lett. 42(10),
673 (1979).

[5] K. Ramola and C. Texier, Fluctuations of random matrix products and 1D Dirac equation
with random mass, J. Stat. Phys. 157(3), 497-514 (2014).

[6] A.Cohen, Y. Roth, and B. Shapiro, Universal distributions and scaling in disordered systems,
Phys. Rev. B 38(17), 12125-12132 (1988).



	Bibliography

