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Wave dynamics in random media

TD no3 : Distribution of the transmission in 1D

and the scaling approach

We consider the transmission through a one-dimensional disordered medium and derive the
distribution of the tranmission probability.

Introduction : transfer matrix.– The solution of the Schrödinger equation can be conve-
niently analysed with a transfer matrix formalism. Transfer matrix relates left amplitudes to
right amplitudes of the wave function (
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Figure 1: The transfer matrix relates the left to right amplitudes. I.e. the wave function is
ψ(x) = A eik(x−xL) +B e−ik(x−xL) at the left and ψ(x) = C eik(x−xR) +D e−ik(x−xR) at the right.

The scattering on a potential is characterised by two sets of reflection/transmission ampli-
tudes, (r, t) if a plane wave is sent from the left and (r′, t′) if it is sent from the right (cf. for
instance exercice 5.2 of [1]) :

T =

(
1/t∗ r′/t′

−r/t′ 1/t′

)
∈ U(1, 1) (2)

with detT = t/t′ (note that r′/t′ = −(r/t)∗ follows from unitarity). Moreover in 1D t = t′. The
transfer matrix conserves the norm X†σzX = |x|2 − |y|2.

1/ Composition rule.– The first step is to determine the composition rule for the transmission
amplitudes when combining two regions characterised by two transfer matrices T = T2T1. Show
that :

t1⊕2 = t2t1 + t2(r
′
1r2)t1 + · · · = t2t1

1− r′1r2
(3)

Evolution of the transmission.– We search the differential equation for the transmission
probability τ(x) characterising transmission through an interval [0, x] with disorder. We con-
sider a small slice of disordered medium in [x, x + δx], described by reflexion and transmission
amplitudes t2, r2 and r′2. We introduce the reflection probability ρ = |r2|2 � 1. If transmission
through [0, x] is encoded in the coefficients t1, r1 and r′1, Eq. (3) gives

τ(x+ δx) =
τ(x)(1− ρ)

|1 + eiθ
√

1− τ(x)
√
ρ|2

(4)

where θ is the sum of the phases of the reflection coefficients. Expanding in powers of ρ� 1 we
obtain

δτ(x) = τ(x+ δx)− τ(x) = −2 cos(θ) τ
√

1− τ√ρ+
[
−τ(2− τ) + 4 τ(1− τ) cos2(θ)

]
ρ+O(ρ3/2)

(5)
Assumptions :
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• 〈ρ〉 ' δx/`, where ` is the scattering length (an effective parameter characterising the
strength of the disorder).

• The phase θ is independent of τ(x), but also of ρ (of course the second assumption is not
exact) and uniformly distributed.

2/ Express 〈δτ〉 and
〈
δτ2
〉

in terms of averages of functions of τ . Deduce that the transmission
obeys the stochastic differential equation (SDE)

dτ(x) = −τ2 dx

`
+

√
2

`
τ2(1− τ) dW (x) (Itô) (6)

3/ Lyapunov exponent.– Using the Itô formula (cf. appendix), show that

−d ln τ(x) =
dx

`
−
√

2

`
(1− τ) dW (x) (Itô) (7)

Deduce the relation between the effective parameter ` and the Lyapunov exponent γ.

4/ Distribution of the transmission probability.– We parametrise the transmission prob-
ability as τ(x) = 1/ cosh2 u(x). Using that argcosh y = ln(y +

√
y2 − 1), show that

du(x) =
γ

tanh 2u
dx−√γ dW (x) (8)

Considering the limit of large x, find the distribution of u(x). Compare the mean value and the
variance.

5/ The above calculation is adapted from the well-known article [3]. The ad hoc hypothesis
made above is equivalent to the Single Parameter Scaling hypothesis of the gang of four [4].
In the article [5], we have compared (analytically and numerically) γ1 = limx→∞

1
x 〈ln |ψ(x)|〉

and γ2 = limx→∞
1
xVar(ln |ψ(x)|) for the model

H = − d2

dx2
+ V (x) where

〈
V (x)V (x′)

〉
= σ δ(x− x′) . (9)

The result is plotted on the Figure 2.
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Figure 2: The two first cumulants of ln |ψ(x)| for σ = 1. From [5].

Discuss the relation with the previous results.
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Appendix : Itô calculus

We introduce a normalised Wiener process W (t), i.e. 〈W (t)〉 = 0 and 〈W (t)W (t′)〉 = min (t, t′).
Consider the stochastic differential equation (SDE)

dx(t) = A(x(t)) dt+B(x(t)) dW (t) (Itô)

understood with the Itô convention, which refers to a prescription for the equal time correlations :
〈f(x(t)) dW (t)〉 = 0. The usual rule for a change of variable is modified according to the Itô
formula

dϕ(x(t)) =

[
A(x)ϕ′(x) +

1

2
B(x)2ϕ′′(x)

]
dt+B(x)ϕ′(x) dW (t) (Itô) (10)

(which follows from dW (t)2 = dt, roughly speaking).
The related Fokker-Planck equation is

∂tPt(x) =
1

2
∂2x
[
B(x)2Pt(x)

]
− ∂x

[
A(x)Pt(x)

]
.

The relation with the SDE in the Stratonovich convention

dx(t) = Ã(x(t)) dt+B(x(t)) dW (t) (Stratonovich) ,

describing the same process, is Ã(x) = A(x)− (1/2)B(x)B′(x). We recall that the Stratonovich
convention is obtained in particular when the Gaussian white noise W ′(t) is the singular limit of
a regular noise. Then the process and the noise at equal time are correlated, 〈f(x(t)) dW (t)〉 6= 0.
The Stratonovich convention allows to use usual rule for differential calculus, i.e. dϕ(x(t)) =
ϕ′(x(t)) dx(t).

For a pedagogical presentation of stochastic calculus, cf. the book of Gardiner [2].

+ If you want to learn more :

The existence of a second length scale in the strong disorder regime has been nicely discussed
by Cohen, Roth and Shapiro [6] (cf. this article for references). See also discussion and further
references in the recent article [5].
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