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In this tutorial, we aim to establish the conditions under which the Ioffe-Regel criterion k` ∼ 1
can be fulfilled for matter waves (for instance electrons in a metal) and electromagnetic waves
propagating in a disordered dielectric material. Such conditions may be found from the usual
expression of the mean free path for dilute systems:

` =
1

nσ
, (1)

where n is the density of scatterers and σ is their cross section, which in general depends on the
wave number k. Within the dilute limit, the criterion k` ∼ 1 thus reduces to nσ(k) ∼ k. Once the
cross section is known, this imposes a condition on wave numbers. We present below a calculation
of σ(k) for a model of point-like scatterer.

1 Lippmann-Schwinger equation

Figure 1: Scattering of
an incident state |φ〉 on
a potential V .

We start by establishing a formulation of the Schrödinger equation bet-
ter suited for the description of the process of elastic scattering of an
incident matter wave on an immobile target (“the scatterer”). This
scatterer is modeled by a potential distribution V (r), referred to as the
scattering potential (see figure).

The goal is here to find a solution of the Shrödinger equation
(Ĥ0 + V̂ )|ψ〉 = E|ψ〉, such that |ψ〉 → |φ〉 when V̂ → 0, with |φ〉
the solution of the unperturbed equation Ĥ0|φ〉 = E|φ〉.

1. Verify that the solution |ψ〉 can be formally expressed as

|ψ〉 = |φ〉+
1

E − Ĥ0 + iη
V̂ |ψ〉, (2)

where η = 0+ is an infinitesimally small positive number used to regularize the operator
(E − Ĥ0)−1. Calculations are usually done at finite η, the limit η → 0 being taken in the
end [1]. The operator ĜR0 = (E − Ĥ0 + iη)−1 is called the retarded Green’s operator. Its
matrix element in position space, 〈r|ĜR0 |r′〉 ≡ GR0 (r − r′), is the retarded Green’s function
and only depends on r − r′ due to translational invariance.

2. Show that Eq. (2) can be re-expressed as

|ψ〉 = |φ〉+ ĜR0 T̂ |φ〉, (3)

where T̂ = V̂ + V̂ ĜR0 V̂ + V̂ ĜR0 V̂ Ĝ
R
0 V̂ + . . . (Born series), and give an interpretation of this

expansion. The operator T̂ is called the T-matrix, and it encodes all the scattering properties
of the target.

2 T-matrix for point scatterers

We consider the simplest model possible of scattering potential

V (r) = V0uδ(r − ri), (4)

which describes a point scatterer located at ri. This model formally corresponds to the limit of a
spherical scattering potential of amplitude V0 →∞ and volume u = 4πa3/3→ 0, with the product
V0u constant.



1. Demonstrate that

〈r|T̂ |r′〉 = δ(r − r′)δ(r − ri)t(E), where t(E) =
V0u

1− V0u
∫

d3k
(2π)3G

R
0 (k)

(5)

where GR0 (k) ≡
∫
d3rGR0 (r)eik·r = [E − ~2k2/(2m) + iη]−1.

2. The integral in the denominator of t(E) displays an ultraviolet divergence, which is due to
the unphysical divergence of the potential (4) at r = ri. This divergence can be handled by
writing

GR0 (k) =
2mE

~2k2

1

E − ~2k2/(2m) + iη
− 2m

~2k2 (6)

and regularizing the integral of the second term with an ultraviolet cut-off which corresponds
to the physical size a of the scatterer. Using this procedure, deduce that

t(E) =
4π~2

2m

1

a−1s + i
√

2mE/~2
, (7)

where as is a constant that depends on V0. as is called the scattering length.

3. We are interested in the scattering of a plane-wave state 〈r|φ〉 = eik·r (where k =
√

2mE/~2).
The scattering cross section is defined as the ratio of incident and scattered wave fluxes:

σ =
dFscattered/dΩ

dFincident/dS
, (8)

where dFincident/dS = |〈r|φ〉|2 and dFscattered/dΩ = |r − ri|2|〈r|ĜR0 T̂ |φ〉|2. Plot σ as a
function of k and infer a condition on k for observing Anderson localization of a particle
evolving in a medium made of many such point scatterers.

3 The Born series for electromagnetic waves

We now discuss the case of an electromagnetic wave propagating in a dielectric (non-magnetic)
medium of mean permittivity ε, and encountering an scatterer at point ri. We describe this
scatterer by a local, delta fluctuation of the permittivity:

ε(r) = ε+ δε(r), δε u δ(r − ri), (9)

where again u = 3πa3/3.

1. Derive the following wave equation obeyed by a monochromatic electromagnetic wave E(r)e−iωt

of frequency ω and mean wave number k =
√
ε/ε0 ω/c:

−∆E(r) +∇(∇ ·E(r))− k2 δε(r)

ε
E(r) = k2E(r). (10)

2. From here on, we adopt for simplicity a scalar description of the wave: coupling between
the three components of the field is neglected (∇ ·E=0) and the electric field is replaced by
a scalar field ψ (see [2] for a resolution of the exact vector description). This leads to the
Helmholtz equation

−∆ψ(r)− k2 δε(r)

ε
ψ(r) = k2ψ(r). (11)

By proceeding by analogy with the analysis of Sec. 1, write the Born expansion of the
T -matrix associated with the Helmholtz equation.

4 Ioffe-Regel criterion for scalar electromagnetic waves

1. By using the same regularization procedure as for matter waves, show that for scalar elec-
tromagnetic we have:

t(k) =
−2π2ak2

k20 − k2 − iak3π/2
(12)



Figure 2: Normalized scattering cross section of a sphere of radius a and relative refractive index
n =

√
(ε+ δε)/ε = 2.8, calculated from Mie theory. Figure taken from [4].

2. Plot the cross section σ(k). What are main differences with the cross section calculated for
a matter wave? Explain physically where these differences come from.

3. Infer a criterion for observing Anderson localization of an electromagnetic wave.

4. While the model discussed here is exactly solvable, it is not sufficient to describe the full
scattering process of an electromagnetic plane by a finite target. Explain why.

The general scattering process on a finite-size target turns out to admit an analytical so-
lution in the particular case of a homogeneous spherical sphere, a problem known as Mie
scattering [3]. The cross section calculated from Mie theory is displayed in Fig. 2. What are
the differences with the calculation of the present exercise?
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