TD nº3 : One-dimensional Anderson localisation

I Localisation for the random Kronig-Penney model – Concentration expansion and Lifshits tail

The aim of the problem is to study a 1D disordered model introduced by Frisch and Lloyd in *Electron levels in a one-dimensional random lattice*, Phys. Rev. **120**(4), 1175–1189 (1960). This model is a random version of the Kronig-Penney model

$$H = -\frac{\mathrm{d}^2}{\mathrm{d}x^2} + \sum_n v_n \,\delta(x - x_n) \,. \tag{1}$$

Impurity positions x_n 's are distributed identically and independently for a uniform mean density ρ . We consider the case where the weights v_n 's are also independent random variables. ¹ We prove the Anderson localisation of eigenstates and analyse the low energy density of states.

1/ The positions are ordered as $x_0 = 0 < x_1 < x_2 < \cdots < x_n < \cdots$ Denoting by $\ell_n = x_{n+1} - x_n > 0$ the distance between consecutive impurities, recall the distribution of these lengths.

2/ **Riccati.**— We denote by $\psi(x; E)$ the solution of the initial value problem $H\psi(x; E) = E\psi(x; E)$ with $\psi(0; E) = 0$ and $\psi'(0; E) = 1$. Derive the stochastic differential equation controlling the evolution of the Riccati variable $z(x) \stackrel{\text{def}}{=} \psi'(x; E)/\psi(x; E)$.

3/ Describe the effect of the random potential on its dynamics (i.e. relate $z(x_n^+)$ to $z(x_n^-)$).

4/ We denote by $f(z;x) = \langle \delta(z-z(x)) \rangle$ the probability distribution of the random process. Show that the distribution of the Riccati variable obeys the integro-differential equation

$$\partial_x f(z;x) = \partial_z \left[(E+z^2) f(z;x) \right] + \rho \left\langle f(z-v;x) - f(z;x) \right\rangle_v \tag{2}$$

where $\langle \cdots \rangle_v$ denotes averaging over the random weights v_n 's.

Hint : analyse the effects of the two terms of the SDE in order to relate f(z; x + dx) to f(z'; x).

5/ Probability current and stationary distribution.— Rewrite (2) under the form of a conservation equation $\partial_x f(z;x) = -\partial_z J(z;x)$, where J(z;x) is the probability current density. We have seen that the disribution reaches a stationary distribution $f(z;x) \xrightarrow{\to} f(z)$ for a steady current $J(z;x) \xrightarrow[x\to\infty]{\to} -N$, related to the Integrated density of states per unit length of the disordered Hamiltonian. Show that the stationary distribution obeys the integral equation

$$N(E) = (E + z^2) f(z) - \rho \left\langle \int_{z-v}^{z} dz' f(z') \right\rangle_{v} .$$
(3)

¹ Note that Frisch and Lloyd considered the case of random positions and fixed weights. The case of non random positions (on a lattice) and *fixed* weights was considered earlier by Schmidt in *Disordered one-dimensional crystals*, Phys. Rev. **105**(2), 425–441 (1957). The case of random positions and random weights was also considered in several papers, e.g. T. M. Nieuwenhuizen, *Exact electronic spectra and inverse localization lengths in one-dimensional random systems*, Physica A **120**, 468–514 (1983).

What is the condition on the weights v_n for having a non-vanishing density of states for E < 0?

6/ High density limit. – We consider the case $\langle v_n \rangle = 0$. Discuss the limit $\rho \to \infty$ and $v_n \to 0$ with $\sigma = \rho \langle v_n^2 \rangle$ fixed (no calculation).

7/ Small concentration expansion. – We now discuss the opposite limit when $\rho \ll v_n$. We search for the solution of the integro-differential equation under the form of an expansion $f(z) = f^{(0)}(z) + f^{(1)}(z) + f^{(2)}(z) + \cdots$ where $f^{(n)} = \mathcal{O}(\rho^n)$. Accordingly the density of states presents a similar expansion $N = N^{(0)} + N^{(1)} + \cdots$ We recall that the Lyapunov exponent is given by

$$\gamma = \int_{\mathbb{R}} \mathrm{d}z \, z \, f(z) \qquad \text{where} \qquad \int_{\mathbb{R}} \mathrm{d}z \, h(z) \stackrel{\text{def}}{=} \lim_{R \to +\infty} \int_{-R}^{+R} \mathrm{d}z \, h(z) = \int_{\mathbb{R}} \mathrm{d}z \, \frac{h(z) + h(-z)}{2} \qquad (4)$$

a) Compute $f^{(1)}$ and deduce that the Lyapunov exponent at lowest order in ρ is

$$\gamma = \frac{\rho}{2} \left\langle \ln \left[1 + \left(\frac{v_n}{2k} \right)^2 \right] \right\rangle_{v_n} + \mathcal{O}(\rho^2)$$
(5)

Hint : We give the integral

$$\int_{\mathbb{R}} dt \, \frac{t}{t^2 + 1} \left(\arctan(t) - \arctan(t - x) \right) = \frac{\pi}{2} \ln \left(1 + (x/2)^2 \right) \,, \tag{6}$$

which could be computed by writing $\arctan(t) = \frac{1}{2i} \ln\left(\frac{i-t}{i+t}\right)$ and using the Residue's theorem.

b) Study the limiting cases, setting $E = k^2$:

(i) High energy limit $k \gg v_n$, ρ .

(*ii*) Intermediate energy range, $v_n \gg k \gg \rho$.

(*iii*) The concentration expansion breaks down at $k \sim \rho$. What is the estimate for the saturation value at E = 0?

8/ Lifshits tail. – For positive weights v_n , the sectrum is in \mathbb{R}^+ . An approximation for the low energy IDoS can be obtained as follows. In the limit $v_n \to \infty$ the intervals between impurities are disconnected. We introduce the IDoS $\mathcal{N}(E;\ell) = \sum_{n=1}^{\infty} \theta_{\mathrm{H}}(E - (n\pi/\ell)^2)$ for the interval of length ℓ . Shows that the IDoS per unit length of the disordered Hamiltonian is given by $N(E) \simeq \rho \langle \mathcal{N}(E;\ell) \rangle_{\ell}$ for $\rho \to 0$. Deduce an explicit form for N(E) and analyse the low energy behaviour $E \ll \rho^2$.

Further reading : This analysis was performed in T. Bienaimé and C. Texier, *Localization for one-dimensional random potentials with large fluctuations*, J. Phys. A: Math. Theor. **41**, 475001 (2008).

More information about the concentration expansion and be found in I. M. Lifshits, S. A. Gredeskul and L. A. Pastur, *Introduction to the theory of disordered systems*, John Wiley & Sons (1988).

II Exact result for the Halperin's model

We consider the Schrödinger equation

$$H = -\frac{\mathrm{d}^2}{\mathrm{d}x^2} + V(x) \tag{7}$$

with a Gaussian white noise potential

$$P[V] \propto \exp\left\{-\frac{1}{2\sigma}\int \mathrm{d}x \,V(x)^2\right\} \qquad \Rightarrow \quad \left\langle V(x)V(x')\right\rangle = \sigma\,\delta(x-x')\,. \tag{8}$$

In this exercice we use a method providing a nice representation of the Lyapunov exponent γ and integrated density of states (per unit length) N, in terms of special (Airy) functions This result is due to Halperin in *Green's Functions for a Particle in a One-Dimensional Random Potential*, Phys. Rev. **139**(1A), A104–A117 (1965)..

1/ Fourier transform the differential equation (??) : $\hat{f}(q) = \int dz e^{-iqz} f(z)$.

2/ Solve the differential equation for $\hat{f}(q)$ on \mathbb{R}_+ (find the solution decaying for $q \to +\infty$). Deduce that the complex Lyapunov exponent is

$$\Omega(E) = \gamma(E) - i\pi N(E) = \left(\frac{\sigma}{2}\right)^{1/3} \frac{\operatorname{Ai}'(\xi) - i\operatorname{Bi}'(\xi)}{\operatorname{Ai}(\xi) - i\operatorname{Bi}(\xi)} \quad \text{where } \xi = -\left(\frac{2}{\sigma}\right)^{2/3} E.$$
(9)

3/ Study the asymptotic behaviours for the Lyapunov exponent and the low energy density of states (use that the Wronskian of the two Airy functions is $W[\text{Ai}, \text{Bi}] = 1/\pi$).

Appendix :

Airy equation f''(z) = z f(z) admits two independent real solutions Ai and Bi with asymptotic behaviours Ai $(z) \simeq \frac{1}{\sqrt{\pi} (-z)^{1/4}} \cos \left[\frac{2}{3}(-z)^{3/2} - \frac{\pi}{4}\right]$ and Bi $(z) \simeq \frac{-1}{\sqrt{\pi} (-z)^{1/4}} \sin \left[\frac{2}{3}(-z)^{3/2} - \frac{\pi}{4}\right]$ for $z \to -\infty$, and Ai $(z) \simeq \frac{1}{2\sqrt{\pi} z^{1/4}} \exp \left[-\frac{2}{3} z^{3/2}\right]$ and Bi $(z) \simeq \frac{1}{2\sqrt{\pi} z^{1/4}} \exp \left[\frac{2}{3} z^{3/2}\right]$ for $z \to +\infty$.