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Wave dynamics in random media
Physique statistique hors équilibre

TD no3 : One-dimensional Anderson localisation

I Localisation for the random Kronig-Penney model – Concen-
tration expansion and Lifshits tail

The aim of the problem is to study a 1D disordered model introduced by Frisch and Lloyd in
Electron levels in a one-dimensional random lattice, Phys. Rev. 120(4), 1175–1189 (1960). This
model is a random version of the Kronig-Penney model

H = − d2

dx2
+
∑
n

vn δ(x− xn) . (1)

Impurity positions xn’s are distributed identically and independently for a uniform mean density
ρ. We consider the case where the weights vn’s are also independent random variables. 1 We
prove the Anderson localisation of eigenstates and analyse the low energy density of states.

1/ The positions are ordered as x0 = 0 < x1 < x2 < · · · < xn < · · · Denoting by `n =
xn+1 − xn > 0 the distance between consecutive impurities, recall the distribution of these
lengths.

2/ Riccati.– We denote by ψ(x;E) the solution of the initial value problem Hψ(x;E) =
E ψ(x;E) with ψ(0;E) = 0 and ψ′(0;E) = 1. Derive the stochastic differential equation con-

trolling the evolution of the Riccati variable z(x)
def
= ψ′(x;E)/ψ(x;E).

3/ Describe the effect of the random potential on its dynamics (i.e. relate z(x+n ) to z(x−n )).

4/ We denote by f(z;x) = 〈δ(z − z(x))〉 the probability distribution of the random process.
Show that the distribution of the Riccati variable obeys the integro-differential equation

∂xf(z;x) = ∂z
[
(E + z2)f(z;x)

]
+ ρ 〈f(z − v;x)− f(z;x)〉v (2)

where 〈· · ·〉v denotes averaging over the random weights vn’s.

Hint : analyse the effects of the two terms of the SDE in order to relate f(z;x+ dx) to f(z′;x).

5/ Probability current and stationary distribution.– Rewrite (2) under the form of a
conservation equation ∂xf(z;x) = −∂zJ(z;x), where J(z;x) is the probability current density.
We have seen that the disribution reaches a stationary distribution f(z;x) −→

x→∞
f(z) for a

steady current J(z;x) −→
x→∞

−N , related to the Integrated density of states per unit length of

the disordered Hamiltonian. Show that the stationary distribution obeys the integral equation

N(E) = (E + z2)f(z)− ρ
〈∫ z

z−v
dz′ f(z′)

〉
v

. (3)

1 Note that Frisch and Lloyd considered the case of random positions and fixed weights. The case of non
random positions (on a lattice) and fixed weights was considered earlier by Schmidt in Disordered one-dimensional
crystals, Phys. Rev. 105(2), 425–441 (1957). The case of random positions and random weights was also
considered in several papers, e.g. T. M. Nieuwenhuizen, Exact electronic spectra and inverse localization lengths
in one-dimensional random systems, Physica A 120, 468–514 (1983).
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What is the condition on the weights vn for having a non vanishing density of states for E < 0 ?

6/ High density limit.– We consider the case 〈vn〉 = 0. Discuss the limit ρ → ∞ and vn → 0
with σ = ρ

〈
v2n
〉

fixed (no calculation).

7/ Small concentration expansion.– We now discuss the opposite limit when ρ� vn. We search
for the solution of the integro-differential equation under the form of an expansion f(z) =
f (0)(z) + f (1)(z) + f (2)(z) + · · · where f (n) = O(ρn). Accordingly the density of states presents
a similar expansion N = N (0) +N (1) + · · · We recall that the Lyapunov exponent is given by

γ = r
∫
R

dz z f(z) where r
∫
R

dz h(z)
def
= lim

R→+∞

∫ +R

−R
dz h(z) =

∫
R

dz
h(z) + h(−z)

2
(4)

a) Compute f (1) and deduce that the Lyapunov exponent at lowest order in ρ is

γ =
ρ

2

〈
ln

[
1 +

(vn
2k

)2]〉
vn

+O(ρ2) (5)

Hint : We give the integral∫
R

dt
t

t2 + 1
(arctan(t)− arctan(t− x)) =

π

2
ln
(

1 + (x/2)2
)
, (6)

which could be computed by writing arctan(t) = 1
2i ln

(
i−t
i+t

)
and using the Residue’s theorem.

b) Study the limiting cases, setting E = k2 :
(i) High energy limit k � vn, ρ.
(ii) Intermediate energy range, vn � k � ρ.
(iii) The concentration expansion breaks down at k ∼ ρ. What is the estimate for the saturation
value at E = 0 ?

8/ Lifshits tail.– For positive weights vn, the sectrum is in R+. An approximation for the low
energy IDoS can be obtained as follows. In the limit vn → ∞ the intervals between impurities
are disconnected. We introduce the IDoS N (E; `) =

∑∞
n=1 θH(E − (nπ/`)2) for the interval

of length `. Shows that the IDoS per unit length of the disordered Hamiltonian is given by
N(E) ' ρ 〈N (E; `)〉` for ρ → 0. Deduce an explicit form for N(E) and analyse the low energy
behaviour E � ρ2.

Further reading : This analysis was performed in T. Bienaimé and C. Texier, Localization
for one-dimensional random potentials with large fluctuations, J. Phys. A: Math. Theor. 41,
475001 (2008).
More information about the concentration expansion and be found in I. M. Lifshits, S. A.
Gredeskul and L. A. Pastur, Introduction to the theory of disordered systems, John Wiley &
Sons (1988).
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II Exact result for the Halperin’s model

We consider the Schrödinger equation

H = − d2

dx2
+ V (x) (7)

with a Gaussian white noise potential

P [V ] ∝ exp

{
− 1

2σ

∫
dxV (x)2

}
⇒

〈
V (x)V (x′)

〉
= σ δ(x− x′) . (8)

In this exercice we use a method providing a nice representation of the Lyapunov exponent γ
and integrated density of states (per unit length) N , in terms of special (Airy) functions This
result is due to Halperin in Green’s Functions for a Particle in a One-Dimensional Random
Potential, Phys. Rev. 139(1A), A104–A117 (1965)..

1/ Fourier transform the differential equation (??) : f̂(q) =
∫

dz e−iqzf(z).

2/ Solve the differential equation for f̂(q) on R+ (find the solution decaying for q → +∞).
Deduce that the complex Lyapunov exponent is

Ω(E) = γ(E)− iπN(E) =
(σ

2

)1/3 Ai′(ξ)− i Bi′(ξ)

Ai(ξ)− i Bi(ξ)
where ξ = −

(
2

σ

)2/3

E . (9)

3/ Study the asymptotic behaviours for the Lyapunov exponent and the low energy density of
states (use that the Wronskian of the two Airy functions is W [Ai,Bi] = 1/π).

Appendix :

Airy equation f ′′(z) = z f(z) admits two independent real solutions Ai and Bi with asymptotic
behaviours Ai(z) ' 1√

π (−z)1/4 cos
[
2
3(−z)3/2 − π

4

]
and Bi(z) ' −1√

π (−z)1/4 sin
[
2
3(−z)3/2 − π

4

]
for

z → −∞, and Ai(z) ' 1
2
√
π z1/4

exp
[
− 2

3z
3/2
]

and Bi(z) ' 1
2
√
π z1/4

exp
[
2
3z

3/2
]

for z → +∞.
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