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Abstract

Various approximations - associated with various descriptions of transport in the
disordered medium - can be used to compute the detailed shape of the Coherent
Back-Scattering (CBS) peak.

We consider the CBS of a scalar wave sent on a semi-infinite medium (at normal
incidence), in the dilute regime k`� 1 and for isotropic point-like scatterers. The “nat-
ural” units of length and time are respectively the mean free path ` and the elastic mean
free time τ. In the dilute regime, one can compute several contributions to the direction-
dependent albedo. In dimensionless units (where the diffusion coefficient D = `2/dτ
is 1/d = 1/3), the “ladder” or “diffuson” contribution to the albedo (including single
scattering) is given by:

αd(θ) =
1

4πS

∫
e−z1e−z2/µ Γ(r1, r2) dr1 dr2 (1)

where µ = cos θ and θ denotes the angle from the backscattered direction (S in the
transverse area of the medium).

Γ(r1, r2) is the intensity propagator (at zero frequency) obeying the Bethe-Salpeter
equation:

Γ(r1, r2) = δ(r1 − r2) +
∫
G

R
(r1, r)G

A
(r1, r) Γ(r, r2) dr (2)

where G
R,A

are the retarded and advanced average Green functions.
The CBS contribution to the albedo is given by the maximally crossed diagrams or

“Cooperon”. For a time-reversal invariant system, one can use the “equality” of the
diffuson and Cooperon and obtain, in the vicinity of the back-scattering direction:

αc(θ) =
1

4πS

∫
e−z1e−z2 eiq.(r2−r1) Γ(r1, r2) dr1 dr2 (3)

where q is the transverse momentum transfer q = k`|θ|.

1 Image method

Various approximations can be used for the intensity propagator Γ. The very simplest one
(diffusive propagator in the bulk) leads to divergences. A simple solution (described in
the lectures) is to use an image method, ensuring that Γ vanishes at the interface:

Γ(r1, r2) =
3

4π

 1√
ρ2 + (z1 − z2)2

− 1√
ρ2 + (z1 + z2)2

 (4)

1



Figure 1: Albedo and enhancement factor computed using the naive image method, com-
pared with the exact result.

This gives (see lectures):

αd(θ) =
3

4π

µ2

µ+ 1
(5)

and

αc(θ) = αd(θ = 0)
1

(1 + k`|θ|)2
(6)

The single scattering contribution (due to the δ function in Γ) is given by:

αs(θ) =
1

4π

µ

µ+ 1
(7)

Using these expressions, compute the total albedo, that is the fraction of the incoming
intensity which is reflected back by the medium in all directions. Conclusion?

It turns out that there is an exact solution (in the limit of dilute systems) for the shape
of the CBS peak, obtained by a rather complicated solution of the Milne equation [1, 2].
It is:

αs(θ = 0) =
1

8π
(8)

αd(θ = 0) =
1

4π
exp

{
− 2

π

∫ π/2

0
dβ ln [1− β cot β]

}
− 1

8π
(9)

αc(θ) =
1

4π
exp

− 2

π

∫ π/2

0
dβ ln

1−
arctan

√
q2 + tan2 β√

q2 + tan2 β

− 1

8π
(10)

where q = k`θ.
The numerical values of the integrals are such that:

αs(0) ≈ 0.03979 (11)

αd(0) = αc(0) ≈ 0.29664 (12)

In figure 1, the exact solution is compared to the one obtained from the image method,
both for the albedo and the enhancement factor γ = 1 + αc/(αs + αd). What is the main
problem with the standard image method?
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Figure 2: Albedo and enhancement factor computed using the improved image method,
for various values of z0, compared with the exact result

2 Improved image method

What does the image method predict for the intensity on the interface? Draw schemati-
cally what you expect for the variation of the total intensity inside the medium I(z) vs.
the “optical depth” z.

In order to cure the pathology of the image method, a simple idea is to impose the
vanishing of the intensity propagator not on the interface, but on a plane slightly outside
the medium at z = −z0 (in physical units, z0 must be of the order of the mean free path;
in dimensionless units, it is just a number of order unity, to be specified later). Compute
the intensity propagator Γ within this improved image method. Show that the ladder and
crossed contributions to the albedo are:

αd(θ) =
3

4π

(
z0µ+

µ2

µ+ 1

)
(13)

and

αc(θ) =
3

8π

1

(1 + |q|)2

(
1 +

1− e−2z0|q|

|q|

)
(14)

What is αs(θ)?
Compute the total albedo. Which value of z0 ensures conservation of energy within

the improved image method? Compute αd(θ = 0) for this value of z0 and compare with
the exact result.

The full albedo (sum of the three contributions) and the enhancement factor, are
plotted in figure 2, for three different values of z0. z0 = 2/3 is the prediction of the
diffusion approximation (see section 4), z0 = 0.71045 the “exact” value. Conclusion?

3 Explicit inclusion of double-scattering

The improved image method fails in the wings of the CBS peak. Show that it predicts a
1/q2 behavior while the exact result scales like 1/|q|. The double scattering contribution
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Figure 3: Albedo and enhancement factor computed using the improved naive image
method, with double scattering added, compared with the exact result

writes:

αc,2(q) =
1

4πS

∫
e−z1e−z2 eiq.(r1−r2) e−|r1−r2|

4π|r1 − r2|2
dr1 dr2 (15)

Show that it scales like 1/|q| at large |q|. Its explicit calculation is straightforward, but
boring. Show that it is [4]:

αc,2(q) =
1

4π

2 arg cosh
(

1
|q|

)
− arg cosh

(
1
q2

)
2
√

1− q2
(16)

Under this form, it is not a manifestly real function of q. It can be rewritten as:

1

4π

2√
1− q2

arg sinh

(√
1 + q2 − 1√

2q2

√
1− q2

)
, |q| < 1 (17)

1

4π

2√
q2 − 1

arcsin

(√
1 + q2 − 1√

2q2

√
q2 − 1

)
, |q| > 1 (18)

Compute its value at θ = 0.
In the bulk, the exact (without the diffusion approximation) intensity propagator in

momentum space is proportional to 1
1−Λ(q)

where Λ(q) = arctan q/q. Show that one can
write:

1

1− Λ(q)
≈ 1 + Λ(q) +

γ

q2
(19)

both for small and large q, with a numerical factor γ almost constant.
Show that the explicit addition of the double scattering contribution is likely to im-

prove the computed albedo. Results are shown in figure 3. Conclusion?

4 Computation of the extrapolation length z0

We know want to justify the relevance of the extrapolation length z0 and compute its value.
We first study a simplified one-dimensional model, where the Bethe-Salpeter equation for
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the intensity propagator in the semi-infinite medium writes:

Γ(z1, z2) = δ(z1 − z2) +
∫ ∞

0
A(z1 − z) Γ(z, z2) dz (20)

where A(z) is the product of the average advanced an retarded Green functions. In 1D,
it is in dimensionless units:

A(z) =
e−|z|

2
(21)

Show, apart from the singular point z2 = z1, one has d2Γ(z1,z2)
dz21

= 0. Deduce that the only

physically acceptable form is:

Γ(z1, z2) = δ(z1, z2) + α(Min(z1, z2) + z0) (22)

where α and z0 are constants to be determined.
Deduce that the improved image method gives the exact result! Using the limit z2 � 1,

show that z0 = 1.

In 3D, the improved image method is no longer exact. Nevertheless, show that the
Bethe-Salpeter equation can be rewritten exactly like eq. (20), with a modified kernel:

A(z) =
E1(|z|)

2
(23)

where E1(z) =
∫ 1

0 e−t/x dx
x

=
∫∞

0 e−tx dx
x

is the exponential integral function. This equation
is known as the Milne equation.

Show that, for large z2,
d2Γ(z1,z2)

dz21
vanishes. Deduce that equation (22) is still valid,

but only asymptotically for large z2. The exact value of z0 can be obtained by an exact
solution of the Milne equation [1]. It is:

z0 =
1

π

∫ π/2

0

dβ

sin2 β
ln

tan2 β

3(1− β cot β)
≈ 0.71045 (24)

It is possible to derive an approximate value for z0 using the diffusion approximation.
One obtains z0 = 2/3, see [1, 2] for details.
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