Master iCFP Wave dynamics in random media

TD n°7 : Conductance fluctuations and correlations in narrow wires

The purpose of the exercice is to analyse precisely the correlation function $\delta g(\mathcal{B})\delta g(\mathcal{B}')$ for the dimensionless conductance of a narrow wire of length L and width W.

Figure 1: Transport through a metallic wire of length L and width W.

A. Preliminary : weak localisation correction and role of boundaries

We recall that the weak localisation correction to the dimensionless conductance of a narrow wire $(W \ll L)$ is given by

$$\overline{\Delta g} = -\frac{2}{L^2} \int_0^L \mathrm{d}x \, P_c(x, x) \tag{1}$$

where the Cooperon solves $[\gamma - \partial_x^2]P_c(x, x') = \delta(x - x')$ where $\gamma = 1/L_{\varphi}^2$ encodes dephasing. We account for the connections at the two boundaries by imposing some Dirichlet boundary conditions $P_c(x, x')|_{x=0, L} = 0$.

1/ Show that the weak localisation correction can be expressed in terms of the spectrum of eigenvalues $\{\lambda_n\}$ of the Laplace operator in the wire (i.e. $-\partial_x^2 \phi_n(x) = \lambda_n \phi_n(x)$ for $\phi_n(0) = \phi_n(L) = 0$).

2/ Write the weak localisation as $\overline{\Delta g} = -(2/L) \mathcal{G}(\gamma)$, where $\mathcal{G}(\gamma)$ is the spatial averaged Cooperon. Give $\mathcal{G}(\gamma)$ and analyse the limiting behaviours $L \gg L_{\varphi}$ and $L \ll L_{\varphi}$.

B. Fluctuations and correlations

The correlation function for the narrow wire can be expressed as

$$\overline{\delta g(\mathcal{B})\delta g(\mathcal{B}')} = \frac{4}{L^2} \int d\omega \,\delta_T(\omega) \int_0^L \frac{dxdx'}{L^2} \left[\left| P_d(x, x'; \omega) \right|^2 + \frac{1}{2} \operatorname{Re}\left\{ P_d(x, x'; \omega)^2 \right\} + \left(\begin{array}{c} P_d \longrightarrow P_c \end{array} \right) \right]$$
(2)

where $\delta_T(\omega)$ is a normalised function of width T such that $\delta_T(0) = 1/(6T)$. The diffusion and cooperon solve

$$\left[-\mathrm{i}\omega/D + \gamma_{d,c} - \partial_x^2\right] P_{d,c}(x, x'; \omega) = \delta(x - x') , \qquad (3)$$

where the expressions of the dephasing rates differ for diffuson and cooperon in the presence of a magnetic field :

$$\gamma_d = \frac{1}{L_{\varphi}^2} + \frac{1}{L_{\underline{\mathcal{B}}-\underline{\mathcal{B}'}}^2} \quad \text{and} \quad \gamma_c = \frac{1}{L_{\varphi}^2} + \frac{1}{L_{\underline{\mathcal{B}}+\underline{\mathcal{B}'}}^2} \quad \text{where} \quad L_{\mathcal{B}} = \frac{\sqrt{3}\,\hbar}{|e\mathcal{B}|W} \,. \tag{4}$$

Note that we can also write $L_{\mathcal{B}} \equiv \sqrt{3} \frac{\ell_m^2}{W}$ where $\ell_m = \sqrt{\hbar/|e\mathcal{B}|}$ is the 2D magnetic length.

1/ Compare the fluctuations at zero field $\mathcal{B} = \mathcal{B}' = 0$ to the one at large field (no calculation).

2/ Show that the two diffusion contributions can be written in terms of the spectrum $\{\lambda_n\}$ under the form

$$\overline{\delta g(\mathcal{B})\delta g(\mathcal{B}')}^{(\text{diffuson})} = \frac{4}{L^3} \int d\omega \, \delta_T(\omega) \, \mathcal{F}(\gamma_\omega) \tag{5}$$

where $\gamma_{\omega} = \gamma_d - i\omega/D$. Express the function $\mathcal{F}(\gamma_{\omega})$ as a series.

3/ With the help of the representation obtained in the previous question, show that the expression of the correlator involves a new cutoff at the length given by the **thermal length** $L_T \stackrel{\text{def}}{=} \sqrt{D/T}$. Identify a "low temperature" regime and a "high temperature" regime by comparing the three lengths L_T , L_{φ} and L.

a) "Low" temperature regime $(L_T = \infty)$

In this case we simplify the calculation by performing the substitution $\delta_T(\omega) \to \delta(\omega)$ which allows for a straightforward integration over frequency.

1/ Show that the correlator $\overline{\delta g(\mathcal{B})\delta g(\mathcal{B}')}^{\text{(diffuson)}}$ can be *formally* related to the weak localisation (i.e. that the two functions $\mathcal{F}(\gamma)$ and $\mathcal{G}(\gamma)$ are related).

2/ Analyse the limiting behaviours for $L \gg L_{\varphi}$ and $L \ll L_{\varphi}$. Recall the physical origin of the decay of $\overline{\delta g^2}$ with L/L_{φ} when $L \gg L_{\varphi}$.

3/ Adding the cooperon contribution, analyse the structure of the correlator as a function of the magnetic fields in the limit $L_{\varphi} \ll L$.

b) "High" temperature regime (small L_T)

1/ In the "high temperature" regime, justify the substitution $\delta_T(\omega) \to \delta_T(0)$ (the value $\delta_T(0)$ was given above). Deduce that the correlator $\overline{\delta g(\mathcal{B})\delta g(\mathcal{B}')}^{(\text{diffuson})}$ is simply related to the WL, i.e. expressed in terms of $\mathcal{G}(\gamma)$.

2/ Analyse the limiting behaviours for $L \gg L_{\varphi}$ and $L \ll L_{\varphi}$.

3/ Analyse the magnetic field dependence of the full correlator (diffuson and cooperon) when $L_{\varphi} \ll L$.

c) Experiment

The weak localisation correction $\overline{\Delta g(\mathcal{B})}$ and the conductance fluctuations $\overline{\delta g(\mathcal{B})^2}$ have been measured in a short wire etched in a 2DEG with a direct averaging procedure (Fig. 2). Discuss the experimental data at the light of your calculations.

Appendix

$$\sum_{n=1}^{\infty} \frac{1}{(n\pi)^2 + y^2} = \frac{1}{2y} \left(\coth y - \frac{1}{y} \right) .$$
$$\coth x = \frac{1}{x} + \frac{1}{3}x - \frac{1}{45}x^3 + \frac{2}{945}x^5 + \mathcal{O}(x^7) .$$

Figure 2: WL and CF of a short wire $(L \simeq 10 \,\mu\text{m})$ etched in a 2DEG at $T = 45 \,\text{mK}$. Curves from Ref. [?].

Further reading :

• The effect of boundary conditions in wires has been studied in the paper of Al'tshuler, Aronov and Zyuzin B. L. Al'tshuler, A. G. Aronov and A. Yu. Zyuzin, *Size effects in disordered conductors*, Sov. Phys. JETP **59**, 415 (1984).

• A measurement of conductance fluctuations with direct averaging over disorder configurations has been performed by Dominique Mailly and Marc Sanquer, Sensitivity of quantum conductance fluctuations and 1/f noise to time reversal symmetry, J. Phys. I France 2, 357 (1992).

• For a recent theoretical paper (with a short review) : Christophe Texier & Gilles Montambaux, Four-terminal resistances in mesoscopic networks of metallic wires: Weak localisation and correlations, Physica E **75**, 33–46 (2016), special issue "Frontiers in quantum electronic transport – in memory of Markus Büttiker", available as preprint cond-mat arXiv:1506.08224.