
Master iCFP March 10, 2021
Wave dynamics in random media

TD no7 : Conductance fluctuations and
correlations in narrow wires

The purpose of the exercice is to analyse precisely the correlation function δg(B)δg(B′) for
the dimensionless conductance of a narrow wire of length L and width W .
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Figure 1: Transport through a metallic wire of length L and width W .

A. Preliminary : weak localisation correction and role of boundaries

We recall that the weak localisation correction to the dimensionless conductance of a narrow
wire (W � L) is given by

∆g = − 2

L2

∫ L

0
dxPc(x, x) (1)

where the Cooperon solves
[
γ − ∂2

x

]
Pc(x, x

′) = δ(x − x′) where γ = 1/L2
ϕ encodes dephasing.

We account for the connections at the two boundaries by imposing some Dirichlet boundary
conditions Pc(x, x

′)
∣∣
x=0, L

= 0.

1/ Show that the weak localisation correction can be expressed in terms of the spectrum of
eigenvalues {λn} of the Laplace operator in the wire (i.e. −∂2

xφn(x) = λnφn(x) for φn(0) =
φn(L) = 0).

2/ Write the weak localisation as ∆g = −(2/L)G(γ), where G(γ) is the spatial averaged
Cooperon. Give G(γ) and analyse the limiting behaviours L� Lϕ and L� Lϕ.

B. Fluctuations and correlations

The correlation function for the narrow wire can be expressed as

δg(B)δg(B′) =
4

L2

∫
dω δT (ω)

∫ L

0

dxdx′

L2

[∣∣Pd(x, x′;ω)
∣∣2 +

1

2
Re
{
Pd(x, x′;ω)2

}
+ ( Pd −→ Pc )

]
(2)

where δT (ω) is a normalised function of width T such that δT (0) = 1/(6T ). The diffuson and
cooperon solve [

−iω/D + γd,c − ∂2
x

]
Pd,c(x, x

′;ω) = δ(x− x′) , (3)

where the expressions of the dephasing rates differ for diffuson and cooperon in the presence of
a magnetic field :

γd =
1

L2
ϕ

+
1

L2
B−B′

2

and γc =
1

L2
ϕ

+
1

L2
B+B′

2

where LB =

√
3 ~

|eB|W
. (4)
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Note that we can also write LB ≡
√

3 `2m
W where `m =

√
~/|eB| is the 2D magnetic length.

1/ Compare the fluctuations at zero field B = B′ = 0 to the one at large field (no calculation).

2/ Show that the two diffuson contributions can be written in terms of the spectrum {λn} under
the form

δg(B)δg(B′)(diffuson)
=

4

L3

∫
dω δT (ω)F(γω) (5)

where γω = γd − iω/D. Express the function F(γω) as a series.

3/ With the help of the representation obtained in the previous question, show that the ex-
pression of the correlator involves a new cutoff at the length given by the thermal length
LT

def
=
√
D/T . Identify a “low temperature” regime and a “high temperature” regime by com-

paring the three lengths LT , Lϕ and L.

a) “Low” temperature regime (LT =∞)

In this case we simplify the calculation by performing the substitution δT (ω) → δ(ω) which
allows for a straightforward integration over frequency.

1/ Show that the correlator δg(B)δg(B′)(diffuson)
can be formally related to the weak localisation

(i.e. that the two functions F(γ) and G(γ) are related).

2/ Analyse the limiting behaviours for L � Lϕ and L � Lϕ. Recall the physical origin of the

decay of δg2 with L/Lϕ when L� Lϕ.

3/ Adding the cooperon contribution, analyse the structure of the correlator as a function of
the magnetic fields in the limit Lϕ � L.

b) “High” temperature regime (small LT )

1/ In the “high temperature” regime, justify the substitution δT (ω) → δT (0) (the value δT (0)

was given above). Deduce that the correlator δg(B)δg(B′)(diffuson)
is simply related to the WL,

i.e. expressed in terms of G(γ).

2/ Analyse the limiting behaviours for L� Lϕ and L� Lϕ.

3/ Analyse the magnetic field dependence of the full correlator (diffuson and cooperon) when
Lϕ � L.

c) Experiment

The weak localisation correction ∆g(B) and the conductance fluctuations δg(B)2 have been
measured in a short wire etched in a 2DEG with a direct averaging procedure (Fig. 2). Discuss
the experimental data at the light of your calculations.

Appendix

∞∑
n=1

1

(nπ)2 + y2
=

1

2y

(
coth y − 1

y

)
.

cothx =
1

x
+

1

3
x− 1

45
x3 +

2

945
x5 +O(x7) .

2



16.5

16.4

16.3

16.2

16.1

16.0

15.9
200 600 1000 1400 1800

15.9

16.0

16.1

16.2

16.3

16.4

16.5

200 600 1000 1400 1800

(a)

(b)

G
 ( 

e2 /h
 )

G
 ( 

e2 /h
 )

 4.00

200 600 1000 1400 1800

 3.00

 2.00

 1.00

 0.00

(c)

va
r (

G
) (

10
-3
( e

2 /h
 )2 

)

B ( 10-4 Teslas )

B ( 10-4 Teslas )

B ( 10-4 Teslas )

Figure 2: WL and CF of a short wire (L ' 10 µm) etched in a 2DEG at T = 45 mK. Curves
from Ref. [?].

Further reading :

• The effect of boundary conditions in wires has been studied in the paper of Al’tshuler, Aronov
and Zyuzin B. L. Al’tshuler, A. G. Aronov and A. Yu. Zyuzin, Size effects in disordered con-
ductors, Sov. Phys. JETP 59, 415 (1984).

• A measurement of conductance fluctuations with direct averaging over disorder configurations
has been performed by Dominique Mailly and Marc Sanquer, Sensitivity of quantum conductance
fluctuations and 1/f noise to time reversal symmetry, J. Phys. I France 2, 357 (1992).

• For a recent theoretical paper (with a short review) : Christophe Texier & Gilles Montambaux,
Four-terminal resistances in mesoscopic networks of metallic wires: Weak localisation and cor-
relations, Physica E 75, 33–46 (2016), special issue “Frontiers in quantum electronic transport
– in memory of Markus Büttiker”, available as preprint cond-mat arXiv:1506.08224.
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http://arxiv.org/abs/1506.08224

	Preliminary : weak localisation correction and role of boundaries
	Fluctuations and correlations

