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Wave dynamics in random media

TD no9 : Decoherence by electronic interactions

I Influence functional approach

We have seen, within the diagrammatric approach, that the weak localisation (WL) correction
to the conductivity ∆σ involves a two particle propagator (in the particle-particle channel).
In low dimensions (d 6 2) and at low temperature (T . 1 K), the dominant decoherence
mechanism is the electronic interaction. As we have seen, the interesting dependence of
the WL in the phase coherence length Lϕ arises from large scale (infrared) cutoff. The treatment
of electronic interactions within diagrammatic technics is well formulated in the Fourier space,
where small scale-high energy (ultraviolet) cutoff emerges naturally (due to the presence of
Fermi distributions), but makes difficult a proper description of large scale cutoff : perturbation
theory in Fourier space presents infrared divergences cut off usually by hand (see Fukuyama &
Abrahams [1] ; the review by Chakravarty & Schmid [2]).

An alternative approach, pioneered by Al’tshuler, Aronov and Khmel’nitzkĭı in 1982, was to
follow an influence functional approach formulated in real space with path integral.

Let us first recall the expression of the WL seen in the lecture :

∆σ = −2se
2

π~
D

∫ ∞
0

dt e−Γϕ t

Pt(~r|~r)︷ ︸︸ ︷∫ ~r(t)=~r

~r(0)=~r
D~r(τ) e−

∫ t
0 dτ 1

4D
~̇r(τ)2 , (1)

where the decoherence (cut off of large length scale L & Lϕ =
√
D/Γϕ) was introduced by hand

through an exponential damping with the rate Γϕ. Our purpose is now to provide a microscopic
theory justifying such a cutoff arising from electronic interactions.

Altshuler, Aronov and Khmelniskii have proposed to model interaction of a given electron
with the surrounding electrons as the interaction with a fluctuating potential V (~r, t) (the vector
potential was rather considered in the originial paper). Each contribution in (1) should be thus
weighted by eiΦV , where

ΦV [~r(τ)] =
1

~

∫ t

0
dτ
[
V (~r(τ), τ)− V (~r(τ), t− τ)

]
(2)

is the phase peaked up by the two reversed electronic trajectories in the fluctuating field.

1/ Fluctuation-dissipation theorem.– The electric potential fluctuations are characterised
by FDT (written in the classical regime ~ω � kBT )

〈
V (~r, t)V (~r ′, t)

〉
V
' 2e2kBT

σ0
δ(t− t′)Pd(~r, ~r ′) (3)

where the Diffuson solves −∆Pd(~r, ~r
′) = δ(~r − ~r ′). The Drude conductivity is σ0 = 2se

2ρ0D
where ρ0 is the DoS per spin channel. Using the Gaussian nature of the fluctuations, perform
averaging over potential fluctuations in

〈
eiΦV

〉
V

. Show that the result can be interpreted in
terms of a trajectory dependent decoherent rate

∆σ = −2se
2

π~
D

∫ ∞
0

dt

∫ ~r(t)=~r

~r(0)=~r
D~r(τ) e−

∫ t
0 dτ 1

4D
~̇r(τ)2e−Γee[~r(τ)] t . (4)
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2/ Decoherence in a long wire.– In a long and narrow wire, justify the following expression
of the diffuson :

Pd(~r, ~r
′) ' − 1

2s
|x− x′| (5)

where x measures the distance along the wire and s is the cross-section of the wire. Rescaling the
variables in the path integral in order to deal with dimensionless coordinate and time, deduce
the characteristic time scale and length scale controlling the decoherence in this case. Analyze
the temperature dependence. Interpret physically the dependence of the phase coherent time
with s and the diffusion constant D (remember FDT). Compare with experimental data.

Indication : The change of variable {
x = λy
t = ητ

(6)

is implemented in the path integral with the help of 1

∫ x(t=ητ)=λy

x(0)=0
Dx e−

∫ t
0 dt′ (ẋ2+V (x)) =

1

λ

∫ y(τ)=y

y(0)=0
Dy e

−
∫ τ
0 dτ ′ [λ

2

η
ẏ2+ηV (λy)]

, (8)

which can be interpreted as “Dx = 1
λDy”.

Bc=1.6 G for L!=1 "m. The suppression of the WL effect
is complete when B#$ /2ele

2. These fields are always much
weaker than classically strong fields B!!m! / "e%e#.

B. Experimental results

1. Quasi-1D wires

In order to determine the phase coherence length L!, we
have performed standard magnetoresistance measurements
as a function of temperature. A typical example for such a
magnetoresistance curve is displayed in Fig. 5. Let us first
concentrate on the field range up to a magnetic field of 2 T. A
sharp peak which is due to WL is clearly seen at zero field.
With increasing the magnetic field the WL peak disappears
and another type of negative magnetoresistance is observed
which is due to magnetic focusing. When going to even
higher fields "#0.5 T# the well-known Shubnikov de Haas
"SdH# oscillations appear.

Analyzing the WL peak allows to obtain the phase coher-
ence length L!. In Fig. 6, we show magnetoconductance
curves in units of e2 /h for w=1000 and 1500 nm wide wires
at different temperatures. Note that the field scale is about
three orders of magnitude smaller than that in Fig. 5. Since
we are in a diffusive regime where le is smaller than w, the
standard WL formula, Eq. "6#, can be used. In Eq. "6#, there
are two parameters, i.e. L!, and weff. The effective width weff,
however, is determined by fitting the magnetoconductance at
a given temperature and diffusion coefficient. For litho-
graphic widths w=1000 and 1500 nm, we obtain weff=630
and 1130 nm, respectively. The effective width is then kept
fixed for the entire fitting procedure and L! remains the only
fitting parameter.

The observed WL curves are nicely fitted using Eq. "6#
over the field ranges of &60 and &30 G for w=1000 nm
and 1500 nm, respectively. At a higher field "above
$100 G#, however, the measured WL curves start to deviate
from the theoretical fittings "insets of Fig. 6#. For this reason,
when we fit the magnetoconductance with the standard
theory, we limit the field scale within lB#weff, i.e., %B%'15
and 5 G for weff=630 nm and 1130 nm, respectively.

The extracted phase coherence length L! is plotted as a
function of T at D=290 cm2 /s for w=1000 and 1500 nm
wide wires in Fig. 7. At low temperatures, L! nicely follows

a T−1/3 law down to the lowest temperatures for both the
wires. Note that the temperature below 40 mK has been cor-
rected by measuring in situ the electron temperature of the
quasi-1D wire based on e-e interaction corrections as de-
tailed in Sec. VI. The absolute values of L! at low tempera-
tures are different between the two wires, which is expected
in the AAK theory in Eq. "3#. Similar temperature depen-
dence of L! has also been observed in GaAs/GaAlAs
networks.44

Above &1 K, L! follows a T−1 law and its absolute value
does not depend on the width of the wire. This is because L!
is not limited by disorder any more but follows the FL theory
without disorder as shown in Eq. "5#.23,35 When we fit the
L! vs T curves, the following equation is used:
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FIG. 5. "Color online# Magnetoresistance curves of 1000 and
1500 nm wide wires at T=36 mK and D=290 cm2 /s.
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FIG. 6. "Color online# WL curves of "a# 1000 and "b# 1500 nm
wide wires at D=290 cm2 /s and 170 cm2 /s, respectively. The
conductance here is divided by e2 /h. The broken lines are the best
fits of Eq. "6#. The insets in "a# and "b# show the magnetoconduc-
tance at T=140 mK in larger field ranges.
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FIG. 7. "Color online# Phase coherence length of 1000 and 1500
nm wide wires as a function of T at D=290 cm2 /s. The solid lines
are the best fits with Eq. "8#.
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Figure 1: Left : Phase coherence length at low T in wire etched in 2DEG ; from Ref. [3].
Right : The phase coherence time in Al and Ag wires as a function of the width ; from [4].

3/ Decoherence in confined geometry.– In a confined geometry, we may simply use the
estimate Pd(~r, ~r

′) ∼ 1
sL, where L is the size of the wire. Deduce the new temperature dependence

of the phase coherence length.

1 Proof relies on the fact that

Kt(x|0) = θH(t)

∫ x(t)=x

x(0)=0

Dx e−
∫ t
0 dt′ ( 1

4
ẋ2+V (x)) solves

(
∂

∂t
− ∂2

∂x2
+ V (x)

)
Kt(x|0) = δ(x) δ(t) . (7)
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In a recent experiment, the phase coherence lengths obtained in two different devices were
compared : from the magneto-conductance of a long wire and the one from the analysis of the
Aharonov-Bohm oscillations in a mesoscopic ring of perimeter L ' 14 µm. Discuss the result
(Fig. 2).
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FIG. 2. (Color online) (a) Magnetoconductance δG of the ring
measured at 55 mK, after substraction of a smooth background
signal. (b) Fourier transform δG̃ of the signal showing the "0 = h/e

periodicity at B0 (dotted line). The width of the main peak is
represented by the dashed lines and corresponds to the values 1/B1,2

for the inner and outer r1,2 radii of the ring. Inset: Scanning electron
microscope image of the ring.

η = 1/3.8,9,22 We now justify that this value is appropriate in
our samples. The 2D large contacts are connected to the ring
through relatively narrow constrictions of width of the same
order than wring. Because the motion is ballistic at the scale
of the contact (since ℓe > wring), forward scattering should
be favored for an electron winding inside the ring; i.e., the
probability to exit should be diminished, compared to the
diffusive contact with ℓe ≪ wring. Note however that the value
of η will not affect strongly the fitting procedure for L

ring
" .

From the experimental data we can extract the phase
coherence length in the ring L

ring
" as a function of temperature.

Note that Eq. (3) is strictly valid only in the regime where L" <
πr0, the length of one arm of the ring. Indeed, in the opposite
case L" > πr0, electrons may explore the contacts with a
high probability, which affects the decoherence and strongly
modifies the L" dependence of the AB amplitude:9,22,23 For
this reason, our analysis only holds above T ≃ 300 mK.

A direct comparison between Lwire
" (T ) and L

ring
" (T ) is

presented in Fig. 3. We observe that the two phase coherence
lengths differ both in absolute value and in temperature
dependence. By fitting the data we obtain Lwire

" ∝ T −0.33±0.01

FIG. 3. (Color online) Phase coherence lengths obtained in a wire,
Lwire

" , and in a ring, L
ring
" , as a function of temperature. The dashed

lines show the theoretical fit obtained with Eq. (2).

for the wire and L
ring
" ∝ T −0.49±0.09 for the ring.24,25 These

exponents are in perfect agreement with the theoretical
predictions Lwire

" ∝ T −1/3 6 and L
ring
" ∝ T −1/2 (Refs. 7–9).

We now recall simple arguments to understand the different
exponents.7–9,16 In Ref. 6, it is argued that decoherence results
from the randomization of the phase of a given electron by
the fluctuating electric field created by other electrons. Within
this picture an electron receives a phase "(t) ∼

∫ t

0 dτ V (τ )
from the electric potential whose fluctuations are characterized
by the fluctuation-dissipation theorem

∫
dτ ⟨V (τ )V (0)⟩ ∼

e2T Rt , where Rt is the resistance of the part of the sample
probed by the electron during a time scale t . It can be written
Rt ∼ x(t)/sσ0, where s is the section of the wire, σ0 the Drude
conductivity, and x(t) the distance covered by the electron.
The electronic phase presents a behavior with time given
by ⟨"(t)2⟩ ∼

∫ t

0 dτ
∫ t

0 dτ ′ ⟨V (τ )V (τ ′)⟩ ∼ e2T t x(t)/sσ0. In a
long wire, the motion is of diffusive nature, x(t) ∼

√
Dt ,

leading to the phase diffusion ⟨"(t)2⟩ ∼ e2T t3/2
√

D/sσ0. We
extract the relevant time scale by writing ⟨"(t)2⟩ ∼ (t/τwire

" )3/2

with τwire
" ∝ T −2/3. In a ring, the winding trajectories are

ergodic and the length x(t) is simply the size of the system;
we thus obtain the behavior ⟨"(t)2⟩ ∼ e2T t L/sσ0 ∼ t/τ

ring
" ,

leading to the time scale τ
ring
" ∝ T −1. We may write the relation

between the two times as τ
ring
" ∼ (τwire

" )3/2/(τD)1/2, where
τD = L2/D is the Thouless time. The precise dimensionless
factor has been obtained by a careful analysis of the MC curve
in Refs. 8,9,16, and 22:

L
ring
" = 29/4

π

(
Lwire

"

)3/2

L1/2
, (4)

where L" =
√

Dτ". In Fig. 4 we check that L
ring
" (T ) and

Lwire
" (T ) extracted from the experiment obey relation (4)

with a very good accuracy. The experimental verification
of this relation definitely proves that the two temperature
dependencies of L"(T ) for the wire and for the ring emerge
from the same mechanism described in a coherent picture.7–9

Finally we comment on an issue which has been debated
in the past:8,26 For a given geometry, are the phase coherence
length obtained from weak localization (WL) and conductance
fluctuations (CF) identical? In Ref. 16, the measurement of
the WL of a large array of rings has led to L

ring,WL
" ∝ T −1/2.
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Figure 2: From Ref. [5].

The two-dimensional case : The study of the two-dimensional case along the same lines is
more complicated because both large scale cutoff (well acounted for by the influence functional
discussed above) and short scale cutoff (more naturally introduced in conventional perturbation
theory in Fourier space) matter. The appropriate formulation within influence functional was
finally achieved by Jan von Delft and collaborators [6, 7] (see also the review [8]. A more simple
discussion was provided in Ref. [9].

Further reading :
• The famous paper : B. L. Altshuler, A. G. Aronov and D. E. Khmelnitsky [10].

• The pedagogical review : S. Chakravarty and A. Schmid [2].

• The present text is inspired by our article [11].

References

[1] H. Fukuyama and E. Abrahams, Inelastic scattering time in two-dimensional disordered
metals, Phys. Rev. B 27(10), 5976–5980 (1983).

[2] S. Chakravarty and A. Schmid, Weak localization: the quasiclassical theory of electrons in
a random potential, Phys. Rep. 140(4), 193 (1986).

[3] Y. Niimi, Y. Baines, T. Capron, D. Mailly, F.-Y. Lo, A. D. Wieck, T. Meunier, L. Sami-
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