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Figures :
Left : Weak localisation correction to resistance of thin metallic films (Mg dopped by Au). From
Ref. [27].
Right : Speckle pattern for light scattered by a turbid granular medium. Time reversal symmetry
is destroyed by using the Faraday effect. From Ref. [56].
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I Introduction : Disorder is everywhere

Aim : Illustrate the importance of disorder in practical situations.
Introduce the notion of random potential (modelizing randomness).
Discuss : averaged quantities vs fluctuations.
Localisation : wave + disorder

I.A Disorder in condensed matter

Real crystals (give illustrations)

• structural disorder

• substitutional disorder

I.B Importance of disorder : how would be the world without disorder ?

1) Free electrons in a metal

Imagine that disorder is absent, hence motion of electrons is ballistic, i.e. momentum is conserved
~p(t)→ ~p. Linear response gives the conductivity (response of current density to electric field)

σ(ω) =

∫ ∞
0

dt eiωt ine2

~
〈
[
v̂x(t)︸ ︷︷ ︸
=p̂x/m

, x̂
]
〉 =

1

−iω

ne2

m
(I.1)

diverges as ω → 0!

Classical theory – Drude conductivity.— Experiments show that the conductivity satu-
rates at low frequency

σ(ω) =
ne2

m

1

1/τ − iω
−→
ω→0

σDrude =
ne2τ

m
(I.2)

The transport scattering time encodes the effect of collisions which limits the ballistic prop-
agation of electrons in the metal. These collisions can be of different nature : collisions with
phonons (lattice vibrations), collision with impurities (lattice defects), spin scattering, etc. 1 The
different rates characterizing these scattering processes are simply added (Matthiesen law) :

1

τ(T )
=

1

τe
+

1

τe−ph(T )
+ · · · (I.3)

Going to low temperature, degrees of freedom, like phonons, are frozen and the total rate (as
the resistivity) saturates :

lim
T→0

1/τ(T ) = 1/τe . (I.4)

In general, electron-phonon scattering provides the dominant scattering mechanism [17].
This leads to the following resistivity (Bloch-Grüneisen formula)

ρ(T ) =
1

σ0
+A

(
T

TD

)5 ∫ TD/2T

0
dx

x5

sinh2 x
(I.5)

1 Note that collisions among electrons themselves do not affect the conductivity because a collision between
two electrons conserves the total current of electrons.

7



where TD is the Debye temperature and σ0 = ne2τe
m is the residual conductivity). The power 5

comes from the temperature dependence of the electron-phonon scattering rate [17] τe−ph(T ) ∝
T−5. Note that electron-phonon scattering is strongly anisotropic, being the reason why trans-
port time 2 deviates from the total scattering rate τe−ph, tot(T ) ∝ T−3 (involved for example in
phase coherence properties).

Few order of magnitudes for Gold are given in the table.

Gold

m∗/me = 1.1

n =
k3F
3π2 = 55 nm−3

k−1
F = 0.085 nm

vF = ~kF
m∗

= 1.25× 106 m/s

εF = 5.5 eV (∗)

Work function W = 5.1 eV

DoS ν0 = 2s
m∗kF
2π2~2 = 1.07× 1047 J−1m−3 = 17 eV−1nm−3

Resistivity ρ(T → 0) = 1/σ0 = 0.022× 10−8 Ω.m [94]

`e = 4 µm (in bulk) (∗∗)

τe = 3.2 ps
D = 1

3vF `e = 1.7 m2/s (from σ0 = e2ν0D)
Debye temperature TD = 170 K [17]
melting point 1338 K and boiling point 3135 K [94]

phase coherence length Lϕ ∼ 1 µm at T ∼ 1 K

Table 1: Few orders of magnitude for Gold. (∗) Note that
~2k2F
2m∗

= 4.9 eV. (∗∗) In thin films the
mean free path is strongly reduced : e.g. for a gold wire of thickness, 50 nm it was observerd that
`e ' 22 nm [34].

Electronic transport is dominated by disorder at low temperature (T . 1 K)

and by inelastic scattering processes at high temperature.

2) Fermions in a periodic potential : Bloch oscillations

• semiconducting superlattices

• Experiments with cold atoms falling on a periodic potential ⇒ oscillations !

I.C The physics of the diffusion

Disorder leads to multiple scattering and diffusion.
Introduce few scales : τe, `e, D = vF `e/d,...
Einstein relation

σ = e2ν0D (I.6)

where ν0 is the density of states. Using that the electronic density is n ∝ kdF , we have ν0 =
nd/(2εF ).

Diffusion equation (free)

(∂t −D∆)Pt(r|r′) = δ(t)δ(r − r′) (I.7)

2Conductivity involves transport times.
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Propagator of the diffusion

Pt(r|r′) =
θH(t)

(4πDt)d/2
e−

(r−r′)2
4Dt (I.8)

or its (spatial) Fourier transform

P̂ (q; t) = θH(t) e−Dt q
2

(I.9)

or

P̃ (q;ω) =
1

−iω +Dq2
(I.10)

I.D How to model disorder ? What is measured ? What should be studied ?

1) Electronic transport

Hamiltonian for one electron

H =
~p 2

2me
+ Vcrystal(~r) +Vdisorder(~r)︸ ︷︷ ︸

fluctuates from sample to sample

(I.11)

Any observable depends on the disorder configuration

E.g. : conductance of a metallic wire G[Vdisorder]

• In practice, we observe that in a long wire the conductance is not fluctuating from sample
to sample! It is given by the Ohm’s law G = σ s

L (usual feature of statistical physics :
fluctuations are washed out at macroscopic scale).

• Fluctuations may be observed by going to mesoscopic scale, L . few µm and T . few K

Observe reproducible fluctuations (not experimental noise) as a function of an external
parameter (here the magnetic field). These fluctuations are a signature of the presence of
the disorder. Such a curve is called the magnetofingerprint of the mesoscopic sample.

Manifestation of (quantum) interferences
due to scattering of wave by disordered potential

2) Scattering of light by disorder

Speckle pattern, etc

3) Calculations

From the theoretical point of view : what can be computed ? We can only compute averaged
quantities. Or study numerically some statistical properties of some observables.

I.E Outline of the course

Main purpose of the course : analyse the interplay between wave character and disorder.
Where are we going ? Give an overview.

9



II Anderson localisation in one dimension

The main object of this course is the study of the wave dynamics (optical wave, electronic wave,
etc) in a disordered medium. For concreteness we can think at an electronic wave in a crystalline
structure. In practice, crystals are not perfect but subject to randomness, i.e. some atoms might
be replaced by atoms of other nature (random alloy), or the structure of the crystal can present
some defects (structural disorder) : cf. Fig. 1. We will first have to discuss how we can model the
presence of the disorder, i.e. a time independent potential describing sample to sample
fluctuations : ones says that the disorder is quenched in order to denote the absence of time
dynamnics. This will be achieved by assuming that the (static) potential is random in space.

As a consequence of the presence of disorder, the translational symmetry is broken in a
given sample (but restored after disorder averaging). Whereas eigenstates of a perfect crystal are
extended Bloch waves forming energy bands (continuous spectrum), the presence of the disorder
changes drastically the nature of the eigenstates, as we will see.

dim=2:

C

1

2

3

4

5

6

7

...
a a a

dim=1:
BA A A A A AB

a a

Figure 1: Substitutional versus structural disorder. Below is the one-dimensional case.

Aim : Although the 1D situation is somehow particular (dimension is crucial in localisation
problems), it allows to solve many problems, sometimes exactly, thanks to some powerful nonper-
turbative methods. The aim of this chapter is to demonstrate, in the frame of several particular
models, that the presence of disorder leads to the localisation of all one particle eigenstates,
i.e. their exponential decay in space.

Reminder (some useful notions of probability) :

• Generating function, moments, cumulants

• Central limit theorem versus large deviations (for a simple and basic introduction, cf.
appendix of chapter 2 of [127])

• Stochastic calculus (SDE and FPE) (cf. appendix)

I refer to the books of Gardiner [65] and van Kampen [132]. More advanced topics of probability
theory can be found in the classical monograph of Feller [58].

II.A Models of disorder

In this section we discuss in details how can we model the disorder. We introduce several models
that will be used in the following. Behind this discussion are the important questions :

10



• Is the precise nature of the model of importance ?

• What physical properties depend on the details of the model ? What properties are
model independent, i.e. universal ?

The answers will be provided at the end of the chapter.

1) Discrete models

Anderson model (discrete Schrödinger equation).— As localisation theory has arised
in the context of condensed matter physics [13], a popular and widely studied model is the
tight binding model (Anderson model) describing an electron moving on a lattice of atoms, each
characterised by a single orbital. In 1D, after projection on the orbitals |n 〉 at position x = na,
where a is the lattice spacing, the Schrödinger equation H|ψ 〉 = ε|ψ 〉 takes the form :

−t∗n ψn+1 + Vn ψn − tn−1 ψn−1 = εψn , (II.1)

where ψn = 〈n |ψ 〉 is the component of the wave function on the site n, tn
def
= −〈n + 1 |H|n 〉

describes the coupling between nearest neighbour atoms and Vn
def
= 〈n |H|n 〉 a potential. On

the infinite line, one can always choose real hoppings (the phases can be removed by a gauge
tranformation). This is however not possible if the line is closed (ring geometry).

At this level, two options are

• Consider the case of random potentials Vn (“diagonal disorder”) describing a random alloy.

• Consider the case of random couplings tn (“off-diagonal disorder”) corresponding to the
case of structural disorder.

In the following, we will focus on the first case for simplicity, and set the couplings to unity, t = 1.

ψ(x)

x

x)

x

ψ(

ξ

Figure 2: Extended and localised states. Left : Typical shape of the extended states in a
perfect 1D crystal. Right : In the presence of disorder, we will show that any amount of disorder
make the eigenstates exponentially localized over a typical distance ξ, called the localisation
length.

Distribution of disordered potential Vn.– As mentioned, translation invariance is bro-
ken by the presence of disorder, i.e. for one configuration of the random potential. However,
assuming homogeneity, translation invariance is restored after averaging over the disorder. As a
consequence, a natural choice for the distribution of the set of potentials {Vn} is to assume its
independence with n :

Pn(V ) = Proba[Vn = V ]
transl. inv.−→ P (V ) (II.2)

We can give few examples of distributions :

11



1. The binary alloy : consider a lattice of atoms of type A. With probability p, one atom A
is replaced by an atom B with an energy Vn = W , i.e. P (V ) = (1− p) δ(V ) + p δ(V −W )

2. A widely used distribution is the box distribution P (V ) = 1
W θH(W/2− |V |)

3. The choice of a more regular distribution will lead to more regular results (for the spectral
density, etc). Two convenient choices are : a Gaussian distribution P (V ) = 1√

2πW 2
e−V

2/2W 2

or P (V ) = 1
2W e−|V |/W .

4. etc.

Correlations.– The statistical properties of the set of potentials {Vn} is not only charac-
terised by the marginal law P (V ), but should be fully characterized by a joint probability density
P (· · · , V1, V2, · · · ). A partial information is the correlation between potentials, partly encoded
in the correlation function 〈VnVm〉 = C(|n −m|). A natural assumption is that the correla-
tions decay fast with the distance (exponentially fast). Studying the large scale properties, a
simplification will be to assume that potentials are uncorrelated 〈VnVm〉 ∝ δn,m.

Random spring chain.— Historically, the methods for disordered systems where first apply
to a non quantum problem : the random spring chain. Consider atoms on a line and denote by
un the displacement of the n-th atom. The Newton equations for the mode of frequency ω take
the form

−mnω
2 un = kn un+1 − (kn + kn−1)un + kn−1 un−1 (II.3)

where mn is the mass of the n-th atom and kn the spring constants between atom n and atom
n + 1. The equation is very similar to discrete Schrödinger equation (II.1). It describes a
displacement wave in a disordered environment. The case of random masses (with fixed spring
constant) was analyzed in Dyson’s pioneering paper [51] (see the book of Lieb and Mattis [86]
for an early review of the first works on random spring chains).

- Exercice II.1 : Discuss the precise mapping between the Anderson model (II.1) and the
spring chain (II.3) : establish the connection between (E, Vn, tn) and (ω,mn, kn).

2) Continuous models

Helmholtz equation with random dielectric constant.– In some cases, it can be more
natural to consider a continuous model for the propagation of a wave. For example, the analysis
of the propagation of an optical wave in a medium with fluctuating dielectric constant ε(~r) =
ε+ δε(~r) leads to consider the Helmholtz equation

−∆E(~r)− k2 δε(~r)

ε
E(~r) = k2E(~r) (II.4)

describing the eigenmodes of the system (in the weak disorder regime, it is justified to decouple
the polarisation effect and thus treat in a first step the electric field as a scalar field [2]).

Band edge : from Anderson model to the Schrödinger equation.— In a condensed
matter physics context, lattice models are more natural, however their large scale properties can
be more conveniently described by continuous models. For example, consider the 1D Anderson
model

−t ψn+1 + Vn ψn − t ψn−1 = εψn . (II.5)
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In the absence of the random potential, the eigenstates are plane waves ψn = 1√
2π

eikn of energy

εk = −2t cos k for k ∈ [−π, π] (II.6)

In the band edge, |k| � 1, the dispersion relation may be simplified as εk ' −2t + t k2. This
quadratic behaviour corresponds to a non relativistic particle of mass m with ~2/(2m) = ta2,
where a is the lattice spacing. If we consider a potential with slow variations, Vn = V (na) where
V (x) is smooth at the scale a, the low energy properties of the model (i.e. the continuum limit
a→ 0) corresponds to the Schrödinger equation with a random potential

H = − ~2

2m

d2

dx2
+ V (x) (II.7)

in the following we will set ~2/2m = 1 (hence [E] = L−2). This discussion holds if the disorder
is weak Vn � t, so that it does only couple low energy states among themselves.

Band center : Dirac equation with random mass and random scalar field.– The
Schrödinger equation with a random potential is not the only continuum limit of the lattice
model. If, instead of studying the properties of the Anderson model at the band edge, one
considers the low energy properties in the band center, the free spectrum εk = −2t cos k is
linear εk ' 2t(±k − π/2) for k ∼ ±π/2, hence the emerging theory is a relativistic wave
equation. Wave vectors close to +π/2 are described by one field ϕ and wave vectors close to
−π/2 by another field χ. If the random potential Vn presents a modulation on the scale of the
lattice spacing, we write Vn = A0(na) + (−1)nm(na), where A0(x) and m(x) are two smooth
functions. The function A0(x) is related to small transfer of wave vector, i.e. does not couple
the two fields ϕ and χ. On the other hand, the modulated part corresponds to large transfers of
wavector δk ∼ ±π and describes the coupling between the two fields. The natural wave equation
modelizing this situation is therefore the Dirac equation with a random scalar potential and a
random mass for the bi-spinor Ψ = (ϕ, χ)

HDΨ(x) = εΨ(x) for HD = −iv0 σ3 ∂x + σ1m(x) +A0(x) , (II.8)

where σi’s are Pauli matrices. The mapping is discussed in detail in the problem at the end of
the chapter (and also in an appendix of [121] or in [105]).

Statistics of uncorrelated events - Poisson process.– In the calculation of the generating
functional (II.18), we have taken the point of view that xn’s are independent random variables
distributed with a uniform mean density ρ. I.e., when dropped on the interval [0, L], their joint
distribution is P (x1, · · · , xN ) = 1

LN
.

Another point of view corresponds to order the random independent variable as 0 < x1 <
x2 < · · · < xn < · · · . We now ask the question : what is the number N (x) of such impurities on
the interval [0, x] ? The random non decreasing process N (x) ∈ N is called a “Poisson process”.
Its distribution function, PN (x) = Proba{N (x) = N}, can be easily studied (be careful : N
refers to the random variable whereas x is a parameter). We obtain

PN (x) =
(ρx)N

N !
e−ρx , (II.9)

which is proved in the exercice below.

- Exercice II.2 Distribution of the Poisson process : The occurence of “events” (im-
purity positions) are independent. On the infinitesimal interval of width dx, the probability to
find one impurity is ρdx.
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a) Writing P0(x+ dx) in terms of P0(x), deduce a differential equation for P0(x) and solve it.

b) Proceeding in a similar way for PN (x), show that these probabilities solve the infinite set of
coupled differential equations

d

dx
PN (x) = ρPN−1(x)− ρPN (x) . (II.10)

c) These equations can be solved by the generating function technique. Introduce

G(s;x)
def
=
〈
sN (x)

〉
=

∞∑
N=0

sN PN (x) , (II.11)

where s is a complex number. Deduce a differential equation for G(s;x). What is G(s; 0) ?
Deduce PN (x).

d) Compute the mean 〈N (x)〉 and the variance Var(N (x)).

Distribution of the random potential V (x) – Generating functionals.– The notion of
a “random function” leads to a small technical complication : the distribution of the poten-
tial must be encoded in a functional DV (x)P [V ] and averaging involves functional integrals∫
DV (x)P [V ] (· · · ). This little difficulty can be circumvent by making use of the notion of

generating functional. We define

G[b]
def
= e

∫
dxV (x) b(x) , (II.12)

where • denotes averaging over V (x), which is usually more easy to handle. The correlation
functions can be deduced by functional derivation :

V (x1) · · ·V (xn) =
δnG[b]

δb(x1) · · · δb(xn)

∣∣∣∣
b=0

(II.13)

It is usually more convenient to consider the connected correlation functions (cumulants)

V (x1) · · ·V (xn)
c

=
δnW [b]

δb(x1) · · · δb(xn)

∣∣∣∣
b=0

where W [b] = lnG[b] (II.14)

In particular V (x1)V (x2)
c

= V (x1)V (x2)− V (x1)× V (x2).
Two examples :

(i) General Gaussian disorder

P [V ] = N exp

{
−1

2

∫
dxdx′ V (x)A(x, x′)V (x′)

}
(II.15)

where N is a normalisation. If we introduce the inverse of the integral kernel C, defined
by
∫

dx′A(x, x′′)C(x′′, x′) = δ(x− x′), we find the generating functional

G[b] = exp

{
1

2

∫
dxdx′ b(x)C(x, x′)b(x′)

}
. (II.16)

δ2G[b]
δb(x)δb(x′)

∣∣
b=0

= C(x, x′) = V (x)V (x′) is the two point correlation function.
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Analogy : Gaussian measure in RN If this seems too formal, think that it is just
a generalisation of usual matrix manipulations (with discrete indices) to continuous in-
dices. A general Gaussian measure would take the form P (· · · , Vx, · · · ) = N exp

{
−

1
2

∑
x,x′ VxAx,x′Vx′

}
. The Generating function is then given by a simple Gaussian integra-

tion in RN : G(· · · , bx, · · · ) = e
∑
x Vxbx = exp

{
1
2

∑
x,x′ bxCx,x′bx′

}
. Functional derivation

corresponds with partial derivative ∂2G
∂bx∂bx′

∣∣
b=0

= Cx,x′ = (A−1)x,x′

Example 1 : the Gaussian measure with A(x, x′) = 1
σ δ(x − x

′) is the measure for the
Gaussian white noise. Obviously C(x, x′) = σ δ(x− x′).

Example 2 : the Gaussian measure with A(x, x′) = 1
σ δ(x − x′)

[
1 − `2c

d2

dx2

]
leads to

correlations exponentially suppressed with the distance C(x, x′) = σ
2`c

e−|x−x
′|/`c .

The limit `c is the Gaussian white noise limit.

(ii) Random uncorrelated impurities. A natural model of disorder is the case of localised
impurities at random positions xn :

V (x) =
∑
n

vn δ(x− xn) . (II.17)

A natural assumption is that the positions xn’s are independent random variables dis-
tributed with a uniform mean density ρ. Fixing the averaged density, the number N of in-

dependent impurities in a volume V is given by the Poisson distribution PN = (ρV )N

N ! e−ρV .
The calculation of the generating functional follows straightforwardly :

G[b] =

〈
N∏
n=1

evnb(xn)

〉
N, {xn}, {vn}

=

∞∑
N=0

PN

(∫
V

dxn
V

evnb(xn)

)N
(II.18)

= exp

{
ρ

∫
dx
(

evnb(x) − 1
)}

(II.19)

where · · · is the averaging over the random weights vn. More conveniently

W [b] = ρ

∫
dx
(

evnb(x) − 1
)
. (II.20)

Functional derivations lead straightforwardly to

V (x) = ρ 〈vi〉 (II.21)

V (x1) · · ·V (xn)
c

= ρ vni δ(x1 − x2) · · · δ(x1 − xn) (II.22)

(note that the cumulants of the potential are controlled by the moments of weights vi’s).

3) Averaging over the disorder : Quenched or annealed ?

Let us discuss an important point concerning the averaging over the disorder : what is the
”good” quantity which should be averaged ?

Consider a system with configurations denoted by C within statistical physics, characterized
by occupation probability P (C) (this set of probabilities could as well be of quantum nature at
T = 0). For simplicity, consider the canonical distribution P (C) = 1/ZV exp{−βV (C)} where
the partition function ZV =

∑
C exp{−βV (C)} depends on the configuration V of the disorder,

as well as the thermodynamic properties encoded in the free energy FV = −(1/β) lnZV . The
question is : what should be averaged ? the partition function ZV or the free energy FV ?
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Quenched : In principle, thermodynamic observables (pressure p, magnetization M , ...)
can be deduced from the free energy by simple derivation. For example the magnetization
〈MV 〉 = −∂BFV , where 〈•〉 is the thermal averaging. Hence, in an experiment, what is mea-
sured (on a single sample) is linear in the free energy. Assuming the sample big enough and a
finite correlation length, some spatial averaging is thus naturally performed and the free energy
averaged over the disorder seems the relevant quantity : 3

Fquenched
def
= FV = − 1

β
lnZV (II.23)

where • denotes disorder averaging over V , with probability w(V ).
The knowledge of the quenched free energy provides the magnetization averaged over the

disorder 〈M〉 = −∂BFV .
Note however that, although the free energy is self averaging, its derivatives may be not self

averaging in the thermodynamic limit. Consider an observable X with fonjugated parameter
φ (the magnetization and the magnetic field for instance). One expects that the free energy
involves a characteristic scale FV (φ) = f(φ/φc) this its derivative reads X = −f ′(φ/φc)/φc. If
φc is a microscopic scale, it may scale with the volume (like the mean level spacing) which makes
X non self averaging.

Annealed : A different averaging procedure (over the disorder), could be to average the
partition function

ZV =
∑
C

exp{−βV (C)} =
∑
V

w(V )
∑
C

exp{−βV (C)}

This expression reveals that both the configuration C and the disorder configuration V are treated
on the same footing. Hence, this procedure corresponds to consider that disorder configuration
changes during the time dynamics, in the same way as C (remember that, in statistical physics,
statistical averaging replaces ergodic time dynamics). We introduce

Fannealed
def
= − 1

β
ln
(
ZV
)

(II.24)

the annealed free energy.
We have the convexity inequality

lnZ 6 ln
(
Z
)

and Fquenched > Fannealed (II.25)

In the following, we will consider the case of quenched disorder.

II.B Transfer matrix approach – The Furstenberg theorem

The concept of transfer matrix is a very important one in statistical physics [19]. We show in
this section that the study of the models introduced previously within this formulation leads
straightforwardly to the conclusion that the wave functions are exponentially localised, given an
important theorem of the theory of random matrix products.

3 Assuming short range interaction, one can show that the free energy is self averaging in the thermody-
namic limit.
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1) Furstenberg theorem

Preliminary : Consider some independent and identically distributed (i.i.d.) random vari-
ables xn. What are the statistical properties of the product of these random variables pN =
xN · · ·x2x1 ? If (lnxn)2 < ∞, the answer is given by the central limit theorem applied to the
logarithm ln pN =

∑
n lnxn. In particular

lim
N→∞

ln |pN |
N

= lnxn (II.26)

as the fluctuating part of ln |pN | scales as
√
N if (lnxn)2 is finite.

Central limit theorem for non commuting objects : The Furstenberg theorem is a
generalisation of the trivial relation (II.26) to the highly non trivial situation where the random
variables are non commuting.

Let us consider a sequence of i.i.d. random matrices Mn’s, according to a suitable measure
µ(dM) defined over some group. Then we form the product of such matrices

ΠN = MN · · ·M2M1 (II.27)

A natural question is : given µ(dM) what is the distribution of ΠN ? The Furstenberg theo-

rem (below) states that the matrix elements of the product ΠN typically grow exponentially
with N as N →∞. Let us first give few precisions.

Example of measure µ(dM) for the group SL(2,R) : One considers a group of matrices
labelled by some parameters (like angles for the rotation group). These parameters depend on
the choice of the group representation. Consider for example SL(2,R), a three-parameter-group
that will be important for the discussion.

Gauss decomposition : Matrices of SL(2,R) can be decomposed thanks to the well-
known Gauss decomposition

M(a, b, c) =

(
1 a
0 1

)(
eb 0
0 e−b

)(
1 0
c 1

)
(II.28)

The measure µ(dM) over SL(2,R) corresponds to some joint distribution P (a, b, c).

Iwasawa decomposition : Another decomposition, that will be more useful below, is the
Iwasawa decomposition, in terms of compact, Abelian and nilpotent subgroups :

M̃(θ, w, u) =

(
cos θ − sin θ
sin θ cos θ

)(
ew 0
0 e−w

)(
1 u
0 1

)
(II.29)

The measure µ(dM) is then given by the joint distribution P̃ (θ, w, u).

Relating the two parametrisations M̃(θ, w, u) = M(a, b, c), one can find in principle the
relation between the two distribution P (a, b, c) and P̃ (θ, w, u) characterizing the same measure
µ(dM).
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Norm.– In order to measure the growth of the matrix elements, it is convenient to define the
norm of the matrix. 4

Several definitions are possible and the precise choice is not essential for the following.

Choice 1 : (for m×m matrices) :

||M || def= Sup{||Mx|| ; x ∈ Rm ; ||x|| = 1} (II.30)

where ||x|| is the usual Euclidian norm in Rm.

Choice 2 : (used by mathematicians in [33])

||M || def=

∫
||x||=1

dmx ||Mx|| . (II.31)

Choice 3 : the Fröbenius norm

||M || def=

√
1

m
Tr {M †M} . (II.32)

For example for 2× 2 real matrices

M =

(
a b
c d

)
⇒ ||M ||2 =

1

2
(a2 + b2 + c2 + d2) (II.33)

For matrices of SL(2,R), one can show that ||M || > 1.

Remark : this discussion of the matrix norm was just for the fun, as it will play no role
in the following.

Furstenberg theorem (1963).– Assuming that ln+ ||Mn|| < ∞, where ln+ x
def
= θH(x −

1) lnx, the Furstenberg theorem [62] states that

γ
def
= lim

N→∞

ln ||ΠN ||
N

> 0 (II.34)

Note that averaging is not needed, as in (II.26). γ is called the (largest) “Lyapunov exponent”
of the random matrix product. It depends on the group and on the probability measure. Given
this information, it is however difficult to compute it in general.

Central limit theorems for products of random matrices have been widely studied by math-
ematicians since the pioneering work of Bellman in 1954 [22]. Important developments are due
to Furstenberg and Kesten [63, 62], Guivarc’h and Raugi [69], Le Page [83] and others [101].
Among the vast mathematical literature on this topic, one of the key problems is the derivation
of sufficient conditions for the central limit theorem to hold. More information can be found in
the monograph by Bougerol and Lacroix [33] or the recent one [23].

We now discuss how the Furstenberg theorem is related to the localisation problem.

4A norm ||x|| is an application from a vectorial space E to the real with the following properties : (i) ∀x ∈ E ,
||x|| ∈ R+. (ii) ||x|| = 0 ⇔ x = 0, the null element of E . (iii) ∀λ ∈ C, ||λx|| = |λ| ||x||. (iv) ||x+ y|| 6 ||x||+ ||y||
(triangular inequality).
If ||x|| = 0 does not imply x = 0, || · || is a semi-norm (example of semi-norm : for ||f || =

∫
R dx |f(x)|, ||f || = 0

implies f(x) = 0 expect on a set of zero measure).
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2) A discrete model

The study of the tight binding equation (II.5) for t = 1 can be reformulated in terms of transfer
matrices as follows (

ψn+1

ψn

)
=

(
Vn − ε −1

1 0

)
︸ ︷︷ ︸

=Mn∈SL(2,R)

(
ψn
ψn−1

)
. (II.35)

The behaviour of the wave function is controlled by those of the product of transfer matrices

ψn ∼ ||Πn|| where Πn = Mn · · ·M1 (II.36)

The Furstenberg theorem immediatly tells us that, given some initial values (ψ1, ψ0), the wave
function 5 grows exponentially

ln |ψn| ∼
n→∞

γ n (II.37)

up to fluctuations of order
√
n, where γ is the Lyapunov exponent of the transfer matrices (the

growth rate of the matrix product). The growth rate of the wave function furnishes a definition
of the localisation length

ξ
def
= 1/γ (II.38)

The identification of the inverse Lyapunov exponent and the localisation is at the heart of the
connection between localisation and product of random matrices. This is related to the Borland’s
conjecture (cf. discussion below).

Weak disorder : A lot of effort has been devoted to develop weak disorder expansion. For
example, Derrida and Gardner have obtained several formulae were obtained for the Anderson
model, depending on the energy [47]. (II.5) for t = 1 and set ε = −2 cos k. Not too close to
the band edges (ε ' ±2) nor to the band center 6 (ε ' 0), it was shown that the Lyapunov
exponent is given by [47, 88]

γ ' V 2
n

8 sin2 k
=

V 2
n

2(4− ε2)
. (II.39)

- Exercice II.3 Lyapunov exponent of the spring chain : (very easy) Consider the
random spring chain model (II.3) for uniform spring constants kn = κ and random masses
mn = m0 + δmn, with δmn � m0 and δmn = 0. By mapping (II.3) onto the Anderson model
(II.5), previous exercice, recover the formula of Ishii and Matsuda [93, 72] for the low frequency
Lyapunov exponent of the spring chain

γ(ω) ' δm2
n ω

2

8m0κ
(II.40)

Justify the vanishing of γ(ω) for small frequency with a physical argument.

5 We already stress that we consider here the solution of the initial value problem, and not the real normalised
eigenstates solution of the spectral problem.

6 Kappus and Wegner discovered in 1981 that the Lyapunov exponent at the band center presents an anomaly
(i.e. its weak disorder expansion differs from the formula given here). Derrida and Gardner provided later a
beautiful explanation. In the problem at the end of the chapter, I give a simple explanation within a continuum
limit.
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3) A continuous model : δ-impurities

Another interesting model is the delta impurity model (random Kronig-Penney model)

H = − d2

dx2
+
∑
n

vn δ(x− xn) (II.41)

We set ~2/(2m) = 1 for convenience.

ψ’(x)

ψ(x)

impurity

free evolution

Figure 3: Transformation of the vector (ψ′, kψ).

Let us gather the wave function and its derivative in a vector(
ψ′(x)
k ψ(x)

)
(II.42)

We may encode the evolution of the vector through the action of transfer matrices of two types
(figure 3) :

• Between impurity n and n+ 1, the evolution is free, hence(
ψ′(x)
k ψ(x)

)
= k An

(
cos(kx+ ϕn)
sin(kx+ ϕn)

)
for xn < x < xn+1 , (II.43)

where An and ϕn are some amplitude and some phase, depending on each interval. This
makes clear that the vectors at x+

n and x−n+1 are related by a rotation of positive angle
θn = k`n where `n = xn+1 − xn.

• Evolution through the impurity n corresponds to ψ′(xn+) − ψ′(xn−) = vnψ(xn), with
ψ(x) continuous.

Therefore the evolution of the vector (II.42) involves a sequence of random matrices of the form

Mn =

(
cos θn − sin θn
sin θn cos θn

)(
1 un
0 1

)
∈ SL(2,R) (II.44)

with random positive angles θn = k`n > 0 and random coefficients un = vn/k. We have(
ψ′(xn+1−)
k ψ(xn+1−)

)
= Πn

(
ψ′(x1−)
k ψ(x1−)

)
where Πn = Mn · · ·M1 , (II.45)
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Figure 4: Evolution of the random matrix product. Left : Motion of the vector under the
action of the 1000 random matrices of the form (II.44). the angle are exponentially distributed
with θ = 0.02 and the coefficients un under the symmetric PDF p(u) = 1

2ae−|u|/a with a = 0.1.
Right : Evolution of the modulus of the vector with n for two realisations of the disorder : slope
indicates the Lyapunov exponent.

Origin of the symplectic group SL(2,R) ≡ Sp(2,R) : Note that the fact that the matrix
Mn ∈ SL(2,R) follows from the conservation of probability current : denoting Ψ(x) the vector
(II.42), the current density is expressed as

Jψ = Im[ψ∗ψ′] = − 1

2k
Ψ†σ2Ψ . (II.46)

Hence current conservation between two points related by a transfer matrix M is ensured by
the condition M †σ2M = σ2. This implies that M ∈ SL(2,R), up to a global phase.

Impurities may form a lattice (fixed distances `n = 1/ρ) or be randomly dropped; e.g.
dropped independently and uniformly for a mean density ρ, i.e. p(`) = ρe−ρ`. Weights vn may
be random or not. The Furstenberg theorem again immediaty shows that the wave function
envelope increases exponentially

lim
x→∞

ln |ψ(x)|
x

= γ (II.47)

where γ coincides with the Lyapunov exponent of matrices (II.44) (up to a factor ρ coming from

n ∼ ρx). This gives again a definition of the localisation length ξ
def
= 1/γ in this continuous

model.

- Exercice II.4 : The study of the perfect lattice of impurities is instructive. We consider
transfer matrices (II.44) for `n = a and vn = v, ∀n.

a) Show that Bloch theorem implies that the transfer matrix M has eigenvalue eiK .

b) Deduce the quantization equation and show that spectrum of eigenstates forms energy bands
(hint : use a graphical resolution).

c) Wheck that the eigenvalues of M can be written as e+Ω and e−Ω. Show that for the perfect
crystal we have either Ω ∈ R or Ω ∈ iR. Deduce the expression of the Lyapunov expression and
of the integrated density of states.

Solution : exercice 6.10 of [118].
The exercice illustrates that for a non disordered problem, the Lyapunov vanishes on the spec-
trum, i.e. states are extended.
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4) The Lyapunov exponent and the Borland conjecture

We have characterized above the localization properties through the Lyapunov exponent γ,
which is defined as the growth rate of the wave function, (II.37) for discrete model or (II.47) for
the continuous model. However, we have insisted on the fact that these definitions involve the
solution of the initial value problem. Is it really what we are looking for ?

Spectral (Sturm-Liouville) problem : in principle, we should rather be interested in prop-
erties of the normalised wave functions, solutions of the spectral problem

−ϕ′′(x) + V (x)ϕ(x) = E ϕ(x) with

{
ϕ(0) = 0

ϕ(L) = 0
(II.48)

where Dirichlet boundary conditions are here chosen.
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Figure 5: An eigenstate obtained by exact diagonalisation.

Eigenstates are localized at random places. Interestingly, when plot in semi-log scale, they
present the same rate for exponential growth and exponential decay.

Initial value (Cauchy) problem : We have defined above the Lyapunov exponent as the
growth rate

γ = lim
x→∞

ln |ψ(x)|
x

(II.49)

of the solution of the initial value (Cauchy) problem

−ψ′′(x) + V (x)ψ(x) = E ψ(x) with

{
ψ(0) = 0

ψ′(0) = 1
(II.50)

Such a solution exists ∀E (while the solutions ϕ(x) of the spectral problem exist only for a
discrete set of energies).

The Borland conjecture : It is not completly obvious that ξ
def
= 1/γ, a property of the initial

value problem ψ(x), is a good definition charaterizing the spreading of the wave function ϕ(x),
solution of the Sturm-Liouville problem. This assumption is known as the “Borland conjecture”
[31]. It relies on the fact that ϕ(x) is constructed by matching two solutions of two different
initial value problem : one solution ψ+(x) satisfying ψ+(0) = 0, growing exponentially from
the left, and another one ψ−(x) satisfying ψ−(L) = 0, growing exponentially from the right to
the left. The two solutions are expected to present the same statistical properties, hence the
definition. This assumes that the statistical properties of the envelopes of ψ(x) and ϕ(x) are the
same, i.e. that the matching procedure does not affect the statistical properties of the envelope.
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Is the Lyapunov exponent always a good measure of localisation ? Although the Bor-
land conjecture is a reasonnable assumption for high energy wave functions rapidly oscillating,
when oscillations and growth of the envelope decouple, it is more questionable for low energy
states : see the discussion in the review article [42] and references therein ; a counter-example
for which Borland’s conjecture do not applied is discussed in [123] (also in [42]). We rediscuss
this point below in § II.D

5) Preliminary conclusion

The use of the Furstenberg theorem has immediatly provided the nature of the eigenstates,
shown to be exponentially localised. The argument is very general because any (linear) wave
equation can be formulated with the help of transfer matrices (even in the multi-channel case ;
strictly 1D is not a restriction). However it does not give the quantitative information about the
localisation length. In general, given the measure µ(dM) characterizing the random matrices,
finding the Lyapunov exponent is a very hard task. From the point of view of the disordered
model (II.5), the question would be : given the distribution P (V ) of the random potentials Vn,
what is the Lyapunov exponent γ ? A review on how to answer to this precise question can be
found in the first part of the book by Jean-Marc Luck [88].

We analyse below a continuous model where such an analysis will be facilitated.

II.C Detailed study of a solvable continuous model

1) Definition of the model

Let us consider the Schrödinger Hamiltonian

H = − d2

dx2
+ V (x) (II.51)

for the simplest model of random potential, namely the Gaussian white noise

P [V ] ∝ exp

{
− 1

2σ

∫
dxV (x)2

}
⇒ V (x)V (x′) = σ δ(x− x′) . (II.52)

- Exercice II.5 Relation to other models :
a) Relate σ to the strength of the disordered potentials of the lattice model 〈VnVm〉 = W 2δn,m.

b) Show that the model with the Gaussian white noise potential may be obtained by considering
the high density limit (ρ → ∞) with weak impurities (vn → 0) of the random impurity model
introduced previously. What is the precise relation between the two models ? I.e. how can one
relates σ to the parameters of the impurity model ?

Hint : Find the proper non trivial limit of the characteristic functional (II.20).

- Exercice II.6 Dimensional analysis :
a) Check that the dimension of disorder strength is

[σ] = L−3 (II.53)

b) We consider the Lyapunov exponent γ(E) (inverse localisation length) and the integrated
density of states per unit length N(E). Use dimensional analysis to express γ and N in terms
of two scaling functions.

c) Deduce how the zero energy localisation length behaves with the disorder strength ? What
is the amount of states that have migrated from R+ to R− ?
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2) Riccati analysis

We now show that the localisation properties and the spectral properties of the Schrödinger
equation with a disordered potential can be obtained by studying a random process related to
the solution of the Cauchy problem (the wavefunction), denoted ψ(x) henceforth. The ideas will
be applied to the case of the Gaussian white noise potential below. We introduce the Riccati
variable

z(x)
def
=
ψ′(x)

ψ(x)
(II.54)

We will see that the study of this random process can be easily handled by standard techniques
(Langevin and Fokker-Planck equations). From −ψ′′ + V ψ = Eψ, we obtain that the Riccati
variable obeys a first order non linear differential equation (use ψ′′/ψ = z′ + z2)

d

dx
z(x) = −E − z(x)2 + V (x) = F(z(x)) + V (x) (II.55)

where we introduce the “force” F(z) = −E − z2 and the related “potential” :

U(z) = −
∫

dzF(z) = Ez +
1

3
z3 . (II.56)

Equation (II.55) has the structure of the Langevin equation describing a fictitious Brownian
particle of “position” z(x) at “time” x, in the overdamped regime where the speed is proportional
to the force.

+

−

z

E>0

U(z)=Ez+
z3

3

+

E=0

z

3

U(z)=Ez+
3

z

E<0

z

Figure 6: Dynamics of the Riccati variable under the action of the deterministic force.

The introduction of the Riccati variable will be very useful in order to analyze the dynamics
of the process. We can already make the following observations :

• When E > 0, the “deterministic force” alone, i.e. the force F(z) = −E−z2 induces a flow
of the process from +∞ to −∞. In the absence of the potential, the Riccati variable takes
a finite “time” to cross R. Let us start from z(x0) = +∞ (that corresponds to a node of
the wave function, ψ(x0) = 0). Then the next divergence (i.e. the next node of ψ) occurs
after a “time” ` given by∫ x0+`

x0

dx = −
∫ −∞

+∞

dz

E + z2
⇒ ` =

π√
E

(II.57)

The distance between the nodes of the wave function is the inverse of the integrated density
of states (IDoS) per unit length N0(E) = 1/`. This is the result of a general theorem : the
oscillation theorem (or Sturm-Liouville theorem, cf. 7).

For E < 0, the potential traps the Riccati variable at z+ =
√
−E.
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• The random potential plays the role of a random (Langevin) force.

For E > 0, it induces fluctuations of the time needed to go from +∞ to −∞, what is
responsible for a deviation of the IDoS N(E) from the free IDoS N0(E) = 1

π

√
E.

For E < 0, a negative fluctuation of the potential may allow the process to escape the
potential well and induces a finite flow of the Riccati.

Spectral properties (from the node counting method).— In the absence of the random
potential V (x), we have shown that the “time” needed by the process z(x) to go from +∞ to
−∞ coincides with the IDoS per unit length. This property remains true in the presence of the
disordered potential, provided we consider the average time, i.e. N(E) = 1/`.
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Figure 7: Oscillation (Sturm-Liouville) theorem. In 1D, the number of nodes of the wave-
function coincides with the excitation degree n, i.e. the IDoS.

This relation may be understood as follows : The density 1/` is the average density of nodes of
the wave function per unit length. From the oscillation (Sturm Liouville) theorem this coincides
precisely with the IDoS per unit length. It will also be convenient for the following to notice
that the density of the Riccati’s infinitudes can be interpreted as the stationary probability
current −J :

N(E) = J = 1/` (II.58)

J = number of infinitudes of the Riccati process per unit length (“time”)= number of nodes of
ψ per unit length= IDoS per unit length (oscillation theorem).

Another proof : Consider the IDoS NL(E) =
∑∞

k=1 θH(E − Ek). For E = EN , the Nth

node coincides with the boundary, i.e. L =
∑N

n=1 `n. Because the lengths are i.i.d. variables,
we can write

L =

N∑
n=1

`n '
L→∞

N ` = NL(EN ) ` ⇒ N(E)
def
= lim

L→∞

NL(E)

L
= 1/`

Qed.

Localisation length.— Our definition of the localisation length is the growth rate of the
solution of the Cauchy (initial value) problem

γ = lim
x→∞

ln |ψ(x)|
x

= lim
x→∞

∫ x

0

dt

x
z(t) . (II.59)
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Assuming some ergodic properties, we can express the Lyapunov exponent as an integral of the
Riccati’s stationary distribution f(z) as

γ = −
∫

dz z f(z) ⇒ ξ
def
= 1/γ . (II.60)

We have introduced a principal part

−
∫ +∞

−∞
dxh(x)

def
= lim

R→+∞

∫ +R

−R
dxh(x) =

∫ +∞

−∞
dx

h(x) + h(−x)

2

in order to account for the possible slow power law decay of the Riccati distributionn f(z) ∼ 1/z2.

Application to the model with Gaussian white noise disorder.— If the disordered
potential is a Gaussian white noise, Eq. (II.52), then (II.55) is the usual Langevin equation with
a force uncorrelated in “time” . Then we can directly relate this Langevin equation to a Fokker-
Planck equation for the probability density of the Riccati variable f(z;x)

def
= 〈δ(z − z(x))〉 (cf.

appendix) :
∂

∂x
f(z;x) =

(
σ

2

∂2

∂z2
− ∂

∂z
F(z)

)
f(z;x) . (II.61)

It can be conveniently recast under the form of a conservation equation

∂

∂x
f(z;x) = − ∂

∂z
J (z;x) where J (z;x) =

(
F(z)− σ

2

∂

∂z

)
f(z;x) (II.62)

is the probability current, given by the sum of a drift term and a diffusion current.
The Fokker-Planck involves the (forward) generator

G † =
σ

2

d2

dz2
− d

dz
F(z) , (II.63)

adjoint of the generator of the diffusion G = σ
2

d2

dz2
+ F(z) d

dz (i.e. the backward generator). We
prove in the exercice below that it has a discrete spectrum of eigenvalues. From this observation,
we deduce that the distribution of the Riccati variable converges to a limit distribution on a
finite length scale `c (the correlation length of the Riccati process)

f(z;x) −→
x→∞

f(z) , (II.64)

where f(z) obeys (
σ

2

d

dz
+ E + z2

)
f(z) = N(E) (II.65)

where we have used that the steady current

J (z;x) −→
x→∞

−N (II.66)

is the IDoS per unit length.

- Exercice II.7 Spectrum of the generator : The aim of the exercice is to show that
f(z;x) reachs a limit distribution f(z) over a characteristic scale `c (the correlation length).
Assuming initial condition z(0) = z0, we can write formally the propagator as 7

f(z;x) = 〈z |exG † |z0 〉 =
∑
n

ΦR
n (z) ΦL

n(z0) e−x En (II.67)

7 Propagator : In order to introduce this concept in a more simple case, consider a Schrödinger operator H.
the propagator is the evolution operator in imaginary time Kt(x|x0) = θH(t) 〈x |e−tH |x0 〉, Green’s function of
the time dependent Schrödinger equation

(
∂t +H

)
Kt(x|x0) = δ(t) δ(x− x0).
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in terms of left/right eigenvectors, G †ΦR
n (z) = −En ΦR

n (z) and G ΦL
n(z) = −En ΦL

n(z).

a) Consider the nonunitary transformation

H+ = e
1
σ
U(z)(−G †)e−

1
σ
U(z) (II.68)

This shows that G † and H+ are isospectral. 8 Chek that

H+ = −σ
2

d2

dz2
+

[F(z)]2

2σ
+
F ′(z)

2
=
σ

2

(
d

dz
+
F(z)

σ

)(
− d

dz
+
F(z)

σ

)
(II.69)

b) Analyse the shape of the effective potential for the Schrödinger operator H+ and deduce the
nature of the spectrum of eigenvalues {En} (discrete/continuous).

The Hamiltonian (II.69) is called a supersymmetric operator in reference with the specific
structure of the form H+ = σ

2Q
†Q (generalisation of the harmonic oscillator a†a) [77, 40].

- Exercice II.8 Stationary solution : a) Construct explicitly the solution of (II.65).

b) Rice formula.– Show that the asymptotic behaviour of the distribution is f(z) '
z→±∞

N(E)/z2.

c) Show that the normalisation provides an integral representation of the IDoS (one of the two
integrals can be done).

3) Localisation – Weak disorder expansion

It is possible to compute exactly the Lyapunov exponent (see exercice II.10 below), however we
now only present a more simple perturbative analysis (in the disorder strength σ), valid in the
high energy limit, E � σ2/3. Let us assume that the stationary distribution and the IDoS have
a perturbative expansion :

f(z) = f (0)(z) + f (1)(z) + · · · (II.70)

N = N (0) +N (1) + · · · (II.71)

Inject this form in (II.65) leads to

f (0)(z) =
N (0)

z2 + k2
(II.72)

f (n)(z) =
N (n)

z2 + k2
− σ

2(z2 + k2)

d

dz
f (n−1)(z) (II.73)

where we have introduced k =
√
E. f (0) carries all the normalisation, hence we recover the

well-known IDoS for the free case N (0) =
√
E
π . At first order we must have

∫
dz f (1)(z) = 0,

hence N (1) = 0 and f (1)(z) = − σ
2(z2+k2)

d
dzf

(0)(z), etc. Finally we get

f(z) =
k/π

z2 + k2
+
σk

π

z

(z2 + k2)3
+O(σ2) (II.74)

that can be introduced into (II.60) :

γ = 0 +
σk

π

∫
dz

z2

(z2 + k2)3
+O(σ2) =

σ

8E
+O(σ2) (II.75)

8 The spectra of two operators differ by a zero mode (see Appendix D of Ref. [64] for a discussion of this
subbtle point).
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The important conclusion of this calculation is the fact the the Lyapunov exponent is different
from zero for any (positive) energy. Therefore all eigenstates get localised by the disorder,
how weak it is. The localisation length however increases with energy as

ξE '
E�σ2/3

8E

σ
(II.76)

We may interpret this important result as follows :

• in the absence of disorder (σ = 0), the spectrum of eigenvalues is R+. Negative energies
correspond to evanescent (non normalisable solutions) exp(±

√
−E x), hence the Lyapunov

exponent is non zero outside of the spectrum, γ =
√
−E for E < 0, and vanishes on the

spectrum, γ = 0 for E > 0.

• In the presence of disorder (σ 6= 0), the Lyapunov exponent becomes non zero on the
spectrum. Correlatively, the disorder drags some states in the negative part of the spectrum
(figure 8).
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Figure 8: Halperin model.– IDoS (black continuous line) and Lyapunov exponent (dashed red
line) in the absence of disorder (left) and with Gaussian white noise potential (right). From
Eq. (II.94)

Generalisation : The perturbative formula for the Lyapunov exponent may be generalised
to arbitrary random potentials with finite correlation function. It leads to [15, 87]

γ ' 1

8k2

∫
dx V (x)V (0)

c
cos(2kx) as E = k2 →∞ . (II.77)

- Exercice II.9 : In the experiment with cold atoms, the disordered potential is realised
with a speckle pattern (Fig. 12). The potential felt by the atoms is proportional to the light

intensity V (x) ∝ |E(x)|2, where the electric field presents correlations 〈E(x)E∗(x′)〉(speckle) =

I0
sin(|x−x′|/`c)
|x−x′|/`c . What are the potential correlations ? Deduce the Lyapunov exponent from the

perturbative formula (II.77). What can you expect when this expression vanishes ?

See Ref. [89]

Remark : V (x) with infinite moments.– The formula (II.77) emphasizes that the high
energy behaviour of the localisation length ξE ∝ E is pretty universal for random potentials
uncorrelated in space. This behaviour however obviously requires that the second moment of
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the potential is finite, i.e. 〈V (x)V (0)〉 < ∞. If this is not the case, large fluctuations of the
random potential can induce unusual localisation properties, like a non linear dependence of the
localisation length with E or the phenomenon of superlocalisation [28] (a clear discussion on
sublocalisation and superlocalisation and references can be found in Ref. [30]).

4) Lifshitz tail

Another feature common to disordered systems is the existence of the low energy non analytic
density of states (non analytic in the disorder strength σ). The fraction of states with energy
E < 0 may be estimated by a simple dimensional analysis as

N(0) ∼ σ1/3 (II.78)

hence the DoS per unit length get finite at zero energy ρ(0) ∼ σ−1/3 (it diverges as disorder
disappears, as it should). We may obtain the low energy behaviour of the IDoS by a very simple
argument, remembering the interpretation of the IDoS as a current of the Riccati variable : for
large E = −k2, the potential U(z) developes a local minimum at z = +k, with a potential barrier
∆U = U(−k) − U(k) = 4k3/3, that traps the process a very long time ∝ exp 2∆U

σ (Arrhenius
law). The current is expected to be diminished in inverse proportion, hence

N(E) ∼
E→−∞

exp

[
− 8

3σ
(−E)3/2

]
. (II.79)

This interpretation was first suggested by Jona-Lasinio [76].

Ordered spectral statistics and energy level correlations.– It allows to obtain not only
the average density of states per unit length, but although the order statistics of eigenvalue
(distribution of ground state energy, first excited state, etc) [116]. I have shown in this paper
that this ordered statistics problem for a priori correlated variables (the eigenvalues of a r andom
operator) coincides with Gumbel laws describing uncorrelated random variables. This shows that
in the strongly localised phase, eigenvalues behave as independent random variables [98].

5) Conclusion : universal versus non universal regimes

We have encountered two regimes :

• Universal results (high energy/weak disorder) do not depend on details of P (V ), but only
on few properties, like 〈V 2〉. Anderson localisation takes place in this regime : although
the energy of the particle is much higher than the potential, E � σ2/3, eigenstates are
localised (particle would be free classically).

• Non universal results (low energy/strong disorder), such as Lifshitz tails, depend on the
full distribution P (V ), as usual for large deviations. 9 In the low energy limit, localisation
of eigenstates is somehow obvious and corresponds to trapping of the particle by deep
potential wells (what would also occur classically).

9Cf. Refs. [41, 67] for reviews on low energy spectral singularities in 1D disordered systems.
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Figure 9: The ground state and some high energy states of the Anderson model with Gaussian
random potentials for W/t = 0.79.

Final remark : Although we have developed the Riccati analysis in the frame of a continuous
model, these ideas can be formulated in the context of the discrete Anderson model (II.81). In

this case a natural definition for the Riccati variable is Rn
def
= ψn+1/ψn which obeys the recursion

Rn = Vn − ε−
1

Rn−1
. (II.80)

A pedagogical description can be found in the book of J.-M. Luck [88].

6) Relation between spectral density & localisation : Thouless formula

We show that the IDoS and the Lyapunov exponent are related by analyticity.

An elementary derivation for the discrete Anderson model.— Let us consider the
tight-binding Hamiltonian (for hopping t = 1)

−ψn+1 + Vn ψn − ψn−1 = εψn (II.81)

on a finite interval n ∈ {1, · · · , N}. We consider the initial boundary conditions ψ0 = 0
(Dirichlet-like) and ψ1 = 1. Wave function on the next sites can be computed from ψn+1 =
(Vn − ε)ψn − ψn−1. It will be useful to remark for the following that

ψn+1 ' (−ε)ψn for ε→∞ (II.82)

The spectrum of the finite system is obtained by imposing a second boundary condition, say
ψN+1 = 0. This equation is nothing but the quantification equation, whose solutions are the
eigenvalues {εα}α=1,··· ,N of the Schrödinger Hamiltonian. We conclude that the solution ψn of
the initial value problem ψ0 = 0 & ψ1 = 1 can be written as a function of the energy

ψN+1 =
N∏
α=1

(εα − ε) , (II.83)

where the prefactor has been fixed thanks to (II.82). Taking the logarithm of this equation, we
obtain

1

N
ln |ψN+1| =

∫
dε′ ρ(ε′) ln |ε′ − ε| (II.84)
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where ρ(ε)
def
= 1

N

∑N
α=1 δ(ε − εα) is the density of states per site. Note that this equation is

general and has not required any assumption on the potential. Now considering a disordered
potential, the left hand side can be identitified with the Lyapunov exponent in the limit N →∞
when the spectrum becomes dense, thus

γ(ε) =

∫
dε′ ρ(ε′) ln |ε′ − ε| (for the Anderson model). (II.85)

This formula is known as the Thouless formula [128].
Exactly the same idea can be performed for a continuous model by considering the wave

function ψ(x;E) solution of the initial value problem ψ(0;E) = 0 and ψ′(0;E) = 1. The
quantification equation now reads ψ(L;E) = 0 providing the spectrum on a finite interval of
length L with Dirichlet boundary conditions. A little technical difficulty however arises due
to the fact that the spectrum is not bounded from above and involves an infinite number
of eigenvalues. One can however show that the wavefunction is proportional to the functional
determinant 2ψ(L;E) = det(E+∂2

x−V (x)) (see [80] for a pedagogical introduction to functional
determinants, or [71]).

Analytical properties for the continuous model.— The IDoS and the Lyapunov expo-
nent are the real and imaginary part of a single analytic function defined in the upper complex
plane. It follows that it is possible to write a Kramers-Kronig relation relating one to the other
(the Thouless formula), as was well illustrated by the exercice below.

This might be understood in a simple way by considering the Fourier transform of the
stationary distribution

f̂E(q) =

∫
dz e−iqz fE(z) (II.86)

For example, in the case of the Schrödinger equation with Gaussian white noise potential V (x),
it follows from (II.65) that f̂E(q) obeys the differential equation(

− d2

dq2
+ E +

iσ

2
q

)
f̂E(q) = 2πN(E) δ(q) (II.87)

For other models of random potential, we obtain a different differential equation. We can see
that

f̂ ′E(0+) = −πN(E)− i γ(E) (II.88)

thus the integrated density of states and the Lyapunov exponent are real and imaginary part
of an analytic function of the energy in the upper complex plane, denoted as the characteristic
function, or the complex Lyapunov exponent

Ω(E) = γ(E)− iπN(E) . (II.89)

Kramers-Kronig relation can be obtained by performing some soustraction in order to deal with
an asymptotically decaying function :

Ω̃(E)
def
= Ω(E)− Ω0(E) where Ω0(E) =

√
−E − i0+ (II.90)

is the complex Lyapunov exponent in the free case. Considering the appropriate closed contour
in the complex half plane gives :

Ω̃(E) = −i−
∫
R

dω

π

Ω̃(ω)

ω − E
(II.91)
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i.e., taking the real part

γ(E)− γ0(E) = −−
∫

dE′
N(E′)−N0(E′)

E′ − E
, (II.92)

where γ0(E) = θH(−E)
√
−E and πN0(E) = θH(E)

√
E. We can rewrite the relation in terms

of the density of states ρ = N ′ as

γ(E)− γ0(E) =

∫
dE′

[
ρ(E′)− ρ0(E′)

]
ln |E′ − E| (for the Schrödinger equation).

(II.93)
Up to the soustraction, required because the spectrum is unbounded from above, this is the
same relation as (II.85). Analyticity shows that real and imaginary parts of Ω(E) are related
through a Hilbert transform.

- Exercice II.10 Halperin’s result (1965) : In exercice II.8, we have obtained an integral
representation of the IDoS, due to Frisch and Lloyd [60]. An integral representation of the
Lyapunov exponent could be obtained similarly from the knowledge of the stationary distribution
f(z). In this exercice we show that γ and N can be expressed in terms of Airy functions. This
result is due to Halperin [70].
a) Fourier transform the differential equation (II.65) : f̂(q) =

∫
dz e−iqzf(z).

b) Solve the differential equation for f̂(q) on R+ (find the solution decaying for q → +∞).
Deduce that the complex Lyapunov exponent is

Ω(E) = γ(E)− iπN(E) =
(σ

2

)1/3 Ai′(ξ)− i Bi′(ξ)

Ai(ξ)− i Bi(ξ)
where ξ = −

(
2

σ

)2/3

E . (II.94)

c) Recover the asymptotic behaviour for the Lyapunov exponent and the low energy density of
states (use that the Wronskian of the two Airy functions is W [Ai,Bi] = 1/π).

Appendix :
Airy equation f ′′(z) = z f(z) admits two independent real solutions Ai and Bi with asymptotic
behaviours Ai(z) ' 1√

π (−z)1/4 cos
[

2
3(−z)3/2 − π

4

]
and Bi(z) ' −1√

π (−z)1/4 sin
[

2
3(−z)3/2 − π

4

]
for

z → −∞, and Ai(z) ' 1
2
√
π z1/4

exp
[
− 2

3z
3/2
]

and Bi(z) ' 1
2
√
π z1/4

exp
[

2
3z

3/2
]

for z → +∞.

II.D Another localization criterion : boundary conditions sensitivity (Thou-
less)

We have mentioned above that, although it is not the generic case in 1D, the Lyapunov exponent
may not provide a good measure of the localization properties. This occurs for example by
considering the Dirac equation with random mass(

iσ2 ∂x + σ1m(x)
)

Ψ(x) = εΨ(x) (II.95)

where Ψ(x) is a two-component spinor. In this case, it is well known that for 〈m(x)〉 = 0,
the Lyapunov vanishes at low energy as γ ∼ 1/ ln(g/|ε|), where g is the disorder strength with
m(x)m(x′)

c
= g δ(x − x′) (see [32] and the reviews [40, 42]). Hence, the Lyapunov exponent

does not provide a good measure of the localization properties (see the discussions in [116, 123]).
Is is possible to use a different localization criterion, which has been introduced by Thouless,

and corresponds to probe the boundary conditions sensitivity. It is frequently used in numerical
simulations by imposing the quantization condition ϕ(L) = ϕ(0) eiφ (this corresponds to consider
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the problem on a ring of perimeter L, threaded by a magnetic flux). If states do not depend on
the parameter φ (i.e. they do not feel the boundaries) they are localized. When φ-dependence
manifests, this corresponds to the crossover ξ ∼ L.

In analytical calculations, this is usually very difficult to implement, since this requires to
study deviations from translation invariance (effect of the boundaries). However, for the Dirac
equation with random mass, I have shown in [123] that the averaged density of states for the
problem for a finite length L presents the low energy behaviour

ρL(ε) = ρbulk(ε)D(L/ξε) with ξε ∼
1

g
ln2(g/|ε|) (II.96)

where the scaling function D(y) depends on the precise boundary conditions and presents the
behaviour D(y) ' 1 for y � 1. Its analytical expression was derived in [123] :

D(y) =
4√
π y3

∞∑
n=1

n2 e−n
2/y (II.97)

(here for Dirichlet boundary conditions). This analysis shows that the localization length scales
as ξε ∼ 1

g ln2(g/|ε|) for ε � g, i.e. is much larger than the scale provided by the Lyapunov

exponent 1/γ ∼ 1
g ln(g/|ε|).

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

y

D
Hy

L

HDL

HSL

Figure 10: Function D(y) (black curve with label ”S”). From [123].

II.E Self-averaging and non self-averaging quantities – Conductance distri-
bution

Importance of fluctuations.– The wave function fluctuations can play an important role.
We have seen above that ln |ψ(x)| is expected to have additive properties, hence to obey a
generalised central limit theorem. Precisely, if one introduces a Wiener process 10 W (x), we can
write

“ ln |ψ(x)| = γ1 x+
√
γ2W (x) ” . (II.98)

The presence of the quotation marks is here to remind that this representation only holds over
large scales x � `c, where `c is the correlation length, and neglect the rapid oscillations of the
wave function on short scale. 11 We have introduced

γ1
def
= lim

x→∞

ln |ψ(x)|
x

and γ2
def
= lim

x→∞

Var
(

ln |ψ(x)|
)

x
(II.99)

10 A Wiener processW (x) is a normalised Brownian motion, i.e. a Gaussian process characterised by 〈W (x)〉 = 0
and 〈W (x)W (x′)〉 = min(x, x′).

11 More rigorously we can follow the phase formalism : we perform the change of variable (ψ,ψ′) → (ξ, θ)
according to ψ = eξ sin θ and ψ′ = keξ cos θ. Considering the envelope eξ =

√
ψ2 + (ψ′/k)2 is a natural way to

eliminate the oscillations. We write more corretly ξ(x) = γ x+
√
γ2W (x) (although this relation is only true over

scale larger than the correlation length).
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where γ1 is a new notation for the Lyapunov exponent (denoted γ above). γ2 has been studied
in [105] for the model (II.51) (Fig. 11) and also for the Dirac equation with random mass.

The relative fluctuations of ln |ψ(x)| are negligible, however, when considering the wave
function ψ(x) itself, the fluctuations appear in the exponential and can therefore have a very
strong effect on physical quantities, like the local DoS [11]. For example they dominate the
moments of the wave function

〈|ψ(x)|q〉 ' exp

{(
qγ1 +

1

2
q2γ2 + · · ·

)
x

}
(II.100)

where in principle the expansion in the exponential continues (the full expansion involves the
cumulants γn of ln |ψ(x)|).
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Figure 11: The two cumulants of γ1 = limx→∞
1
x ln |ψ(x)| (red cross) and γ2 =

limx→∞
1
xVar

(
ln |ψ(x)|

)
(blue squares) for the model − d2

dx2
+ V (x) as a function of the energy.

Whereas γ1 ' γ2 for E � σ2/3, they strongly deviates at low energy γ1 � γ2 for −E � σ2/3.
From [105].

Single parameter scaling (SPS) hypothesis.– The analysis of the fluctuations have plaid
a very important role in the theory of disordered systems since the early steps of the scaling
theory. The most simple scaling hypothesis was assumed, i.e. a single parameter scaling theory
[1, 14]. This was to assume that the full distribution of random quantities (like the conductance)
is controlled by a single length scale, i.e. γ1 ' γ2 (note that this property is only asymptotically
correct, for E →∞, see the recent discussion in [119, 120]).

It was later realised that such an assumption only holds in the weak disorder regime/high
energy, whereas the study of the strong disorder/low energy regime requires a two parameter
scaling theory [37] (i.e. average and fluctuations are controlled by two different scales γ1 > γ2).

Distribution of the conductance/transmission probability.– If we consider the solution
of the initial value problem ψ(x), say ψ(0) = 1 and ψ′(0) = 0 for example, we can express the
dimensionless conductance (i.e. the transmission probability) of a long wire as

g ∼ |ψ(L)|−2 (II.101)

This relation is only true for long L� ξE . In principle the conductance involves a property of
the eigenstates (the scattering state) that is constructed by satisfying some appropriate matching
at the boundaries [15, 115], however over large scales, the wave function behaves exponentially
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and loose the memory of its initial condition. We immediatly deduce that ln g is distributed
according to a normal distribution :

PL(ln g) ' 1√
8πγ2L

exp

{
−(ln g + 2γ1L)2

8γ2L

}
, (II.102)

which tells us that the distribution of the conductance is log-normal

QL(g) =
1

g
PL(ln g) ∼ 1

g
exp

{
− 1

8γ2L
ln2 g

}
as g →∞ (II.103)

i.e. with extremely long tail. Note that we are here characterizing the typical fluctuations. The
distribution does not describe the large deviation for g → 0, not the rare events corresponding
to conducting disorder configurations (large g). The moments increase exponentially fast

〈gn〉 ' e2n(nγ2−γ1)L (II.104)

at large L (∀ E).
Moreover, assuming SPS, γ1 ' γ2, which occurs for energy�disorder [15, 115] (cf. Fig. 11),

leads to
〈gn〉 ' e2n(n−1)γ1L , (II.105)

with 〈g〉 ' 1. In particular the relation 〈gn〉1/n ' e2(n−1)γ1L shows that the moment of order n
characterises fluctuations exponentially larger than the moment of order n− 1.

Conclusion :

• g is not self averaging. Moments exponential in L are expected ; the n-th moment is
typically ∼ e(··· )n2L.

• 1
L ln g is self averaging.

Distribution of the LDoS.– Another case where the fluctuations play a crucial role is for
the statistical properties of the local DoS. Cf. chapter 6 of [121]

Further reading : Recent developments on the study of fluctuations can be found in Refs. [119,
120].

II.F Experiment with cold atoms

Anderson localisation is an interference effect, and thus requires coherence on a large scale.
In metals, Anderson localisation competes with interaction whose effect is twofold : first it

breaks phase coherence in the weak disorder regime, second it can induce localisation (Mott
transition) in the strong localisation regime.

In optics, Anderson localisation is difficult (but not impossible) to distinguish from absorp-
tion.

Recently, a beautiful observation of localisation of matter waves has been achieved in a cold
atom experiment. An atomic gas is trapped by a harmonic well (figure 12.a). A disordered po-
tential is superimposed, resulting from a speckle pattern (blue) together with a one-dimensional
confinment (pink). At some initial time the harmonic well is released (figure 12.b) : a fraction
of the gas remains localised by the disordered potential (green profile on figure b), exhibiting
exponential tails. This experiment is therefore a rather direct observation of exponential local-
isation of wave functions, Fig. 12.d, (although what is observed is not a wave function but a
density profile). The remarkable control on microscopic parameters in cold atom experiment
allows for a quantitative analysis.
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Figure 12: Strong localisation of cold atoms localised by the random potential resulting from a
Speckle pattern. From Ref. [29].

II.G The quasi-1D situation (multichannel case)

In practice, the strictly one-dimensional description may not be relevant, in particular in the
context of electronic transport. Most of the experiments on quantum wires deal with wires
with a large number of conducting channels Nc � 1 (metallic wires are equivalent, for
electronic waves, to optical waveguides for electromagnetic waves). Only few experimental
setup correspond to the 1D situation : conducting carbon nanotubes are effectively 1D with
4 degenerate channels, the cleaved edge overgrowth technique also allows to realise 1D devices
(spin degenerate) [46]. However, in these cases, the existence of interaction drastically affect the
electronic properties and the 1D electron liquid cannot be described like a Fermi liquid.

Some of the ideas introduced for the strictly 1D case can be extended to the multichannel
case : it is possible to develop a transfer matrix formalism, known as the DMPK formalism
[48, 96, 49]. An excellent review article is the one written by Beenakker [20] (also see the book
[95]). Assuming some maximal entropy principle (i.e. conducting channels are all mixed with
equal probability after an elementary slice of disorder medium) it is possible to obtain a spectrum
of Lyapunov exponents characterising the transfer matrix, which is linear in the index [20] :

γn '
1

αd`e

1 + β (n− 1)

2 + β (Nc − 1)
for n ∈ {1, · · · , Nc} (II.106)

where β ∈ {1, 2, 4} is the Dyson index 12 and `e the elastic mean free path. αd = Vd/Vd−1 is
a number of order 1 (Vd = πd/2/Γ(d/2 + 1) being the volume of the unit sphere). The smallest
Lyapunov exponent is interpreted as the inverse localisation length, which thus scales as

ξ ∼ Nc`e (II.107)

An interesting outcome of this analysis is the identification of a new regime that was not
present in the strictly 1D situation. Considering a wire of finite length L with a large number
of channels Nc � 1, there exists a room between the localised regime (L � ξ ∼ Nc`e) and

12 In random matrix theory, Dyson index corresponds to the symmetry of the problem : β = 1 corresponds to
a problem with TRS (time reversal symmetry). β = 2 in the presence of a strong magnetic field breaking TRS.
β = 4 when the disorder breaks the spin rotational symmetry (with TRS).
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the ballistic regime (`e � L) for a new regime : the diffusive regime (`e � L � ξ). This
regime will be the main subject of investigation of the chapter IV.

II.H The scaling analysis (towards higher dimension)

Having introduced the concept of multichannel disordered wires, we can jump towards the more
general situation and reallistic models describing higher dimensions. We consider a general
model of multichannel wire in 2D or 3D with transverse dimension W . This means that the
number of channels is Nc ∼ W d−1. This model can be a lattice model for example (isotropy
is not assumed like in DMPK models discussed previously, which describe the 1D case). The
(numerical) scaling analysis works as follows

• extract the ”localization length” ξW for width W (ξW is the inverse of the smallest Lya-
punov exponent)

• Extrapolate to get ξ∞, which represent a characteristic length scale for the disorder

• Perform a scaling analysis
ξW /W = f(ξ∞/W ) (II.108)

where the function f reveals the nature of the phase (localized or metallic).

• Localization criterion of the scaling approach : study the growth/decay of the
conductance g(L) with L for a square sample L = W . If g(L) grows with L, the sample is
in the metallic phase and if g(L) decays, the sample is in the insulating phase.

• The connection with the provious analysis is made by noticing that the log of the conduc-
tance of the multichannel wire is ln g(L) = −2L/ξW .

• f(x)↗ corresponds to the insulating phase

• f(x)↘ corresponds to the metallic phase

• In the metallic phase, ξ∞ is a correlation length (by dimensional analysis, it is related to

the conductivity in 3D as σ ∼ e2

~ ξ∞). In the localized phase, ξ∞ is the loclisation length

The figure 13 shows the difference between 2D and 3D wires : the former are in a localised
phase, while the latter can be either localized or metallic (existence of a localization transition).
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Figure 13: The scaling function f of Eq. (II.108) in 2D (left) and 3D (right). In this latter case,
the exsitence of two branches is related to the Anderson (localization) transition, which does not
occur in 2D. From [90].

Further reading

� The review by Ishii [72].

� Localisation and spectral properties of 1D disordered discrete models are described in the
pedagogical book of J.-M. Luck [88].

� The book of Crisanti, Paladin and Vulpiani [43] provides a nice overview on random matrix
products and the connection with Anderson localization.

� More diverse but less pedagogical reference is the book by Lifshits, Gredeskul & Pastur [87].

� The reader interested in mathematical aspects can have a look on Bougerol, Carmona &
Lacroix’ monographs [33, 35].

� A recent review on Lyapunov exponent for 1D localisation is [42].

� For the study of the multichannel disordered wires : the pedagogical review of Beenakker [20]
or the more complete book of Mello & Kumar [95].

� A nice little review article on multichannel disordered wires in the presence of interaction is
the (unpublished paper) [97].

� On the scaling approahc, see the nice review of Kramer and MacKinnon [81].
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Appendix : Langevin equation and Fokker-Planck equation

a) Preliminary : Gaussian white noise and Wiener process

We introduce a normalised Gaussian white noise η(t), distributed according to the measure

P [η] = exp

{
−1

2

∫
dt η(t)2

}
, (II.109)

i.e. such that 〈η(t)〉 = 0 and 〈η(t)η(t′)〉 = δ(t− t′). The solution of the differential equation

dW (t)

dt
= η(t) (II.110)

with initial condition W (0) = 0 is a Wiener process. It is obvious that W (t) =
∫ t

0 dt′ η(t′) is a
Gaussian process, characterised by the correlation function〈

W (t)W (t′)
〉

= min
(
t, t′
)
. (II.111)

Rescaling the time : let us consider the mapping t = f(u), where f is a function increasing
monotenously. We have 〈

η(f(u)) η(f(u′))
〉

=
δ(u− u′)
f ′(u)

(II.112)

what we rewrite under the form of an “equality in law”

η(f(u))
(law)
=

η(u)√
f ′(u)

(II.113)

meaning that the two sides of the equation have the same statistical properties (they are both
Gaussian and have the same two point correlation function).

As a trivial example we choose f(t) = α t, where α is a positive number

η(α t)
(law)
=

1√
α
η(t) ⇒ W (α t)

(law)
=
√
αW (t) , (II.114)

which is the usual scaling property of the Brownian motion.

b) Stochastic differential equation and Fokker-Planck equation

We recall some basic tools for homogeneous random process (process with no jumps). Consider
the stochastic differential equation (SDE) 13

d

dt
x(t) = F(x(t)) +B(x(t)) η(t) , (II.115)

interpreted within the Stratonovich convention. F(x) is a force (drift) and B(x) =
√

2D(x)
describes an inhomogeneous diffusion constant. The SDE is related to the Fokker Planck equa-
tion

∂

∂t
P (x; t) = G †P (x; t) where G =

1

2
B(x)∂xB(x)∂x + F(x)∂x (II.116)

is the generator of the diffusion, i.e. the backward generator, adjoint of the forward generator
G † = 1

2∂xB(x)∂xB(x) − ∂xF(x). The Fokker-Planck equation may be written under the form
of a conservation equation

∂

∂t
P (x; t) = − ∂

∂x
J(x; t) where J(x; t) =

[
F(x)− 1

2
B(x)∂xB(x)

]
P (x; t) (II.117)

13 which Mathematicians prefer to write dx(t) = F(x(t)) dt+B(x(t)) dW (t).
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is the current density (in 1D, current density is a current).
Generalization to higher dimensions is rather natural ; it may be found in standard mono-

graphs like [65]. Consider the set of SDEs

d

dt
xi(t) = Fi(~x(t)) +Bij(~x(t)) ηj(t) (II.118)

with implicit summation over repeated indices. ηi’s are identical and independent noises 〈ηi(t)ηj(t′)〉 =
δijδ(t− t′). The generator of the diffusion is now

G =
1

2
Bik∂iBjk∂j + Fi∂i , (II.119)

where ∂i ≡ ∂/∂xi.

c) The case of a constant diffusion constant

Let us focus on the simpler case where the diffusion constant is uniform in space : B(x)2 = 2D.
In 1D, the drift (the force) can always be written as the derivative of a potential : F(x) = −U ′(x).
In this case it is useful to write

G † = D
d2

dx2
+

d

dx
U ′(x) = D

d

dx
e−

1
D
U(x) d

dx
e

1
D
U(x) (II.120)

Stationary state.– This form of the generator immediatly allows to find the solution of
G †P (x) = 0, i.e. the stationary state. Three possibilities :

1. The solution
Peq(x) = C e−

1
D
U(x) (II.121)

is normalisatble. This describes an equilibrium state.

2. Peq(x) is non normalisable, however the solution with finite current

PJ(x) = − J
D

e−
1
D
U(x)

∫ x

dx′ e
1
D
U(x′) (II.122)

is normalisable, now describing an out-of-equilibrium stationary state.

3. If none of the solutions is normalisable, the problem considered simply does not have a
stationary state.

Examples :

1. Ornstein-Uhlenbeck process.– For F(x) = −2k x, the equilibrium solution Peq(x) = C e−
k
D
x2

is normalisable.

2. For F(x) = F0− x2, the potential is unbounded from below U(x) = −F0 x+ 1
3x

3, however
the stationary distribution PJ(x) is normalisable.

3. Brownian motion.– For F(x) = 0, none of the two solutions Peq(x) and PJ(x) is normal-
isable and there exist no stationary state.
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- Exercice II.11 Mapping between the Wiener and Ornstein-Uhlenbeck processes :
Consider a Wiener process, described by the SDE d

dtx(t) = η(t), where η(t) is a Gaussian white
noise. Check that the transformation

τ = ln t (II.123)

y(τ) =
x(t)√
t

(II.124)

maps the Wiener process onto the Ornstein-Ulhenbeck process

d

dτ
y(τ) = −1

2
y(τ) + η(τ) . (II.125)
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Problem : Weak disorder expansion in 1D lattice models and band center
anomaly

Let us consider the 1D Anderson (tight binding) model

−t ψn+1 + Vn ψn − t ψn−1 = εψn (II.126)

where t is the coupling between nearest neighbouring sites and Vn a random potential.
In the absence of potential, eigenstates are plane waves ψn = eikn of energy εk = −2t cos k,

where the (dimensionless) wavevector belongs to the Brillouin zone k ∈ [−π, π]. Plane waves
are characterised by the following density of states and Lyapunov exponent :

ρ0(ε) =
1

π
√

(2t)2 − ε2
⇒ N0(ε) =

1

2
− 1

π
arccos(ε/2t) (II.127)

γ0(ε) = argcosh|ε/2t| (II.128)

1/ Recover rapidly these properties. Check that γ0(ε) and N0(ε) are real and imaginary part of
an analytic function of ε.

A natural question is the search for weak disorder expansions of the density of states and
the Lyapunov exponent under the form of a weak disorder expansion (perturbative like). For
uncorrelated site potentials, VnVm ∝ δn,m, with finite moments, Vn = 0, V 2

n < ∞, etc, one
finds [47, 88]

N(ε) = N0(ε)− V 3
n

24π3t3 sin3 k
+O(V 5

n ) (II.129)

γ(ε) =
V 2
n

8t2 sin2 k
+O(V 4

n ) (II.130)

where k parametrizes the energy ε = −2t cos k.

2/ Plot the qualitative ρ(ε) and γ(ε) expected from these formulae (with the one corresponding
to Vn = 0).

It was however observed, numerically by Czycholl, Kramer & MacKinnon [44], and by Kappus
and Wegner [78], that these formulae fail to describe accuratly the band center properties (ε→ 0,
i.e. k → π/2). This is at first sight surprising : although it is clear that the expansion has some
problem at the band egdes, k → 0 ou π, where disorder is non perturbative, this seems not to
be the case in the band center. Inspection of the full series however shows that it breaks down
at the band center. It was shown by Derrida and Gardner [47] that the correct weak disorder
expansion is

γ(ε) =

(
Γ(3/4)

Γ(1/4)

)2 V 2
n

t2
+O(ε) (II.131)

showing a small difference with the previous expansion, 0.125 vs 0.114... This phenomenon,
denoted the “band center anomaly” (or “Kappus Wegner anomaly”), is a lattice effect due
to commensurability. In order to clarify this, we now develop a continuous model. This is
conveniently done by Fourier transforming the difference equation (II.126).

ψ̃(k) =
∑
n

ψn e−ikn (II.132)

ψn =

∫ +π

−π

dk

2π
ψ̃(k) eikn (II.133)
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(we recall the Poisson formula
∑

n eikn = 2π
∑

n δ(k − 2πn)).

3/ Rewrite the Schrödinger equation in Fourier space.

4/ We write Vn = A0(na) + (−1)nm(na) where a is the lattice spacing ; A0(x) and m(x) are
two smooth functions. Discuss the qualitative structure of the Fourier transform Ṽ (k). The
low energy properties of the model involves the Fourier components of the wave function at
k ∼ ±π/2. Argue that only the potential’s Fourier components |q| � 1 and |π ± q| � 1 are of
importance in this case.

5/ For |κ| � 1, we introduce

ψ̃(π/2 + κ) = ϕ̃(κ) (II.134)

ψ̃(−π/2 + κ) = χ̃(κ) (II.135)

Show that the ϕ̃(κ) and χ̃(κ) obeys two coupled equations. Going back to real space, deduce
that the low energy properties of the Anderson model are described by the Dirac equation

HD Ψ(x) = εΨ(x) for HD = −iσ3 v0 ∂x + σ1m(x) +A0(x) (II.136)

where Ψ = (ϕ, χ). At the light of this result, can you explain the breakdown of the weak disorder
expansion at the band center ?

6/ The large scale (low energy) properties of the model are conveniently described by considering
white noises :

A0(x)A0(x′)
c

= g0 δ(x− x′) (II.137)

m(x)m(x′)
c

= gπ δ(x− x′) (II.138)

(II.139)

The zero energy Lyapunov exponent has been computed exactly in this case [39, 105] and is
given by elliptic integrals (now v0 = 1)

γ(0) = gπ

[
1

ξ2

(
E(ξ)

K(ξ)
− 1

)
+ 1

]
with ξ =

1√
1 + g0/gπ

(II.140)

What is the value of g0/gπ describing the case originally studied of uncorrelated site potentials
VnVm ∝ δn,m ? How can one make the small anomaly large ?

Appendix : we recall few properties of the Elliptic integrals

K(k) =

∫ π/2

0

dt√
1− k2 sin2 t

(II.141)

E(k) =

∫ π/2

0
dt
√

1− k2 sin2 t (II.142)

For k → 1− we have (setting k′ =
√

1− k2)

K(k) = ln(4/k′) +O(k′
2

ln k′) (II.143)

E(k) = 1 +
1

2
k′

2[
ln(4/k′)− 1/2

]
+O(k′

4
ln(1/k′)) (II.144)

We give

2
E(1/

√
2)

K(1/
√

2)
− 1 =

(
2Γ(3/4)

Γ(1/4)

)2

(II.145)
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Master iCFP - Wave in random media February 18, 2021

TD 2 : Localisation for the random Kronig-Penney model – Con-
centration expansion and Lifshitz tail

The aim of the problem is to study a 1D disordered model introduced by Frisch and Lloyd in
Ref. [60]. This model is a random version of the Kronig-Penney model

H = − d2

dx2
+
∑
n

vn δ(x− xn) . (II.146)

Impurity positions xn’s are distributed identically and independently for a uniform mean density
ρ. We consider the case where the weights vn’s are also independent random variables. 14 We
prove the Anderson localisation of eigenstates and analyse the low energy density of states.

1/ The positions are ordered as x0 = 0 < x1 < x2 < · · · < xn < · · · Denoting by `n =
xn+1 − xn > 0 the distance between consecutive impurities, recall the distribution of these
lengths.

2/ Riccati.– We denote by ψ(x;E) the solution of the initial value problem Hψ(x;E) =
E ψ(x;E) with ψ(0;E) = 0 and ψ′(0;E) = 1. Derive the stochastic differential equation con-

trolling the evolution of the Riccati variable z(x)
def
= ψ′(x;E)/ψ(x;E).

3/ Describe the effect of the random potential on its dynamics (i.e. relate z(x+
n ) to z(x−n )).

4/ We denote by f(z;x) = 〈δ(z − z(x))〉 the probability distribution of the random process.
Show that the distribution of the Riccati variable obeys the integro-differential equation

∂xf(z;x) = ∂z
[
(E + z2)f(z;x)

]
+ ρ 〈f(z − v;x)− f(z;x)〉v (II.147)

where 〈· · ·〉v denotes averaging over the random weights vn’s.

Hint : analyse the effects of the two terms of the SDE in order to relate f(z;x+ dx) to f(z′;x).

5/ Probability current and stationary distribution.– Rewrite (II.147) under the form of
a conservation equation ∂xf(z;x) = −∂zJ(z;x), where J(z;x) is the probability current density.
We have seen that the disribution reaches a stationary distribution f(z;x) −→

x→∞
f(z) for a

steady current J(z;x) −→
x→∞

−N , related to the Integrated density of states per unit length of

the disordered Hamiltonian. Show that the stationary distribution obeys the integral equation

N(E) = (E + z2)f(z)− ρ
〈∫ z

z−v
dz′ f(z′)

〉
v

. (II.148)

What is the condition on the weights vn for having a non vanishing density of states for E < 0 ?

6/ High density limit.– We consider the case 〈vn〉 = 0. Discuss the limit ρ → ∞ and vn → 0
with σ = ρ

〈
v2
n

〉
fixed (no calculation).

7/ Small concentration expansion.– We now discuss the opposite limit when ρ� vn. We search
for the solution of the integro-differential equation under the form of an expansion f(z) =

14 Note that Frisch and Lloyd considered the case of random positions and fixed weights. The case of non
random positions (on a lattice) and fixed weights was considered earlier by Schmidt in [109]. The case of random
positions and random weights was also considered in several papers, e.g. by Nieuwenhuizen [99].
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f (0)(z) + f (1)(z) + f (2)(z) + · · · where f (n) = O(ρn). Accordingly the density of states presents
a similar expansion N = N (0) +N (1) + · · · We recall that the Lyapunov exponent is given by

γ = −
∫
R

dz z f(z) where −
∫
R

dz h(z)
def
= lim

R→+∞

∫ +R

−R
dz h(z) =

∫
R

dz
h(z) + h(−z)

2
(II.149)

a) Compute f (1) and deduce that the Lyapunov exponent at lowest order in ρ is

γ =
ρ

2

〈
ln

[
1 +

(vn
2k

)2
]〉

vn

+O(ρ2) (II.150)

Hint : We give the integral∫
R

dt
t

t2 + 1
(arctan(t)− arctan(t− x)) =

π

2
ln
(

1 + (x/2)2
)
, (II.151)

which could be computed by writing arctan(t) = 1
2i ln

(
i−t
i+t

)
and using the Residue’s theorem.

b) Study the limiting cases, setting E = k2 :
(i) High energy limit k � vn, ρ.
(ii) Intermediate energy range, vn � k � ρ.
(iii) The concentration expansion breaks down at k ∼ ρ. What is the estimate for the saturation
value at E = 0 ?

8/ Lifshits tail.– For positive weights vn, the sectrum is in R+. An approximation for the low
energy IDoS can be obtained as follows. In the limit vn → ∞ the intervals between impurities
are disconnected. We introduce the IDoS N (E; `) =

∑∞
n=1 θH(E − (nπ/`)2) for the interval

of length `. Shows that the IDoS per unit length of the disordered Hamiltonian is given by
N(E) ' ρ 〈N (E; `)〉` for ρ → 0. Deduce an explicit form for N(E) and analyse the low energy
behaviour E � ρ2.

Further reading : This analysis was performed in our article with Tom Bienaimé, Ref. [28].
More information about the concentration expansion and be found in the book of Lishits, Gre-
deskul and Pastur [87].
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TD 2 bis : Thouless relation

We demonstrate a relation between the Lyapunov exponent (i.e. the localisation) and the density
of states. This relation relies on the existence of an analytic function encoding both informations.

A. Discrete tight binding model.– We study the Schödinger equation on a regular 1D
lattice :

−ψn+1 + Vn ψn − ψn−1 = εψn (II.152)

We first consider the problem on N sites n ∈ {1, · · · , N} and impose the boundary conditions
ψ0 = ψN+1 = 0 (the quantification equation) resulting in the spectrum of N eigenvalues {εα}.

1/ We denote by Ψn(ε) the solution of the initial value problem Eq. (II.152) with Ψ0(ε) = 0
and Ψ1(ε) = 1. Argue that ΨN+1(ε) is the polynomial of degree N

ΨN+1(ε) =
N∏
α=1

(εα − ε) . (II.153)

2/ Thouless relation.– We define the density of states per site, which is a continuous function
in the limit N →∞, and the Lyapunov exponent

ρ(ε)
def
= lim

N→∞

1

N

N∑
α=1

δ(ε− εα) and γ(ε)
def
= lim

N→∞

ln |ΨN+1(ε)|
N

. (II.154)

Deduce the relation

γ(ε) =

∫
dε′ ρ(ε′) ln |ε′ − ε| (II.155)

3/ Complex Lyapunov exponent (characteristic function).– We consider the analytic
function

Ω(ε)
def
= lim

N→∞

ln ΨN+1(ε)

N
for ε ∈ C . (II.156)

Discuss its analytic properties. Show that the Lyapunov exponent and the density of states are
related to the real and imaginary parts of Ω(ε) on the real axis. What is the relation of this
observation with the Thouless relation ?

Hint : we recall limη→0± ln(x+ iη) = ln |x| ± iπ θH(−x).

4/ As a first (trivial) application of the concept of complex Lyapunov exponent, we consider the
free problem (Vn = 0).

a) What is the spectrum of the Schrödinger equation (II.152) in this case ?

b) We consider an energy ε = −2 cosh q < −2. Find Ψn(ε) and deduce Ω(ε).

c) By an analytic continuation, deduce the spectral density ρ(ε). Plot on the same graph the
Lyapunov exponent γ(ε) and the spectral density ρ(ε).

Hint :
argcosh(x) = ln(x+

√
x2 − 1) for x ∈ R+ and arcsin(x) = −i ln(ix+

√
1− x2) for x ∈ [−1,+1].

d) In the presence of a weak disordered potential, what behaviours do you expect for ρ(ε) and
γ(ε) ?
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B. Continuous model.– In this part we consider the continuous model(
− d2

dx2
+ V (x)

)
ϕ(x) = E ϕ(x) (II.157)

where V (x) is a Gaussian white noise of zero mean with 〈V (x)V (x′)〉 = σ δ(x− x′). We denote
by ψ(x;E) the solution of the Cauchy problem satisfying ψ(0;E) and ψ′(0;E) = 1, where
′ ≡ ∂x. We will make use of the concept of complex Lyapunov exponent in order to get analytic
expressions for the Lyapunov exponent and the spectral density.

Riccati analysis.– The Riccati variable z(x;E)
def
= ψ′(x;E)/ψ(x;E) obeys the Langevin equa-

tion z′ = −E − z2 + V (x). The probability current of the Riccati variable through R coincides
with the integrated density of states (IDoS) per unit length N(E). It solves(

σ

2

d

dz
+ E + z2

)
f(z; ) = N(E) (II.158)

where f(z;E) is the (normalised) probability density for the stationary process z(x;E).

1/ Using only the definition of z(x;E), show that its average 〈z〉 coincides with the Lyapunov
exponent

γ(E) = lim
x→∞

ln |ψ(x;E)|
x

. (II.159)

2/ We consider the Fourier transform of the distribution

f̂(q;E) =

∫
dz e−iqz f(z;E) (II.160)

Argue that Im[f̂ ′(0+;E)] = −γ(E). Fourier transforming Eq. (II.158), show that Re[f̂ ′(0+;E)] =
−Re[f̂ ′(0−;E)] = πN(E). Deduce the relation between f̂ ′(0+;E) and the complex Lyapunov
exponent

Ω(E) = γ(E)− iπN(E) . (II.161)

3/ Justify that f̂(0;E) = 1 and that f̂(q;E) decays at infinity. Show that the solution on R+∗

vanishing at infinity is f̂(q;E) = C
[
Ai(−E − iq)− i Bi(−E − iq)

]
(for σ/2 = 1).

4/ Recover the asymptotic behaviours for the Lyapunov exponent and the low energy density
of states.

Appendix :

Airy equation f ′′(z) = z f(z) admits two independent real solutions Ai and Bi with asymptotic
behaviours Ai(z) ' 1√

π (−z)1/4 cos
[

2
3(−z)3/2 − π

4

]
and Bi(z) ' −1√

π (−z)1/4 sin
[

2
3(−z)3/2 − π

4

]
for

z → −∞, and Ai(z) ' 1
2
√
π z1/4

exp
[
− 2

3z
3/2
]

and Bi(z) ' 1
2
√
π z1/4

exp
[

2
3z

3/2
]

for z → +∞.

The Wronskian of the two Airy functions is W [Ai,Bi] = Ai Bi′ −Ai′Bi = 1/π.

Further reading : • J.-M. Luck, Systèmes désordonnés unidimensionnels, coll. Aléa Saclay, (1992).
• The Thouless relation was introduced in : D. J. Thouless, A relation between the density of states and
range of localization for one-dimensional random systems, J. Phys. C: Solid St. Phys. 5, 77 (1972).
• Exact calculation of N(E) for the continuous model has been performed in : B. I. Halperin, Green’s
Functions for a Particle in a One-Dimensional Random Potential, Phys. Rev. 139(1A), A104–A117
(1965).

• The interest of the method we have exposed here is to relate the determination of the complex Lya-

punov exponent to the resolution of a differential equation. This has been recently exploited for a more

general class of models in : A. Grabsch, C. Texier and Y. Tourigny, One-dimensional disordered quantum

mechanics and Sinai diffusion with random absorbers, J. Stat. Phys. 155(2), 237–276 (2014).
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TD 2 ter : 1D Anderson localisation – Conductance of a 1D wire
(Landauer approach)

We analyse the problem of localisation of an electron in one dimension from the viewpoint of
the electronic transport properties within the Landauer approach.

A. Landauer formula.– We consider the Schrödinger equation on R for a potential V (x)
defined on an interval [xL, xR] (and zero outside the interval). The Landauer formula provides
an expression of the electric conductance (inverse of the electric resistance) in terms of the
scattering properties. In a first step we analyse the scattering problem in one dimension. For
each energy E, the Schrödinger equation

− ~2

2m

∂2ψ(x)

∂x2
+ V (x)ψ(x) = E ψ(x) (II.162)

has two independent solutions. Several basis are possible. We choose the pair of eigenstates
describing the particle incoming from the left or from the right. On ]−∞, xL] ∪ [xR,+∞[, the
two eigenfunctions are superposition of plane waves :

ψE,L(x) =
1√
h vE

{
e+ikE(x−xL) + r e−ikE(x−xL) for x < xL

t e+ikE(x−xR) for x > xR
(II.163)

and

ψE,R(x) =
1√
h vE

{
t′ e−ikE(x−xL) for x < xL

e−ikE(x−xR) + r′ e+ikE(x−xR) for x > xR
(II.164)

where E = 1
2mv

2
E =

~2k2E
2m and (r, t) and (r′, t′) are two sets of reflexion and transmission

probability amplitudes.

1/ Normalisation.— For V (x) = 0, check that the normalisation factor ensures the orthonor-
malisation

〈ψE,α |ψE′,β 〉 = δα,β δ(E − E′) and
∑
α

∫ ∞
0

dE |ψE,α 〉〈ψE,α | = 1 (II.165)

with α, β ∈ {L, R} (for a proof for V 6= 0, cf. chapter 10 of [Texier, ’15], footnote of pb. 10.1
p. 206).

2/ Probability currents.

a) If one considers a set of independent solutions ψ1 and ψ2 of (II.162), show that the Wronskian

W[ψ1, ψ2]
def
= ψ1

dψ2

dx −
dψ1

dx ψ2 is constant ∀x.

b) Applying this observation to (II.163,II.164), deduce t = t′.

c) Compute the probability currents Jα(E)
def
= ~

m Im
[
ψ∗α(x)dψα(x)

dx

]
with α ∈ {L, R} (argue that

Jα(E) is constant).

3/ Electric current.— We now consider the situation where a voltage bias V is imposed on the
wire. The Landauer’s prescription corresponds to assume that the occupations of the eigenstates
ψE,L(x) and ψE,R(x) are described by two different Fermi functions

fL,R(E) = f(E − µL,R) where f(E) =
1

eβE + 1
, (II.166)
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where µL and µR are the chemical potentials at −∞ and +∞, respectively. Deduce the expres-
sion of the electric current I(V ) in the wire, where eV = µL − µR.

4/ Landauer formula.— We consider the linear regime V → 0. The current can then be
written as I(V ) ' GV where G is the electric conductance.

a) In the zero temperature limit, show that

G =
2se

2

h
T (εF ) where T (εF ) = |t|2 (II.167)

is the transmission probability at Fermi energy and 2s the spin degeneracy. This remarkable
formula (first written under this form by Fisher & Lee, Phys. Rev. B, 1981) establishes a
connection between a property of the quantum scattering problem, the probability T , and some
measurable quantity.

b) In the absence of the potential, T = 1 and the electric conductance is e2/h per spin channel.
The electric resistance of such a “perfect” 1D wire is given by the von Klitzing constant RK =
h/(2se

2). Compute its numerical value. Could you propose an explanation for the origin of this
resistance (difficult question) ?

c) Derive a formula for the conductance at finite temperature.

B. Application for the disordered 1D wire.— We now consider the situation where the
potential V (x) is a disordered potential, defined on the interval [0, L] (and zero elsewhere).

1/ Localisation length.— In the lecture, we have defined the localisation length by studying
the behaviour of the solution of the initial value (Cauchy) problem, i.e. the solution of (II.162)
for ψCauchy(0) = 0 and ψ′Cauchy(0) = 1. Argue that, in the “large” L limit, the transmission
probability is given by

g ≡ T ∼ |ψCauchy(L)|−2 (II.168)

(from now on, we prefer to use the notation g for the “dimensionless conductance”). Propose a
definition of the localisation length ξloc from the conductance.

2/ Distribution of the conductance.— In the lecture, the transfer matrix formulation
has led to the conclusion that ln |ψCauchy(x)| =

∫ x
0 dt z(t), where z(x) is the Riccati variable,

can be considered as a Brownian motion over large scale, 15 thus 〈ln |ψCauchy(x)|〉 ' γ1x and
Var
(

ln |ψCauchy(x)|
)
' γ2x for x� `c ; γ1 is the Lyapunov exponent. Deduce the distribution of

the dimensionless conductance. Derive its positive moments 〈gn〉. Simplify the moments when
“single parameter scaling” relation γ1 ' γ2 holds (at energy�disorder). For a given sample,
what is the self average quantity ?

C. β-function— We derive the central quantity the scaling approach of localisation. We still
consider the situation where the random potential is defined on the interval [0, L] and vanishes
outside the interval.

1/ In order to deal with the conductance characterizing the scattering by the randomness, we
substract the resistance in the presence and in the absence of the potential. Show that this gives
a new formula for the conductance

g̃ =
T

1− T
(II.169)

called the “four-terminal” conductance. What behaviour do you expect in the two limits of
perfect and highly disordered wire (qualitatively).

15because z(x) has a stationary distribution and is characterised by a finite correlation length `c.
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2/ Assuming the form T ∼ exp[−2L/ξloc], deduce the β-function

β(g̃)
def
=

d ln g̃

d lnL
(II.170)

(show that it is a universal function of g̃ only). Plot neatly this function and interpret its limiting
behaviours.

3/ The form T ∼ exp[−2L/ξloc] is in fact incorrect as it neglects the fluctuations ! At the light
of the results of the part B, do you think that the argument of the β-function should be ln 〈g̃〉
or 〈ln g̃〉 in practice ?

Further reading :

• A general discussion of the scattering of a quantum particle in one-dimension can be found in the
chapter 10 of :
[Texier, ’15] Christophe Texier, Mécanique quantique, 2nd edition, Dunod, 2015.
and also in (oriented for random matrices) :
[Mello & Kumar, ’04] P. A. Mello and N. Kumar, Quantum transport in mesoscopic systems – Complexity
and statistical fluctuations, Oxford University Press, 2004.

• For the history of the Landauer formula, chapter 1 of :
[Texier, ’10] Christophe Texier, Désordre, localisation et interaction – Transport quantique dans les
réseaux métalliques, thèse d’habilitation à diriger des recherches de l’Université Paris-Sud, 2010. http:

//tel.archives-ouvertes.fr/tel-01091550

• About the distribution of the conductance, cf. chapter 6 of [Texier, ’10] (for references and a simple
discussion within the picture presented here).

• The function γ2 characterising the fluctuations of ln |ψCauchy(x)| has been recently studied for different
models in :
Kabir Ramola & Christophe Texier, Fluctuations of random matrix products and 1D Dirac equation with
random mass, J. Stat. Phys. 157(3), 497–514 (2014). preprint cond-mat arXiv:1402.6943.

For a rigorous proof of Eq. (II.168) : cf. the (longer) online version of the exercices, at
http://lptms.u-psud.fr/christophe_texier/enseignements/

enseignements-en-master/onde-en-milieu-desordonne/
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Appendix : Transfer matrices and a rigorous proof of Eq. (II.168)

We prove rigorously Eq. (II.168). Several methods are possible. Here we use the concept of
transfer matrix : this will require a little bit more work however this is quite instructive.

We study the Schrödinger equation

−ψ′′(x) + V (x)ψ(x) = k2ψ(x) (II.171)

where we have set ~2/(2m) = 1 and E = k2.

A. Cauchy problem and phase formalism

We consider first the solution of (II.171) for x ∈ R+. In order to extract the spectral and
localisation informations from the initial value (Cauchy) problem, ψ(0) = 0 and ψ′(0) = k, we
parametrize the solution as ψ(x) = eξ(x) sin θ(x) and ψ′(x) = keξ(x) cos θ(x).

1/ Show that θ(x) and ξ(x) obey the coupled first order differential equations{
dθ(x)

dx = k − V (x)
k sin2 θ

dξ(x)
dx = V (x)

2k sin(2θ)
(II.172)

What are the initial conditions for these two functions ?

2/ We assume 〈V (x)〉 = 0, where 〈· · ·〉 denotes averaging over the disorder. In the high energy
domain (energy�disorder), it is possible to average over the fast variable (the phase θ) and
obtain an equation for the envolpe exp ξ(x) of the wave function (the slow variable) only :

dξ(x)

dx
' γ +

√
γ η(x) (II.173)

where η(x) is a normalised Gaussian white noise, 〈η(x)η(x′)〉 = δ(x− x′), and γ the Lyapunov
exponent [Antsygina et al, ’81]

γ ' 1

8k2

∫
d(x− x′)

〈
V (x)V (x′)

〉
cos 2k(x− x′) . (II.174)

Deduce the statistical properties of ξ(x).

B. Transfer matrices and the group SU(1, 1)

For an arbitrary potential (disordered or not), the evolution of the wave function can be conve-
niently studied thanks to transfer matrices. Several formulations are available, involving different
groups of matrices, SL(2,R), U(1, 1) or SO(2, 1). The formulation most suitable to analyse the
scattering problem is to gather the four reflection and transmission coefficients in the transfer
matrix

T =

(
1/t∗ r′/t′

−r/t′ 1/t′

)
∈ U(1, 1) (II.175)

characterizing the effect of the potential V (x) in [x1, x2]. Precisely(
C
D

)
= T

(
A
B

)
where ψ(x) =

{
A eik(x−x1) +Be−ik(x−x1) for x < x1

C eik(x−x2) +De−ik(x−x2) for x > x2

(II.176)

1/ Check the following properties :

51



• The two transfer matrices T1 and T2 describing two adjacent intervals obey the simple
composition rule

T1⊕2 = T2 T1 . (II.177)

• detT = t/t′ (note that r′/t′ = −(r/t)∗ follows from unitarity of the evolution, i.e. current
conservation).

• T conserves the norm X†σzX = |x|2 − |y|2 where XT = (x, y).

2/ From the two last properties, we conclude that T is a parametrisation of the group U(1, 1).
How many independent parameters parametrize this group ? In the strictly 1D case, one has
t = t′ and thus T ∈ SU(1, 1).

3/ Polar representation.— We may write the transfer matrix under the form

T =

(
ei(α+β)/2 0

0 e−i(α+β)/2

)(
cosh ξ sinh ξ
sinh ξ cosh ξ

)(
ei(α−β)/2 0

0 e−i(α−β)/2

)
(II.178)

=

(
eiα cosh ξ eiβ sinh ξ
e−iβ sinh ξ e−iα cosh ξ

)
(II.179)

Check that the transmission and reflection amplitudes are related to the three parameters as

t = t′ = eiα 1

cosh ξ
, r = −ei(α−β) tanh ξ and r′ = ei(α+β) tanh ξ . (II.180)

C. Transfer matrix formulation of the scattering problem on R

We derive a differential equation for the transfer matrix when the potential is defined on [0, L]
(and vanishes outside the interval). The starting point is to consider the left scattering state
[we drop the normalisation factor of Eq. (II.163)]

ψL,k(x) =

{
eikx + r e−ikx for x < 0

t eik(x−L) for x > L
(II.181)

1/ Verify that it obeys the Lippmann-Schwinger integral equation

ψL,k(x) = e+ikx +

∫ L

0
dx′GR(x, x′; k2)V (x′)ψL,k(x

′) for GR(x, x′; k2) =
1

2ik
eik|x−x′| (II.182)

where

GR(x, x′; k2)
def
= 〈x | 1

k2 −H0 + i0+
|x′ 〉 =

1

2ik
eik|x−x′| (II.183)

is the free retarded Green’s function, H0 = −∂2
x.

2/ Perturbation.— In the perturbative regime (L→ 0), check that

t ' eikL

(
1 +

1

2ik

∫ L

0
dx′ V (x′)

)
and r ' 1

2ik

∫ L

0
dx′ V (x′) e2ikx′ (II.184)

Similarly, one could obtain the third coefficient

r′ ' e2ikL

2ik

∫ L

0
dx′ V (x′) e−2ikx′ (II.185)
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3/ Deduce that a tiny interval L→ 0 is characterized by the transfer matrix : 16

T[0,L] ' 12 +

(
ikL− iLV (0)

2k − iLV (0)
2k

iLV (0)
2k −ikL+ iLV (0)

2k

)
(II.187)

where σi are the Pauli matrices.

4/ Deduce the evolution equation for the transfer matrix

T (x+ δx) ' T[x,x+δx] × T (x) (II.188)

Hence

d

dx
T (x) =

[
V (x)

2k
σy + i

(
k − V (x)

2k

)
σz

]
T (x) with initial condition T (0) = 12 .

(II.189)
5/ Check that the three parameters of the polar representation obey the coupled differential
equations :

dα

dx
= k − V (x)

2k
(1 + cos(α+ β) tanh ξ) (II.190)

dβ

dx
= k − V (x)

2k

(
1 +

cos(α+ β)

tanh ξ

)
(II.191)

dξ

dx
= −V (x)

2k
sin(α+ β) (II.192)

D. Application for the random potential

Thus we can find two coupled equations for α+ β and ξ (i.e. for the phase and modulus of the

reflection coefficient alone). We define θ
def
= α+β+π

2 . We get the equations

dθ

dx
= k − V (x)

2k

[
1− cos(2θ)

tanh(2ξ)

]
(II.193)

dξ

dx
=
V (x)

2k
sin(2θ) (II.194)

(we do not consider the equation for α− β). Conclude about Eq. (II.168).

Further reading :

• Green’s function in quantum mechanics : appendix of chapter 10 of [Texier, ’15].

• Transfer matrices (generalities) :
cf. chapters 5 and 10 of [Texier, ’15], and in particular exercice 5.2.
[Mello & Kumar, ’04] P. A. Mello and N. Kumar, Quantum transport in mesoscopic systems – Complexity
and statistical fluctuations, Oxford University Press, 2004.
Connection to the group SO(2, 1) :

16 We recognize, as it should, the transfer matrix characterizing the potential V (x) = v δ(x) :(
1− iv

2k
− iv

2k
iv
2k

1 + iv
2k

)
(II.186)
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A. Peres, Transfer matrices for one-dimensional potentials, J. Math. Phys. 24(5), 1110–1119 (1983).

• Transfer matrices for the localisation problem, cf. the recent review article :
Alain Comtet, Christophe Texier & Yves Tourigny, Lyapunov exponents, one-dimensional Anderson local-
isation and products of random matrices, J. Phys. A: Math. Theor. 46, 254003 (2013), Special issue “Lya-
punov analysis: from dynamical systems theory to applications”. preprint cond-mat arXiv:1207.0725.

or
[Texier, ’10] Christophe Texier, Désordre, localisation et interaction – Transport quantique dans les
réseaux métalliques, thèse d’habilitation à diriger des recherches de l’Université Paris-Sud, 2010. http:

//tel.archives-ouvertes.fr/tel-01091550

• The phase formalism (§ A) has been introduced in :
[Antsygina et al, ’81] T. N. Antsygina, L. A. Pastur, and V. A. Slyusarev, Localization of states and
kinetic properties of one-dimensional disordered systems, Sov. J. Low Temp. Phys. 7(1), 1–21 (1981).
I. M. Lifshits, S. A. Gredeskul and L. A. Pastur, Introduction to the theory of disordered systems, John
Wiley & Sons (1988).
see also chapter 6 of [Texier, ’10]
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III Scaling theory : qualitative picture

Aim : The analysis of the 1D situation (chapter II) is interesting because it can be performed
with the help of powerful (non perturbative) methods. The drawback is that we completely miss
the rich phenomenology of Anderson localisation because dimensionality plays a crucial role.

We give a first presentation of the famous scaling theory developed by the “gang of four”
[1] inspired by Thouless ideas [129, 14]. This will provide the useful concepts in order to have a
general view on localisation effects.

III.A Several types of insulators

Several types of insulators in condensed matter :

• Band insulator (Fermi energy in a gap)

• Topological insulator (insulating phase in the presence of a topological constraint).
An interesting aspect : existence of edge states between regions characterised by different
topological properties.
Example : quantum Hall state.

• Mott insulator : transport is forbidden due to a strong Coulomb interaction (example : a
lattice with one electron per site and interaction U →∞)

• Anderson insulator : eigenstates becomes localised due to disorder.

III.B What is localisation ?

Anderson model

Let us introduce a model to which the people often refer. The Anderson model is a lattice model,
i.e. ~r ∈ Zd. The model is defined by the tight-binding Hamiltonian with nearest neighbour
couplings

H~r,~r ′ = −t
d∑

µ=1

(
δ~r,~r ′+~eµ + δ~r,~r ′−~eµ

)
+ δ~r,~r ′ V~r (III.1)

The phase diagram given below is based on this model.

<Wc W >WcWW =0

weakly disordered crystal
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Figure 14: Sketch of the DoS for the 3D Anderson model. Left : In the absence of
disorder. Center : With “weak” disorder, i.e. below the threshold for complete localisation
W < Wc. Existence of a mobility edge at ES. Right : Above the threshold W > Wc (for the
cubic lattice Wc = 16.3± 0.5 [81]).
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Transport properties

Vanishing of the diffusion constant D = 0

lim
t→∞

〈
~r(t)2

〉
t

= 0 (III.2)

Inverse partition ratio

In a box of volume Ld, i.e. ~r ∈ Zd where xµ ∈ {1, · · · , L}. Study the behaviour IPR

I(L) =
∑
~r∈ box

|ψ~r|4 (III.3)

with L :

• Delocalised : I(L) ∼ L−d

• Localised : I(L) ∼ ξ−d = L0

Criterion of the mathematicians

The definition of the mathematicians : absolute continuous spectrum (delocalised) versus pure
point spectrum (localised).

Consider the problem in infinite volume, characterised by the local DoS

ρ(~r; ε) =
∑
n

|ϕn(~r)2| δ(ε− εn) . (III.4)

The total density of states is a continuous function, weakly sensitive to the nature of the eigen-
states (localised/delocalised), apart on the spectral boundaries.

We now integrate the LDoS in a finite volume v

ρv(ε)
def
=

∫
v

dd~r ρ(~r; ε) (III.5)

Two situations are encountered

1. The eigenstates are localised : ρv(ε) only receives the contributions of the eigenstates
localised in the volume v and therefore is a sum of few delta functions. The spectrum is
said to be “pure point”.

2. The eigenstates are delocalised : all eigenstates contribute to ρv(ε), which is a continuous
function of energy. The spectrum is said to be “absolute continuous”.

The point of view of a mathematician on localisation : the course by Werner Kirsch [79].
Let’s forget physics for the Anderson’s paper 50th birthday !

III.C Length scales

• λ : wavelength

• `corr : correlation length

• ` : mean free path

• `∗ : transport mean free path
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• ξloc : localisation length

• Lϕ : phase coherence length

• L : size of the system

L� ` ballistic
`� L� ξloc diffusive
ξloc � L� Lϕ localised (by disorder)
Lϕ � L classical

Table 2: Regimes

Conductance

Conductance of a metallic box of section W d−1 and length L

GDrude = σ
W d−1

L
(III.6)

Using Einstein’s relation
σ = 2se

2ρ0D (III.7)

where 2s is the spin degeneracy and ρ0 the density of states per unit volume at Fermi energy
per spin channel.

ρ0 ∼ n/εF ∼
m∗k

d−2
F

~2 , we obtain the dimensionless conductance :

g
def
=

G

2se2/h
∼
e2m∗k

d−2
F

~2
vF `e
d

e2/~
W d−1

L
∼ (kFW )d−1`e

L
(III.8)

Nc ∼ (kFW )d−1 is the number of conducting channels.
More precisely, electon density is

n = 2s
Vdk

d
F

(2π)d
= 2s

kdF
(4π)d/2Γ(d2 + 1)

. (III.9)

Thus 2π~ρ0D = (4π)1−d/2

2Γ( d
2

+1)
kd−1
F `e and

g = cd
(kFW )d−1`e

L
where cd =

(4π)1−d/2

2Γ(d2 + 1)
=


2 in d = 1

1/2 in d = 2

1/(3π) in d = 3

(III.10)

Thouless energy

The dimensionless conductance can be expressed in terms of the Thouless energy :

g = hρ0D
W d−1

L
=
hD

L2

DoS=1/δ︷ ︸︸ ︷
ρ0W

d−1L︸ ︷︷ ︸
Vol

(III.11)

The dimensionless conductance is given by the ratio of two energies : the Thouless energy,
related to the Thouless time τD = L2/D required to explore the system, and the mean level
spacing δ (inverse of the DoS) :

g = 2π
EThouless

δ
where EThouless

def
=

~D
L2

(III.12)
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Ioffe-Regel criterion

localisation threshold (for d > 3) :
kF `e ∼ 1 (III.13)

III.D Scaling theory of localisation

� Generalities on scaling theories.

� Explicit calculation for 1D and quasi-1D systems.

� Scaling theory in arbitrary dimension and possible existence of a metal-insulator transition
(Thouless criterion).

� Experimental results in 3D on light, microwave, acoustic waves, electrons, cold atoms. Large
fluctuations in the vicinity of the transition, multifractality of the wavefunctions.

� Specific case of dimension 2. Importance of the symmetry class.

� Scaling properties of the plateaux of the Integer Quantum Hall Effect (Chalker-Coddington
model).

Figure 15: Gauche : Allure schématique de la fonction β(g) d’un conducteur désordonné en
dimension d, proposée dans la Réf. [1] (pour une potentiel désordonné scalaire). La transition
d’Anderson ne se produit qu’en dimension strictement supérieure à 2. Droite : Résultat obtenu
numériquement dans la Réf. [90] pour les dimensions d = 2 & 3 et β(g) = −(1 + g) ln(1 + 1/g)
pour d = 1 [14].

Definition of the metallic and insulating phases within the scaling theory

In a gedanken experiment, study how the conductance of a cube of size Ld behaves with system
size.

• L↗ ⇒ g ↗ : metallic phase

• L↗ ⇒ g ↘ : insulating phase

This can be conveniently described by considering the function

β(g)
def
=

d ln g

d lnL
(III.14)
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The non trivial assumption is that it depends only on one parameter (here chosen to be the
conductance).

E /t

Wc/t=16.3

−5 −1 0 1 2 3 4 5 6 7

: disorder

Insulator

W

Metal

Figure 16: À gauche : Diagramme de phases pour le modèle d’Anderson 3d sur réseau cubique
avec énergies sur sites distribuées selon p(ε) = 1

W θ(1
2W − |ε|) [en l’absence de désordre la

bande d’états a pour largeur 12t, où t est le terme de saut (ε~k = −2t
∑

µ cos kµ)]. À droite :

Diagrammes de phase obtenus numériquement pour les distributions p(ε) = 1
W θ(1

2W − |ε|),
gaussienne et lorentzienne ; figure tirée de [81].

Conclusion of the chapter : Determination of the β(g) function is extremely difficult task.
A natural strategy is to consider (quantum) corrections to the classical (Drude) transport. This
leads to the developement of the perturbative approach (chapter IV)...
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Master iCFP - Wave in random media February 18, 2021

TD 3 : Distribution of the transmission in 1D and the scaling
approach

We consider the transmission through a one-dimensional disordered medium and derive the
distribution of the tranmission probability.

Introduction : transfer matrix.– The solution of the Schrödinger equation can be conve-
niently analysed with a transfer matrix formalism. Transfer matrix relates left amplitudes to
right amplitudes of the wave function (

C
D

)
= T

(
A
B

)
(III.15)

potential

V(x)

C

D

A

B

Figure 17: The transfer matrix relates the left to right amplitudes. I.e. the wave function is
ψ(x) = A eik(x−xL) +B e−ik(x−xL) at the left and ψ(x) = C eik(x−xR) +D e−ik(x−xR) at the right.

The scattering on a potential is characterised by two sets of reflection/transmission ampli-
tudes, (r, t) if a plane wave is sent from the left and (r′, t′) if it is sent from the right (cf. for
instance exercice 5.2 of [118]) :

T =

(
1/t∗ r′/t′

−r/t′ 1/t′

)
∈ U(1, 1) (III.16)

with detT = t/t′ (note that r′/t′ = −(r/t)∗ follows from unitarity). Moreover in 1D t = t′. The
transfer matrix conserves the norm X†σzX = |x|2 − |y|2.

1/ Composition rule.– The first step is to determine the composition rule for the transmission
amplitudes when combining two regions characterised by two transfer matrices T = T2T1. Show
that :

t1⊕2 = t2t1 + t2(r′1r2)t1 + · · · = t2t1
1− r′1r2

(III.17)

Evolution of the transmission.– We search the differential equation for the transmission
probability τ(x) characterising transmission through an interval [0, x] with disorder. We con-
sider a small slice of disordered medium in [x, x + δx], described by reflexion and transmission
amplitudes t2, r2 and r′2. We introduce the reflection probability ρ = |r2|2 � 1. If transmission
through [0, x] is encoded in the coefficients t1, r1 and r′1, Eq. (III.17) gives

τ(x+ δx) =
τ(x)(1− ρ)

|1 + eiθ
√

1− τ(x)
√
ρ|2

(III.18)

where θ is the sum of the phases of the reflection coefficients. Expanding in powers of ρ� 1 we
obtain

δτ(x) = τ(x+ δx)− τ(x) = −2 cos(θ) τ
√

1− τ√ρ+
[
−τ(2− τ) + 4 τ(1− τ) cos2(θ)

]
ρ+O(ρ3/2)

(III.19)
Assumptions :
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• 〈ρ〉 ' δx/`, where ` is the scattering length (an effective parameter characterising the
strength of the disorder).

• The phase θ is independent of τ(x), but also of ρ (of course the second assumption is not
exact) and uniformly distributed.

2/ Express 〈δτ〉 and
〈
δτ2
〉

in terms of averages of functions of τ . Deduce that the transmission
obeys the stochastic differential equation (SDE)

dτ(x) = −τ2 dx

`
+

√
2

`
τ2(1− τ) dW (x) (Itô) (III.20)

3/ Lyapunov exponent.– Using the Itô formula (cf. appendix), show that

−d ln τ(x) =
dx

`
−
√

2

`
(1− τ) dW (x) (Itô) (III.21)

Deduce the relation between the effective parameter ` and the Lyapunov exponent γ.

4/ Distribution of the transmission probability.– We parametrise the transmission prob-
ability as τ(x) = 1/ cosh2 u(x). Using that argcosh y = ln(y +

√
y2 − 1), show that

du(x) =
γ

tanh 2u
dx−√γ dW (x) (III.22)

Considering the limit of large x, find the distribution of u(x). Compare the mean value and the
variance.

5/ The above calculation is adapted from the well-known article [14]. The ad hoc hypothesis
made above is equivalent to the Single Parameter Scaling hypothesis of the gang of four [1].
In the article [105], we have compared (analytically and numerically) γ1 = limx→∞

1
x ln |ψ(x)|

and γ2 = limx→∞
1
xVar(ln |ψ(x)|) for the model

H = − d2

dx2
+ V (x) where V (x)V (x′) = σ δ(x− x′) . (III.23)

The result is plotted on the Figure 18.
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Figure 18: The two first cumulants of ln |ψ(x)| for σ = 1. From [105].

Discuss the relation with the previous results.
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Appendix : Itô calculus

We introduce a normalised Wiener process W (t), i.e. 〈W (t)〉 = 0 and 〈W (t)W (t′)〉 = min (t, t′).
Consider the stochastic differential equation (SDE)

dx(t) = A(x(t)) dt+B(x(t)) dW (t) (Itô)

understood with the Itô convention, which refers to a prescription for the equal time correlations :
〈f(x(t)) dW (t)〉 = 0. The usual rule for a change of variable is modified according to the Itô
formula

dϕ(x(t)) =

[
A(x)ϕ′(x) +

1

2
B(x)2ϕ′′(x)

]
dt+B(x)ϕ′(x) dW (t) (Itô) (III.24)

(which follows from dW (t)2 = dt, roughly speaking).
The related Fokker-Planck equation is

∂tPt(x) =
1

2
∂2
x

[
B(x)2Pt(x)

]
− ∂x

[
A(x)Pt(x)

]
.

The relation with the SDE in the Stratonovich convention

dx(t) = Ã(x(t)) dt+B(x(t)) dW (t) (Stratonovich) ,

describing the same process, is Ã(x) = A(x)− (1/2)B(x)B′(x). We recall that the Stratonovich
convention is obtained in particular when the Gaussian white noise W ′(t) is the singular limit of
a regular noise. Then the process and the noise at equal time are correlated, 〈f(x(t)) dW (t)〉 6= 0.
The Stratonovich convention allows to use usual rule for differential calculus, i.e. dϕ(x(t)) =
ϕ′(x(t)) dx(t).

For a pedagogical presentation of stochastic calculus, cf. the book of Gardiner [65].

+ If you want to learn more :

The existence of a second length scale in the strong disorder regime has been nicely discussed
by Cohen, Roth and Shapiro [37] (cf. this article for references). See also discussion and further
references in the recent article [105].
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IV Electronic transport in weakly disordered metals : pertur-
bative (diagrammatic) approach

Aim : In most of real situations, the disorder is weak compared to the energy of the diffusing
particle : this is true for the electron dynamics in a metal or the diffusion of the light in a turbid
medium. The aim of the chapter is to give the tools for a quantitative analysis of a weakly
disordered medium. Although the presentation will mostly concern electronic transport, the
basic concepts can be easily adapted to consider any other types of waves.

IV.A Introduction : importance of the weak disorder regime

1) Multiple scattering – Weak disorder regime

The aim of the course is to discuss the interaction of a wave with a static disordered potential,
i.e. the regime of multiple scattering.

The study of simple scattering (by a single scattering center) can be found in many text-
books : scattering of a wave of wavelength λ is described by a differential cross-section dσ

dΩ(θ, ϕ)
giving the probabilty for the incident particle to be scattered in the direction (θ, ϕ). The total
cross-section σ =

∫
dΩ dσ

dΩ measures the probability for the incident particle to interact with the
scatterer.

In practice, a target is usually made of many equivalent scattering centers with whom the
incident particle may interact. If the cross-section and/or the thickness of the sample is large
enough, multiple scattering must be taken into account. The typical distance between two
collisions by defects is the elastic mean free path `e (i.e. the incident particle interact with
a scattering center with probability 1 on a distance & `e). Let us consider a diffusing medium
with a density ni of scattering centers. We expect simple behaviours with σ and ni, precisely
`e ∝ 1/σ and `e ∝ 1/ni, thus

`e = 1/(niσ) . (IV.1)

Multiple scattering is therefore characterised by two important length scales : the wave length
λ (wave) and the m.f.p. `e (disorder). This allows to define the weak disorder regime as

λ� `e (IV.2)

In this case, it is possible to treat each collision perturbatively (in the strength of the disordered
potential), however we will have to account for multiple scattering events which will make most

results non perturbative. For example, the residual Drude conductivity (at T → 0) σ = ne2τe
m , is

inversely proportional to the rate γe = 1/τe which is the perturbative quantity.

Example : disordered metals.– Let us consider Gold, a good metal : Fermi wavelength is

k−1
F = 0.085 nm, which is much smaller than the elastic mean free path, `

(bulk)
e ' 4 µm in bulk,

or `
(film)
e ' 20 nm in thin metallic films (thickness . 50 nm).

2) Interference effects in multiple scattering

If a wave interacts with many scattering centers, we expect that an extremely complex interfer-
ence pattern is produced. Let us examine the typical situations where this occurs.

First of all, interferences are not necessarily dominant in the situation where a wave diffuses
in a turbid medium. For example, in a cloudy day, the light of the sun diffuses inside the clouds,
what is the reason for the uniformly white sky. This is not an interference effect.
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When discussing interference effects, it is always useful to come back to the simple Young
double slit experiment. In this case, the two possible paths are each associated with an amplitude
and the total intensity involves the sum of two amplitudes

I = |A1 +A2|2 . (IV.3)

S
D

x

I(x)

’

I(B)

B

S

D

Figure 19: Interference : Two path interference (Young experiment ) versus multiple
path interference.

In a disordered medium, the wave can be scattered by many centers, what defines an ex-
tremely large number of scattering paths

I =

∣∣∣∣∑
C
AC
∣∣∣∣2 =

∑
C
|AC |2︸ ︷︷ ︸

incoherent

+
∑
C6=C′
ACA∗C′︸ ︷︷ ︸

interferences

(IV.4)

We now discuss few situations where the interference term manifests itself.

Example 1 (light) : Speckle pattern (fluctuations).– If coherent light (from a laser)
is sent on a disordered medium, the resulting interference pattern is extremely complicate,
exhibiting intensity fluctuations of the same order than the mean intensity (right part of Fig. 20).
The typical result of such an experiment is shown on Fig. 20 and is called a speckle pattern.
In the Young experiment, the specific intensity profile is a signature of the double slit device.
Similarly, the speckle pattern is the fingerprint of the disordered potential.

Figure 20: Speckle patterns. Left : Interference pattern resulting from the scattering of a laser
beam (633 nm) by a thin (370 µm) opal glass ; Estimated m.f.p. `e ∼ 100 µm. From Ref. [59].
Right : Scattered light intensity (532 nm) by a powdered Ti:saphire sample. From Ref. [142].
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Example 2 (light) : Albedo (average).– The speckle pattern is a manifestation of (sample
to sample) fluctuations. The complex structure of the interference pattern is due to the rapidly
varying phase of the amplitudes AC ' |AC |eik`C in Eq. (IV.4), where `C is the length of the path
C. A naive guess could be that such interferences do not survive averaging. This is however
not the case. If one considers the configuration represented in Fig. 21, the measurement of
the scattered intensity in the direction θ shows some intensity profile almost flat, apart for an
increase at back-scattering : I(θ) ' I0 + ICBS(θ) where ICBS(θ) is a very narrow function (we
will show that the back-scattering cone has a typical width δθ ∼ 1/(k`e). The experimental data
shows that the intensity is almost exactly doubled I(θ = 0) ' 2I0 (Fig. 21). This phenomenon
is due to constructive interference of reversed trajectories, leading to an increase of the
back-scattering (Fig. 22). Thus, this is an effect of localisation.

source

detector

disordered medium

θ

Figure 21: Coherent back-scattering of light. Left : Principle of measurement. Right :
Coherent back-scattering of light (wavelength 514 nm) by ZnO powder sample. Mean free path
is `e = 1.9 µm. From Ref. [142]. The smooth background of the intensity profile originates from
the diffusion of light in the disordered medium. The narrow peak, δθ ∼ 0.05 rad, is the CBS.

This can be understood with the help of the qualitative representation (IV.4). Among all
interference terms, one is related to the interference of the two paths corresponding to the
reversed sequences of scattering events (path C and C̃). Exactly at back-scattering (θ = 0), time
reversed symmetry implies that AC = AC̃ , what explains the doubling of the intensity :

I(θ = 0) =
∑
C
|AC |2 +

∑
C
ACA∗C̃︸ ︷︷ ︸

CBS (C′=C̃)

+
∑

C, C′ 6=C and C̃

ACA∗C′︸ ︷︷ ︸
'0

' 2
∑
C
|AC |2 . (IV.5)

Although the effect is not small exactly at back-scattering, it is globally a small effect : the
contribution of interferences to the total scattered intensity

∫
dθ ICBS(θ) ∼ I0/k`e is small.

Example 3 (electrons) : Weak localisation correction (average).– The increase of
back-scattering due to interferences of reversed diffusive trajectories can also be demonstrated
in electronic transport. Quantum transport in metallic films and wires was investigated system-
atically in several experiments (cf. [27] for films). In this case, the interference pattern must be
revealed by tuning some external parameter, like the chemical potential or the magnetic field.
The typical low temperature resistance of a long and narrow wire 17 as a function of the magnetic
field presents the profile shown on Fig. 23, with a narrow peak around zero field. The experiment

17 The effect is re-inforced in a narrow wire of sub-micron cross-section. The reason is related to the fact that
localisation effects are stronger in low dimension. The precise criterion for the wire to be “narrow” will be made
clear later.
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Figure 22: Coherent back-scattering. Left : The classical term can be understood as the
pairing of two equal trajectories C′ = C. Center and Right : The contribution of reversed
trajectories C′ = C̃ to the interference term.

demonstrates a decrease of the resistance with the magnetic field, i.e. an opposite effect to the
classical magneto-resistance (cf. problem page 98). For this reason, this phenomenon is called
“anomalous magneto-resistance”. It is equivalent (but not exactly similar) to the CBS cone in
optical experiments. Being an increase of the electric resistance, this is also a manifestation of
localisation.

Figure 23: Magneto-resistance ∆R(B) of thin metallic Lithium wires. Sample are made
of 27 to 101 Lithium wires of length L = 1mm in parallel. Depending on sample, width W varies
between 1 µm to 0.03 µm, and thickness is ∼ 25 nm. From Ref. [85].

3) Phase coherence

A crucial point of the above discussion is that all effects aforementioned are interference effects,
requiring that the wave remains coherent in the diffusion process on the static potential. In
practice the incoming wave may also interact with other degrees of freedom, what limits coherent
properties. Two examples are

• In optical experiments : the motion of scatterers.

• In electronic transport : the electron-phonon interaction (lattice vibrations), or the electron-
electron interaction.
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Figure 24: Decoherence. Decoherence may be viewed as contributions of random phases arising
from the interaction with other degrees of freedom.

In a metal, the increase of the temperature leads to the activation of all degrees of freedoms
(thermal fluctuations above the Fermi sea, phonons, etc). Hence interferences of electronic waves
progressively disappear, as illustrated by the experimental results shown on Fig. 25. The phase
coherent electronic transport only manifests itself below few Kelvins.

Figure 25: Magneto-resistance ∆R(B) of thin metallic Lithium wires. As temperature is
increased, phase coherence is limited and magneto-resistance peak is suppressed. From Ref. [85].

The efficiency of decoherence is characterised by the phase coherence time τϕ. I.e. phase
coherence is lost after a time t & τϕ. This allows to define several regimes for coherent physics.
In general the problem is controlled by three time scales : the elastic mean free time τe = `e/vF ,
the phase coherent time τϕ and the Thouless time τTh, which is the time needed to explore the
full system.

• Coherent ballistic regime.– Coherent properties are maintained over distances such
that the motion is ballistic

min(τϕ, τTh) < τe

In this case τTh = L/vF , where L is the system size, and τϕ = Lϕ/vF , where Lϕ is the
phase coherence length.

• Coherent diffusive regime.– The particle is scattered many times by the disorder before
loosing its coherence :

τe < min(τϕ, τTh)

The relation between length and time is characteristic of diffusive motion : τTh = L2/D
and τϕ = L2

ϕ/D.
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4) Motivation : why coherent experiments are interesting ?

Looking at figures 21 and 23, one could legitimately ask the question : what is the interest for
studying such tiny effects ? The CBS cone is extremely narrow. The weak localisation correction
is less than ∆R/R . 1 %.

The motivation for studying these small effects is both practical and fundamental. Being a
manifestation of interference effects, the measurement of these quantities furnishes an experi-
mental probe for coherent properties in diffusive systems. Moreover, the precise knowledge of
how weak localisation depends on the phase coherence length Lϕ provides its possible definition.
Weak localisation measurement is a common tool in condensed matter experiments for probing
the fundamental question of phase coherent (quantum) properties of electrons.

The precise question could be : how to extract the phase coherence length from the magneto-
resistance curve ? The answer to this question obviously requires the knowledge of the B-
dependence and Lϕ-dependence of the magneto-resistance :

Q : ∆R(B, Lϕ) =?

IV.B Kubo-Greenwood formula for the electric conductivity

The remaining of the chapter will focus on electronic transport properties. We first recall some
basic formulae for the electrical conductivity of a metal.

1) Linear response

The starting point is the linear response theory (see for instance [117]). We recall the main
result (cf. appendix A). If one considers a time dependent perturbation involving an observable
A of the system :

Ĥ(t) = Ĥ0 − f(t) Â (IV.6)

The “response” of any other observable B

〈B̂(t)〉f = 〈B̂〉+

∫
dt′ χBA(t− t′) f(t′) +O(f2) (IV.7)

is controlled at lowest order in perturbation theory by an equilibrium correlation function

χBA(t) =
i

~
θH(t)〈[B̂(t), Â]〉 (IV.8)

where 〈· · ·〉 is the quantum-statistical average related to H0 and 〈· · ·〉f the one related to H(t).

2) Conductivity

The conductivity characterises the response of the current density to the electric field. In prin-
ciple it probes local properties. However, usual transport experiments probe global properties
of the system, and the measured quantity is usually the conductance. On the other hand, mea-
surements of small contributions are facilitated by the introduction of a small modulation of
the excitation, i.e. measuring a signal at small but finite frequency, what allows to distinguish
more easily the signal from the noise (AC lock-in technique). For these reasons we have to
consider the conductivity with the proper limits 18 limω→0 limq→0 σ(q, ω). We will thus con-

sider a uniform perturbation, i.e. a time-dependent uniform electric field ~E(t). Due to gauge
invariance, we still have some freedom on the choice of the perturbation : we can consider a
gauge φext(~r, t) = −~E(t) · ~r and ~Aext = 0, or φext = 0 et ~Aext(t) = −

∫ t
dt′ ~E(t′). We prefer the

18 Recall that these limits do not commute [117].
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second choice, that will lead more directly to a representation of the conductivity in terms of
a current-current correlator, close in spirit to the classical definition of the diffusion constant
D =

∫∞
0 dt 〈vx(t)vx(0)〉 (recall that the diffusion constant and the conductivity are related by

Einstein relation σ0 = e2ν0D). We consider the single electron Hamiltonian

Ĥtot(t) =
1

2m

(
~̂p− e ~A(~̂r)− e ~Aext(t)

)2
+ U(~̂r) =

1

2m
~̂v 2 + U(~̂r)︸ ︷︷ ︸

Ĥ

−e ~Aext(t) · ~̂v︸ ︷︷ ︸
Ĥpert(t)

+ · · · (IV.9)

where ~v
def
= (~p− e ~A)/m is the speed.

The spatially averaged current for one electron 19 is simply

~j =
e

Vol
~v . (IV.10)

In the presence of the external vector potential, the speed also receives the contribution of the
external vector potential ~vtot = 1

m

(
~p− e ~A− e ~Aext

)
. Accordingly, the current of the electron gas

is splitted in two terms

〈jtot
i (t)〉 ~Aext

= 〈ji(t)〉 ~Aext
− Ne2

Vol
Aext
i (t) , (IV.11)

where N =
∑

α fα is the number of electrons, expressed in terms of the Fermi function fα ≡
f(εα). The first term is given by the linear response theory

〈ji(t)〉 ~Aext
=

e2

Vol

∫
dt′Kij(t− t′)Aexp

i (t′) + · · · (IV.12)

and involves a velocity-velocity (i.e. current-current) correlator 20

Kij(t) = iθ(t)〈[vi(t), vj ]〉 (IV.14)

(we now set ~ = 1). After Fourier transform, we express the current in terms of the electric field
and obtain the conductivity

σ̃ij(ω) =
1

iω

e2

Vol

(
−N
m
δij + i

∫ ∞
0

dt e(iω−0+)t 〈[vi(t), vj ]〉
)

=
i

ω

e2

Vol

[
N

m
δij − K̃ij(ω)

]
(IV.15)

where we have introduced an infinitesimally small regulator 0+. Using the spectral representation
of the correlator

K̃ij(ω) = −
∑
α,β

(fα − fβ)
(vi)αβ(vj)βα

ω + εα − εβ + i0+
, (IV.16)

19 In a one-particle picture, the current density operator is ~̂j(~r) = e
[
n̂(~r) ~̂v + ~̂v n̂(~r)

]
where n̂(~r) = δ(~r − ~̂r) =

|~r 〉〈~r | is the density operator, ~̂r the position operator and ~̂v the speed operator.
20 The discussion can be done at the one-particle level. The N -particle formula is then easy to get thanks to a

simple summation. This relies on the following property : consider many body operators A and B sums of one
body operators A =

∑N
i=1 a

(i). Then, the grand canonical average of the commutator is

〈[A,B]〉 = Tr {ρ [A,B]} =
∑
n

(Pn − Pm)AnmBmn =
∑
α

(fα − fβ) aαβ bβα (IV.13)

where the first sum is over many-body eigenstates and Pn ∝ e−β(En−µN) the grand canonical weight, while
the second sum runs over one-body eigenstates, fα being the Bose-Einstein or the Fermi-Dirac distribution (see
lectures [117]).
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where (vi)αβ
def
= 〈ϕα |v̂i|ϕβ 〉 is a one-particle matrix element, we deduce the real (dissipative) part

of the conductivity. For simplicity we restrict ourselves to the longitudinal resistivity (i = j) :

Re σ̃xx(ω) =
πe2

Vol

∑
α,β

f(εα)− f(εα + ω)

ω
|(vx)αβ|2 δ(ω + εα − εβ) (IV.17)

Introducing
∫

dε δ(ε− εα) = 1 in the expression, we can rewrite this expression as a trace over
the one-particle Hilbert space :

Re σ̃xx(ω) =
πe2

Vol

∫
dε
f(ε)− f(ε+ ω)

ω
Tr
{
v̂x δ(ε+ ω − Ĥ) v̂x δ(ε− Ĥ)

}
(IV.18)

We can deduce the zero frequency conductivity σ
def
= σ̃xx(ω = 0) :

σ =
πe2

Vol

∫
dε

(
−∂f
∂ε

)
Tr
{
v̂x δ(ε− Ĥ) v̂x δ(ε− Ĥ)

}
−→
T→0

πe2

Vol
Tr
{
v̂x δ(εF − Ĥ) v̂x δ(εF − Ĥ)

}
(IV.19)

Because the function −∂f
∂ε is a narrow function of width kBT much small that the Fermi energy,

this expression emphasises that only eigenstates in the close neighbourhood of the Fermi level,
|εα−εF | . kBT , are involved in longitudinal transport properties. Longitudinal conductivity
is a Fermi surface property (contrary to the transverse conductivity [113, 114]). Finally, let
us remark that the Kubo-Greenwood formula, Eq. (IV.17) or Eq. (IV.18), presents the desired
structure of a speed-speed correlator reminiscent of the diffusion constant.

Remark : More on the correlator K.– The relation between σij and the correlator Kij

can be improved by making use of the f -sum rule.

- Exercice IV.1 : f -sum rule.– Show that 1
2m +

∑
β
|(vx)αβ |2
εα−εβ = 0, where (vx)αβ

def
= 〈α |vx|β 〉.

Deduce
1

m

∑
α

fα +
∑
α,β

(fα − fβ)
|(vx)αβ|2

εα − εβ
= 0 (IV.20)

- Exercice IV.2 : Using the spectral representation for K̃ij(ω), analyse K̃xx(ω = 0)

Hint : note that when ω = 0, the 0+ becomes useless because the numerator vanishes when
εα = εβ. 21

For free electrons, the matrix elements are : 〈~k |~v|~k ′ 〉 =
~k
mδ~k,~k ′ , where |~k 〉 denotes a plane

wave. Show that K̃xx(ω 6= 0) = 0. Deduce the conductivity for free electrons.

The f -sum rule expresses conservation of particle number. We have shown that

σ̃ij(ω) =
ie2

Vol

δij K̃xx(0)− K̃ij(ω)

ω
(IV.21)

This structure may also be understood as a consequence of gauge invariance, which is not a
surprise since Gauge invariance and charge conservation are closely related by Nœther theorem.
The expression (IV.21) must be manipulated with caution. We have indeed seen that K̃xx(ω)
is discontinuous at ω = 0 for free electrons.

To close the remark, let us point out that, being the correlation function of the electron
velocity, K̃xx(ω) can be related by the fluctuation-dissipation theorem to the power spectrum of
the electron velocity [117], i.e. the diffusion constant D =

∫∞
0 dt 〈vx(t)vx(0)〉. Therefore, we can

extract from Eq. (IV.21) the Einstein relation between conductivity and diffusion constant.

21 if f(0) = 0 and |f ′(0)| <∞ we have f(x)

x+i0+
= f(x)

x
since f(x)δ(x) = 0 and P f(x)

x
= f(x)

x
.
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3) Conductivity in terms of Green’s function

A question of methodology is : how to analyse the Kubo-Greenwood formula (IV.17), in par-
ticular with the aim of building a pertubative expansion in the disordered potential ? It is
obviously excluded, because far too complicated, to use the well-known perturbative formulae
for the spectrum of the Hamiltonian {εα, |ϕα 〉} ; moreover the calculation requires the matrix
elements (vx)αβ = 〈ϕα |vx|ϕβ 〉. It is therefore essential to introduce a compact object encoding
all spectral information and allowing for a convenient and simple perturbative expansion. Such
an object is the Green’s function, i.e. matrix elements of the resolvent operator,

G(~r, ~r ′; z)
def
= 〈~r | 1

z −H
|~r ′ 〉 =

∑
α

ϕα(~r)ϕ∗α(~r ′)

z − εα
, (IV.22)

whose poles are located on the eigenvalues of the Hamiltonian with residues related to the
eigenfunctions. The calculations will involve the retarded and advanced Green’s functions :

GR,A(~r, ~r ′;E)
def
= G(~r, ~r ′;E ± i0+) , (IV.23)

which can be related to the matrix elements appearing the Eq. (IV.18) by noticing that

∆G(~r, ~r ′;E)
def
= GR(~r, ~r ′;E)−GA(~r, ~r ′;E) = −2iπ〈~r |δ(E −H)|~r ′ 〉 (IV.24)

= −2iπ
∑
α

ϕα(~r)ϕ∗α(~r ′) δ(E − εα) . (IV.25)

Let us point out that the diagonal matrix elements of this latter function is the local density of
states

ρ(~r;E) =
1

−2iπ
∆G(~r, ~r;E) =

∑
α

|ϕα(~r)|2 δ(E − εα) . (IV.26)

Its integral is the DoS ρ(E) =
∫

dd~r ρ(~r;E) =
∑

α δ(E − εα).
Because the starting point of the perturbative expansion is the free particle problem, it will

be quite natural to work in a momentum representation, i.e. in the basis of plane waves

ψ~k(~r) = 〈~r |~k 〉 =
1√
Vol

ei~k·~r (IV.27)

where we choose plane waves normalised in a box (i.e. with quantised wave vectors 22 〈~k |~k ′ 〉 =
δ~k,~k ′). Accordingly we introduce the Green’s function in momentum space (keeping the same

notation as in real space)

GR,A(~k,~k ′;E)
def
= 〈~k | 1

E −H ± i0+
|~k′ 〉 . (IV.28)

Kubo-Greenwood formula (IV.18) now reads

Re σ̃(ω) = − 2se
2

4πm2

∫
dε
f(ε)− f(ε+ ω)

ω

1

Vol

∑
~k,~k ′

kx k
′
x ∆G(~k,~k ′; ε+ ω) ∆G(~k ′,~k; ε) (IV.29)

where we have taken into account the spin degeneracy 2s. It is useful to emphasize that the
Fermi functions constraint the energy ε to be close to the Fermi energy εF .

22 in a cubic box we have ~k = 2π
L

(nx, ny, nz).
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IV.C Méthode des perturbations et choix d’un modèle de désordre

La méthode ? Maintenant que nous avons introduit le “bon” objet, reste à savoir comment le
manipuler, i.e. comment effectuer la moyenne sur le désordre de produits de fonctions de Green,
supposant donnée la distribution DV P [V] du désordre. La difficulté vient notamment de la
présence du potentiel au dénominateur dans la fonction de Green G(E) = 1

E−H . Deux méthodes
utilisent un “truc” pour exponentier le dénominateur et faire apparâıtre la fonctionnelle car-
actéristique du potentiel : la méthode des répliques [73] et la méthode supersymétrique [141, 53].
La mise en œuvre de ces deux approches nécessite des techniques de théorie des champs as-
sez sophistiquées dans lesquelles nous ne souhaitons pas entrer ici. Une présentation claire
de l’utilisation de la méthode des répliques pour les systèmes désordonnés est proposée dans
l’ouvrage de Altland et Simons [4].

The replica method relies on the following trick [52, 55]. Write :∫
dn~φ

~φ2

n
e−

1
2A

~φ2

=
1

A

(
2π

A

)n/2
−→
n→0

1

A

where ~φ is a n component “field” (the n replicas). The (difficult) computation of the average 〈 1
A 〉 is

replaced by the (more easy) one of 〈e−kA〉. The cost to pay is to let the number of components n go
continuously toward 0 ! This limit is not clearly defined in general, as it requires to make the continuation
of a function over the integers to the reals, crossing our fingers ! Anyway, let us apply the trick to the
average Green’s function :

〈x |(H − E)−1|x′ 〉 = lim
n→0

∫
D~φ

~φ(x) · ~φ(x′)

n
e−S with e−S = exp−1

2

∫
dx
[
(∂x~φ)2 + (V(x)− E)~φ(x)2

]
where ~φ(x) is a n component field. Averaging over the Gaussian disorder, DV P [V] =
DV exp− 1

2w

∫
dxV(x)2, provides the expression of the effective action S =

∫
dxL. This action de-

scribes a theory with an interacting field L = 1
2 (∂x~φ)2 − E

2
~φ2 − w

8
~φ4 (chapter 9 of volume 2 of Itzykson

& Drouffe’s monograph [73]). Using translation invariance of the problem, after disorder averaging, the
calculation at coinciding points can be further simplified by writing

〈x |(H − E)−1|x 〉 = lim
n→0

2

n

∂

∂E

∫
D~φ e−S

from which the DoS can be extracted by considering the limit E → E + i0+. More information can be
found in the book [4].

The supersymmetric method also starts from a representation of the Green’s function in terms of path
integral, however it uses a different trick in order to eliminate the determinant related to the normalisation
of the integral. Additionally to the integration with respect to the scalar “bosonic” complex field ΦB ,
one introduce also a “fermionic” field ΦF of Grassmanian nature (for the same action). The trick uses

that the two normalisations are inverse :
∫
DΦB e−

1
2

∫
dx
[
|∇ΦB |2+(V(x)−E)|ΦB |2

]
∼ 1/ det(E + ∆− V(x))

and
∫
DΦF e−

1
2

∫
dx
[
|∇ΦF |2+(V(x)−E)|ΦF |2

]
∼ det(E + ∆ − V(x)). As a result, the Green’s function can

be represented as

〈x |(H − E)−1|x′ 〉 =

∫
DΦBDΦF ΦB(x)ΦB(x′)∗ e−S[ΦB ,ΦF ]

where the effective action S for the bosonic and fermionic fields, arise from disorder averaging of the

original actions. More can be found in Efetov’s book [53].

Si ces méthodes sophistiquées sont assez puissantes (elles permettent notamment de décrire
la transition du régime de localisation faible vers le régime de localisation forte), elles se révèlent
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cependant plutôt inadaptées pour étudier certains problèmes fondamentaux d’importance pra-
tique comme la modélisation de la décohérence.

La troisième méthode, que nous suivrons, est l’approche perturbative où G(E) est développé
en puissances du potentiel désordonné, puis le développement moyenné. Les résultats que nous
cherchons sont non perturbatifs dans le désordre. Cette approche n’est intéressante que
si nous pouvons resommer les corrections perturbatives. 23 Le cas unidimensionnel permet une
resommation complète des corrections perturbatives dans le cas où le potentiel est un bruit
blanc [24, 25]. En vérité ces techniques assez lourdes ne sont pas indispensables et peuvent être
évitées au profit de méthodes non perturbatives probabilistes plus élégantes [87, 88] (au moins
à mon goût, par exemple cf. [38]). Dans les problèmes à plusieurs dimensions nous devrons
nous contenter de resommations partielles qui ne seront valables que dans le domaine de faible
désordre. Nous préciserons cette remarque par la suite.

1) Développements perturbatifs

L’intérêt d’avoir introduit la fonction de Green est que cet objet est le plus approprié pour
développer une théorie de perturbation. Si l’on pose G = 1

E−H avec H = H0 + V on a G =

G0 + G0VG0 + G0VG0VG0 + · · · où G0 = 1
E−H0

. La fonction de Green libre est diagonale
dans l’espace de Fourier (je laisserai dorénavant tomber les flèches des vecteurs pour alléger, sauf
ambigüıté)

〈k | 1

E −H0
|k′ 〉 = δk,k′G0(k) avec G0(k) =

1

E − εk
(IV.30)

où εk
def
= k2

2m . (Tant que cela n’est pas nécessaire nous ne spécifions pas s’il s’agit de la fonction
de Green avancée ou retardée). Pour aller plus loin il nous faut savoir comment modéliser
les défauts (impuretés, défauts structurels) et le choix du modèle a-t’il une influence sur la
physique ? En général la réponse est oui, évidemment, toutefois nous nous intéresserons à
un régime de faible désordre et seul le second cumulant de V sera important. Pour cette raison
nous pouvons nous limiter au choix d’une distribution gaussienne, entièrement caractérisée par la
fonction de corrélation V(r)V(r′). En pratique il est raisonnable de supposer que les corrélations
du potentiel désordonné sont à courte portée, nous les prendrons de portée nulle pour simplifier.
En conclusion, pour l’étude des propriétés de transport dans les métaux faiblement désordonnés
il est suffisant de choisir le modèle minimal :

DV P [V] = DV exp

[
− 1

2w

∫
dr V(r)2

]
. (IV.31)

Afin de dégager les règles permettant une construction systématique du développement per-
turbatif, analysons en détail les premiers termes correctifs du développement de la fonction de
Green moyenne G.

2) Vertex et règles de Feynman

Vertex pour le désordre.– Comme nous travaillons dans l’espace réciproque le calcul fera
intervenir la moyenne des éléments de matrice de V (le vertex élémentaire décrivant l’interaction

23 Si nous calculons la conductivité perturbativement dans l’intensité du désordre, contrôlé par le taux de

collision γe = 1/τe, nous obtenons une série σ(ω) = ine2

mω

∑∞
n=0

(
γe
iω

)n
. Après resommation, la limite de fréquence

nulle conduit au résultat σ(0) = ne2

mγe
= ne2τe

m
(ce calcul sera effectué plus bas).
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entre un électron et le potentiel désordonné pour le calcul de quantités moyennées) :

〈kg |V|kd 〉〈k′g |V|k′d 〉 =

∫
dr

Vol
ei(kd−kg)·r

∫
dr′

Vol
ei(k′d−k

′
g)·r′ w δ(r − r′) (IV.32)

=
w

Vol
δkg+k′g ,kd+k′d

=

k’g

−

k’d
k’g

kg kd g k’d

−

k’

k’d

(IV.33)

où kd et k′d sont des impulsions entrantes et kg et k′g des impulsions sortantes. Cette expression,

la TF de la fonction de corrélation V(r)V(r′) = w δ(r − r′). On peut interpréter physiquement
le corrélateur comme une double interaction avec un défaut localisé qui transfert une impulsion
kg − kd = k′d − k′g d’un point à un autre, i.e. d’une fonction de Green à une autre. 24

Nous commençons par calculer le premier terme non nul en moyenne : G0VG0VG0. Le terme
d’ordre 2 de G(k, k′) s’écrit :

〈k |G0VG0VG0|k′ 〉 = G0(k)
∑
k′′

w

Vol
δk,k′G0(k′′)G0(k′) = δk,k′G0(k)2 w

Vol

∑
q

G0(q) . (IV.34)

La présence du Kronecker assure la conservation de l’impulsion, ce qui découle de manière
évidente de l’analyse du vertex, Éq. (IV.32). Cette propriété reste vraie à tous les ordres et on a
donc G(k, k′) ≡ δk,k′G(k), qui traduit le fait que l’invariance par translation est restaurée après
moyenne désordre. Le premier terme du calcul perturbatif de la fonction de Green moyenne est
finalement

δ2G(k) = G0(k)

[
w

Vol

∑
q

G0(q)

]
G0(k) =

k!q

q kk

w
k!q

(IV.35)

La petite représentation graphique nous permet de déduire facilement les règles de Feynman
permettant une construction systématique des diagrammes.

Règles de Feynman.– Les diagrammess sont construits en quatre étapes :

1. À l’ordre 2n des perturbations en V, on dessine les (2n − 1)!! diagrammes (pour le
désordre gaussien) : une ligne continue représente une fonction de Green libre G0(k),
une ligne pointillée une double interaction avec un défaut.

2. On associe des impulsions de façon à respecter la conservation de l’impulsion à chaque
vertex.

24 Si nous avions choisi un modèle plus général de désordre, le cumulant d’ordre p serait associé à p interactions
avec un défaut. Pour clarifier cette remarque, considérons le modèle de potentiel désordonné V(r) = v0

∑
i δ(r−ri)

où les positions sont distribuées selon la loi de Poisson (positions décorrélées pour une densité moyenne ni). Le
calcul du second moment V(r)V(r′) = v20

∑
i 6=j δ(r − ri)δ(r′ − rj)+v

2
0δ(r−r′)

∑
i δ(r − ri) = (niv0)2+niv

2
0δ(r−r′)

montre que le second cumulant s’interprète comme une double interaction avec une même impureté. Le cumulant

V(r1) · · · V(rn)
C

= niv
n
0 δ(r1 − r2) · · · δ(r1 − rn) correspond à n interactions avec une impureté, ce que nous

représentons comme :

...

...

r
1

r
2

r
3

r
n

74



3. Chaque double interaction est associée à un poids
w

Vol
.

4. On somme sur toutes les impulsions libres selon
∑
q

.

Nous dessinons les trois diagrammes obtenus à l’ordre suivant :

δ4G(k) = + + (IV.36)

3) Diagrammes irréductibles et self énergie

Nous pouvons remarquer que le premier des diagrammes de (IV.36) correspond à une répétition
du bloc de la première correction (IV.35), que nous notons :

Σ2 = q

k−
q k−

q

=
w

Vol

∑
q

G0(q) (IV.37)

à chaque ordre, certaines des corrections contiendront également ce bloc et un des (2n − 1)!!
termes sera n répétitions de ce bloc. Il y a un moyen très simple de resommer tous ces termes
(c’est une série géométrique) :

1

G0(k)−1 − Σ2
= + + + + · · ·

(IV.38)
Nous pouvons donc regrouper dans un objet que nous appelons la self énergie et notons Σ(E),
tous les blocs insecables par un seul “coup de ciseau” dans une ligne de fonction de Green (les
diagrammes dit irréductibles). Outre que cette remarque permet de resommer une infinité de
diagrammes sans effort, l’intérêt d’introduire cet objet est de conduire à une fonction de Green
moyenne présentant une structure similaire à la fonction de Green libre :

G(k) =
1

G0(k)−1 − Σ(E)
=

1

E − εk − Σ(E)
(IV.39)

pour le modèle avec potentiel nous corrélé spatialement, V(r)V(r′) ∝ δ(r− r′), il est clair que la
self énergie est indépendante du vecteur d’onde. Le calcul du terme d’ordre n de Σ(E) met en
jeu bien moins de diagrammes que celui de G(E). Considérer le développement perturbatif de
Σ(E) est une manière de prendre en compte des corrections d’ordre n de G(E) se déduisant de
manière évidente des ordres n′ < n. Par exemple, à l’ordre w2, Σ4 sera donné par le diagramme
de Σ2 plus deux diagrammes d’ordre w2 correspondant aux deux derniers termes de (IV.36) :

Σ4 = + + (IV.40)

- Exercice IV.3 : Dessiner tous les diagrammes de Σ6 (la self-énergie à l’ordre w3). Com-
parer avec δ2G(k) + δ4G(k) + δ6G(k).
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Dyson equation : The resummation of diagrams through the introduction of the self
energy is particularly simple here because it is formulated in the basis that diagonalises the
free Hamiltonian. In the more general case one should write a Dyson equation,

G(E) = G0(E) +G0(E)Σ(E)G(E) (IV.41)

which takes the form of an integral equation in real space. For the model considered here,
V(r)V(r′) = w δ(r − r′), it takes a simpler form in momentum space G(k;E) = G0(k;E) +
G0(k;E)Σ(E)G(k;E).

The Dyson equation allows for a reorganisation of the perturbation series for the averaged
Green function. Instead of the series G = G0 + G0VG0VG0 + · · · in powers of w, we have
now a perturbation series in terms of the numbers of irreducible diagrams :

G = G0 + G0 ΣG0︸ ︷︷ ︸
irreducible diag.

+

reducible diag. made of 2 irred. diag.︷ ︸︸ ︷
G0 ΣG0 ΣG0 + · · ·

- Exercice IV.4 : Let us consider the general case of a disordered potential with a finite
correlation length : V(r)V(r′) = C(r − r′) where C(r) decays on a microscopic scale `corr.
If we introduce the Fourier transform C̃(Q) =

∫
dr C(r) e−iQ·r, show that the self energy now

depends on the momentum as

Σ2(k;E) = q

k−
q k−

q

=
w

Vol

∑
q

C̃(k − q)G0(q) (IV.42)

where the argument of the correlation function is the transfered momentum Q = k − q.

Les deux échelles du problème sont l’énergie de Fermi εF (rappelons-nous que la conductivité
longitudinale fait intervenir les fonctions de Green à E ' εF ) et le désordre w. La self énergie
nous permet d’introduire une échelle plus pertinente que w :

1

2τe

def
= − Im ΣR(E) (IV.43)

où ΣR(E) est la self énergie calculée avec des fonctions de Green retardées. La fonction de Green
moyenne présente donc la structure

G
R

(k) =
1

E − εk + i
2τe

(IV.44)

La partie imaginaire est la plus importante car elle éloigne le pôle de la fonction de Green de
l’axe réel, alors que la partie réelle de la self énergie peut en principe être absorbée dans une
redéfinition de l’énergie. 25 La structure de la fonction de Green moyenne met en évidence le

25 Nous jetons un voile pudique sur la partie réelle de la self énergie. A priori celle-ci est une fonction régulière
de l’énergie et elle pourrait être éliminée par une reparamétrisation du spectre des énergies. En y regardant de
plus près nous constatons que Re Σ diverge en dimension d > 1. Ce problème vient de la nature singulière des
corrélations du potentiel en δ de Dirac. La même difficulté apparâıt dans l’analyse de l’Hamiltonien −∆ + v δ(r)
en dimension d > 1. Une manière de donner un sens au problème a été proposée dans l’article [74]. Pour une
présentation détaillée du problème : problème 10.3 de mon livre [118].
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sens de τe, qui s’interprète comme la durée de vie de l’onde plane d’énergie E ∼ εF , i.e. le temps
pendant lequel la direction de l’impulsion est conservée (le module de l’impulsion est conservé
au cours des processus de collision sur le désordre statique). Il s’agit donc du temps de parcours
moyen élastique. On peut lui associer le libre parcours moyen élastique `e = vF τe, où vF est la
vitesse de Fermi.

Dans le régime de faible désordre

εF τe � 1 ou kF `e � 1 (IV.45)

l’énergie des électrons est bien supérieure au taux de probabilité pour quitter l’état quantique,
i.e. la notion d’état libre (d’onde plane) reste pertinente pour des temps t . τe. Dans ce cas
l’approximation de Born Σ(E) = Σ2(E) +O(w2) est justifiée. Fixant dorénavant E = εF , nous
écrivons :

1

2τe
' − Im ΣR

2 (εF ) = − w

Vol

∑
q

ImGR
0 (q) = πρ0w ⇒ 1

τe
= 2πρ0w (IV.46)

où ρ0 = − 1
π ImGR

0 (r, r) est la densité d’états au niveau de Fermi par unité de volume par canal
de spin.

- Exercice IV.5 : Montrer que, dans la limite de faible désordre, la fonction de Green dans
l’espace réel présente la structure

G
R

(r, r′) ' GR
0 (r, r′) e−R/2`e ∝ 1

R(d−1)/2
eikFR−R/2`e (IV.47)

où R = ||r − r′||. (Le calcul est simple en d = 1 et d = 3 ; en d = 2 il n’est valable que pour
kFR� 1 et correspond au comportement asymptotique d’une fonction de Bessel).

IV.D La conductivité à l’approximation de Drude

Nous commençons par plusieurs remarques permettant de simplifier (IV.29).

(i) Dans la pratique les fréquences correspondant à une situation expérimentale sont toujours
telles que ω � T (rappelons que T = 1 K correspond à une énergie 86 µeV et à une fréquence

20.8 GHz). Nous procédons à la substitution f(ε)−f(ε+ω)
ω → −∂f

∂ε .

(ii) D’autre part l’élargissement thermique ne joue aucun rôle dans la calcul de la conductivité
moyenne (ceci ne serait pas vrai si nous étudiions les fluctuations de la conductivité). Nous
fixons T = 0.

(iii) Dans le produit ∆G∆G = (GR − GA)(GR − GA), on peut montrer que seuls les termes
GRGA et GAGR apportent des contributions importantes, après moyenne. Finalement, notre
point de départ est 26 :

σ̃(ω) =
2se

2

2πm2

1

Vol

∑
k, k′

kx k
′
xG

R(k, k′; εF + ω)GA(k′, k; εF ) (IV.48)

La conductivité est donnée par un produit de fonctions de Green. La première chose la plus
simple à faire consiste à négliger les corrélations entre les deux fonctions de Green : GRGA '

26 Notons que ces trois hypothèses conduisent à Re σ̃(ω) ∝
∑
k,k′ kx k

′
x Re[GR(k, k′; εF + ω)GA(k′, k; εF )], ce

qui est un petit peu plus faible que (IV.48), sauf dans le cas ω = 0.
Dans la suite du chapitre, on pourra considérer que σ ∼ GRGA et oublier les termes GRGR et GAGA. No-
tons toutefois que ceci n’est plus vrai lorsque l’on considère la correction venant des interactions électroniques
(correction Altshuler-Aronov).
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G
R
G

A
. En utilisant GR(k, k′) = δk,k′G

R
(k), nous obtenons

σ̃(ω)
Drude

=
2se

2

2πm2

1

Vol

∑
k

k2
xG

R
(k; εF + ω)G

A
(k; εF ) (IV.49)

Le calcul de ce type de quantité est tout à fait standard et des expressions similaires apparâıtront
par la suite. Nous remplaçons k2

x par k2/d (isotropie de la relation de dispersion) puis k2 par
k2
F pour le sortir de la somme (ce qu’on peut justifier plus soigneusement en étudiant le calcul

ci-dessous).

Calcul de
∑

kG
R

(k)G
A

(k) : Nous détaillons le calcul de la quantité

w

Vol

∑
k

G
R

(k; εF + ω)G
A

(k; εF ) . (IV.50)

Le principe du calcul et les approximations s’appliqueront à d’autres quantités similaires.
Dans la limite de faible désordre εF τe � 1, la somme est dominée par les énergies voisines

de εF (rappelons que ω � εF ). Cette observation autorise deux approximations :

(i) On néglige la dépendance (lente) de la densité d’états en énergie 1
Vol

∑
k =

∫
ddk

(2π)d
=∫∞

0 dεk ρ(εk) −→ ρ0

∫∞
0 dεk où ρ0 désigne la densité d’états au niveau de Fermi ρ0 = ρ(εF ).

(ii) On étend l’intégrale sur l’énergie à tout R, ce qui permet une utilisation directe du théorème
des résidus.

On a donc

w

Vol

∑
k

G
R

(k; εF + ω)G
A

(k; εF ) ' wρ0

∫
R

dεk

(εF + ω − εk + i
2τe

)(εF − εk − i
2τe

)
. (IV.51)

On referme le contour d’intégration soit par le haut soit par le bas pour utiliser le théorème des
résidus. On obtient :

wρ0
2iπ

ω + i/τe

i.e.
w

Vol

∑
k

G
R

(k; εF + ω)G
A

(k; εF ) =
1

1− iωτe
(IV.52)

Remark on
∑

k εkG
R

(k)G
A

(k) : one might worry with the fact that the introduction of k2

make the integral divergent. Indeed, a naive power counting gives

1

Vol

∑
k

εkG
R

(k)G
A

(k) ∼
∫ ∞

dk kd−1 k
2

k4
=∞ for d > 2 ! (IV.53)

A more careful treatment is as follow (let us discuss the case d = 2 with constant DoS for
simplicity)

w

Vol

∑
k

εkG
R

(k; εF + ω)G
A

(k; εF ) = wρ0

∫ Λ

0
dε

ε

(ε− εω)(ε− ε∗0)
(IV.54)

where εω
def
= εF + ω + i/(2τ). I have introduced an upper cutoff Λ (remember that in a solid,

there is always the natural cutoff provided by the lattice, Λ ∼ ~2/(ma2)). Some simple algebra
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gives

wρ0

εω − ε∗0

∫ Λ

0
dε

[
ε

ε− εω
− ε

ε− ε∗0

]
=

wρ0

εω − ε∗0

∫ Λ

0
dε

[
εω

ε− εω
− ε∗0
ε− ε∗0

]
(IV.55)

=
wρ0

εω − ε∗0
(εω [ln(Λ− εω)− ln(−εω)]− ε∗0 [ln(Λ− ε∗0)− ln(−ε∗0)]) (IV.56)

Now we make use of the fact that Λ � all other scales and we use that ln(εF + ω) ' ln(εF )
since ω � εF . The dominant contributions εF ln Λ cancel. Be careful with the branch cut of
the logarithm. Finally, making use of 2πρ0wτ = 1, we conclude that

w

Vol

∑
k

εkG
R

(k; εF + ω)G
A

(k; εF ) =
1

1− iωτ

[
εF +

1

2
ω − i

2π
(ω + i/τ) ln(Λ/εF )

]
(IV.57)

The first term is the one given by the simple argument of the text (εk → εF in the integral).
The ω should be neglected. The only contribution of the cutoff is the logarithmic term ∼
1
τ ln(Λ/εF )� εF in the weak disorder regime, when εF τ � 1.

Conclusion : Finalement nous aboutissons à :

σ̃(ω)
Drude

=
2se

2

2πm2

k2
F

d
2πρ0τe

1

1− iωτe
=

2se
2τe
m

2εFρ0

d

1

1− iωτe
(IV.58)

Nous reconnaissons la densité électronique, n = 2s
2εF ρ0
d , et finalement

σ̃(ω)
Drude

=
σ0

1− iωτe
où σ0 =

ne2τe
m

(IV.59)

est la conductivité de Drude résiduelle (à T → 0). Nous avons donc retrouvé le résultat du
modèle semi-classique de Drude-Sommerfeld. Alors que la conductivité du système balistique
présente une divergence à ω → 0, σ̃(ω) ∝ i/ω, dont l’origine est le mouvement balistique des
électrons, 27 les collisions sur les défauts sont responsables d’une conductivité finie à fréquence
nulle.

Remarque : le résultat classique est non perturbatif.– Comme nous l’avions déjà noté
dans l’introduction, la conductivité de Drude est non perturbative dans le désordre :

σ0 ∝ τe ∝ 1/w . (IV.60)

Partant d’un résultat divergent à basse fréquence en l’absence de désordre, σ̃(ω) ∝ i/ω, il était
clair que la coupure de la divergence pour ω → 0 ne pouvait venir d’un calcul perturbatif. 28

- Exercice IV.6 : Montrer que la conductivité de Drude peut également se reécrire sous la
forme σ0 = 2se

2ρ0D (relation d’Einstein) où D = `2e/(τed) est la constante de diffusion. On
donne k−1

F = 0.85 Å(or), quelle est la distance parcourue par un électron balistique en 1 s ? On

donne `
(bulk)
e ' 4 µm et `

(film)
e ' 20 nm. Calculer D. Quelle est la distance parcourue par un

électron diffusif en 1 s ?

Effet de la température : à T 6= 0, le résultat (IV.59) doit être convolué par la dérivée d’une
fonction de Fermi−∂f/∂ε. Comme le résultat à T = 0K dépend faiblement de l’énergie (à travers
n et τe), la convolution est sans effet. Toutefois la température n’est pas sans effet. En effet,
nous venons de montrer que les collisions (élastiques) sur le désordre, induisent une conductivité
finie. Si les électrons sont soumis à d’autres processus de collission 29 (électron-phonon,...) la self

27 elle correspond à un comportement de la réponse impulsionnelle σ(t) ∝ θ(t), traduisant l’apparition d’un
courant constant (i.e. la conservation de l’impulsion des électrons) suite à une impulsion de champ électrique.

28 Le calcul perturbatif pourrait néanmoins être mené à ω finie (c’est ce qui est fait dans [103]).
29 autres que électron-électron qui conserve le courant total,
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énergie de la fonction de Green reçoit les contributions des différentes perturbations : désordre,
interaction électron-phonon, etc. Cela correspond à ajouter les taux de relaxation selon la loi
de Matthiesen

1

τ(T )
=

1

τe
+

1

τe−ph(T )
+ · · · (IV.61)

Le calcul de la conductivité conduit à σDrude = ne2τ
m .

Temps de vie et temps de transport.– Nous devons ici apporter une petite précision sur la nature

du temps de relaxation intervenant dans la conductivité. Nous avons introduit le temps de vie des états

électroniques comme : 1/τ = −2 Im ΣR = 2πρ0〈C(θ)〉θ, où C(θ)
def
=
∫

dr e−i(k′−k)rV(r)V(0) où θ est

l’angle entre les deux vecteurs k et k′ sur la surface de Fermi, ||k|| = ||k′|| = kF (à l’approximation

de Born, C(θ) est proportionnelle à la section efficace de diffusion dans la direction θ). Le temps qui

intervient dans la conductivité n’est en général pas ce temps mais le temps de relaxation de la vitesse

[103, 2, 3] : σ = ne2τtr
m (ceci est lié à la présence de kxk

′
x dans les relations (IV.29,IV.48)) ; ce temps est

appelé temps de transport 1/τtr = 2πρ0〈C(θ)(1− cos θ)〉θ. Dans le cas de la diffusion isotrope, C(θ) = w

n’a pas de structure et les deux temps cöıncident. Dans le cas de diffusion anisotrope (lorsque la fonction

de corrélation de V présente une structure), les deux temps peuvent toutefois différer notablement τtr > τ .

Cette discussion s’applique au cas de la diffusion électron-phonon (chap. 26 de [17]) : le temps de collision

électron-phonon est τe−ph ∝ T−3 mais la diffusion est fortement anisotrope à basse température (� ωD,

la coupure de Debye) et le temps de transport correspondant est τe−ph, tr ∝ T−5 ce qui conduit à la

résistivité ρ(T ) = 1/σ(T ) ' 1/σ0 + C T 5 pour T � ωD (loi de Bloch-Grüneisen).

Drude conductance.– We can relate the Drude conductivity to the conductance G = σ0s/L
where s is the cross section of the wire and L its length. It will be useful to introduce the
dimensionless conductance g defined by

G =
2se

2

h
g . (IV.62)

We first consider the 1D case (long narrow wire) :

gDrude =
h

2se2

σ0s

L
∼ ~kF

m
τe︸ ︷︷ ︸

=`e

kd−1
F s

L
(IV.63)

where we have used n ∼ kdF where d is the real dimensionality of the system. We recognize
Nc ∼ kd−1

F s, the number of conducting channels (i.e. number of open transverse modes of the
wire with energy smaller than εF ). Finally the dimensionless conductance can be written as the
ratio of two lengths

gDrude ∼
Nc`e
L

(quasi 1D) (IV.64)

The length at the numerator ξloc ∼ Nc`e is the localisation length in weakly disordered wire
[20]. So the validity of the treatment is L� ξloc i.e.

gDrude � 1 (IV.65)

The 2D case (plane in a 2DEG or thin metallic film) can be analysed by setting s = bL in
the previous expressions where b is the thickness (set b = 1 for the plane, in d = 2). We get

gDrude ∼ kF `e kd−2
F b (2D) (IV.66)

In d = 2 (in a DEG) the Drude dimensionless conductance is simply proportional to the large

parameter kF `e : gplane
Drude ∼ kF `e.
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IV.E Corrélations entre fonctions de Green

Nous avons retrouvé le résultat semi-classique en négligeant les corrélations entre les fonctions

de Green dans l’équation (IV.48), i.e. en écrivant GRGA ' GR
G

A
. Nous souhaitons maintenant

étudier l’effet des corrélations entre fonctions de Green sur la conductivité moyenne. Il convient
d’identifier quel type de corrections est dominant. À cette fin nous commençons par donner
la représentation diagrammatique de (IV.48), que nous dessinons comme une bulle (figure 26)
constituée par les deux fonctions de Green. Les lignes ondulées représentent les éléments de
matrice de l’opérateur courant moyen, ekx/m et ek′x/m, et nous rappellent que la conductivité
est une fonction de corrélation courant-courant.

!F

!F

k’k
+"

k k’

Figure 26: Représentation diagrammatique d’une correction perturbative pour la conductivité
moyenne donnée par l’équation (IV.48). Les lignes continues (tirés) représentent des fonctions

de Green retardées G
R

(avancées G
A

). Les lignes ondulées représentent l’opérateur de courant
(ekx/m et ek′x/m). Les lignes pointillées reliant les lignes retardées et avancées correspondent
à corréler les fonctions de Green GR et GA dans l’équation (IV.48).

Dans le cas du terme de Drude les lignes de fonctions de Green sont les fonctions de Green

moyennes G
R

et G
A

. Les corrélations entre fonctions de Green sont représentées par des dia-
grammes dans lesquels les lignes de fonctions de Green retardée et avancée sont couplées par
des lignes d’impureté (figure 26).

! Légère modification des règles de Feynman pour la conductivité ! .– Dans
les diagrammes, les lignes de fonctions de Green seront désormais des fonctions de Green

moyennes, G
R

et G
A

(au lieu des fonctions de Green libres), ce qui est une manière de
resommer une partie des diagrammes ne couplant pas les fonctions retardées et avancées.

Transport classique et localisation faible : présentation heuristique

Nous avons déjà noté au cours du calcul de la conductivité à l’approximation de Drude que
les résultats intéressants sont non perturbatifs et correspondent à resommer certaines classes de
diagrammes décrivant la physique de la diffusion. La question est donc d’identifier les classes
de diagrammes qui apportent les corrections dominantes. Pour cela nous faisons une petite
digression et donnons une image plus qualitative de l’étude du transport dans un métal diffusif.
Lorsqu’on étudie la conductance d’un système relié à deux contacts, on peut montrer que la
conductance est reliée à la probabilité de traverser le système. Cette probabilité s’exprime
comme le module carré d’une somme d’amplitudes de probabilité :

G =
2se

2

h
g ∼ 2se

2

h

∣∣∣∑
C
AC
∣∣∣2 (IV.67)

où la somme porte sur tous les chemins C allant d’un contact à l’autre, pour un électron d’énergie
εF . La conductance adimensionnée est notée g. Cette formulation des propriétés de transport
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peut être rendue rigoureuse, c’est l’approche de Landauer-Büttiker. La relation avec la formule
de Kubo se comprend en remarquant que l’amplitude AC est associée à la fonction de Green
retardée, et l’amplitude conjuguée A∗C à la fonction de Green avancée (formule de Fisher &
Lee GR(contact 1 ←contact 2; εF ) ∼

∑
C AC) : cette expression de la conductance possède la

structure g ∼ |GR(contact 1←contact 2; εF )|2 ∼ GRGA.
Dans le cas d’un métal faiblement désordonné (kF `e � 1), la somme porte sur les chemins de

collisions sur les impuretés. La phase d’une amplitude associée à un de ces chemins de collision
est proportionnelle à la longueur `C du chemin de diffusion : AC ∝ eikF `C .

La conductance moyenne est donnée en moyennant l’expression :

g ∼
∑
C
|AC |2︸ ︷︷ ︸

classique

+
∑
C6=C′
ACA∗C′︸ ︷︷ ︸

quantique

(IV.68)

Le premier terme, la somme des probabilités, doit correspondre au terme classique (Drude).
C’est le terme dominant car donné par une somme de termes positifs. En revanche le terme
d’interférences (quantique) est une somme de termes portant des phases ACA∗C′ ∝ eikF (`C−`C′ ).
On comprend que ce type de contributions a d’autant plus de mal à survivre à la moyenne sur le
désordre que la différence `C−`C′ est grande (le terme classique |AC |2 domine car les deux chemins
correspondent à la même séquence de collisions (figure 27)). Une façon de minimiser la différence
des longueurs est de considérer une séquence de collisions identiques au milieu de laquelle on
introduit un croisement. 30 Cette construction fait apparâıtre une boucle à l’intérieur de
laquelle une des trajectoires est renversée (figure 27). Ce terme décrit l’interférence entre deux
trajectoires diffusives renversées : dans la boucle, les deux trajectoires subissent les collisions
dans l’ordre inverse, ce qui correspond aux diagrammes maximallement croisés (figure 28) que
nous analyserons. À cause du croisement les phases des deux amplitudes diffèrent légèrement et
cette contribution est petite (une bonne introduction est donnée au chapitre 1 de [2, 3]).

C

C
A
RContact 1 Contact 2

CC’

R
AContact 1 Contact 2

Figure 27: À gauche :contribution au terme classique
∑
C |AC |2. À droite : contribution au

terme quantique
∑
C6=C′ ACA∗C′ qui minimise `C − `C′. La boucle décrit l’interférence quantique

de trajectoires renversées.

IV.F Diagrammes en échelle – Diffuson (contribution non cohérente)

Nous venons de montrer par des arguments heuristiques que les séquences de collisions identiques
jouent un rôle important. Si nous traduisons les diagrammes de la figure 27 pour des conduc-
tivité, le diagramme de gauche prend la forme des diagrammes en échelle (“ladder diagrams”) :

σ(ω)
Diffuson

= ...+++ (IV.69)

30 Rigoureusement, le croisement devrait être décrit par une “bôıte de Hikami”.
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Chaque contribution peut être analysée facilement à l’aide des règles de Feynman énoncées plus
haut. À ce stade il est instructif d’analyser précisément le second diagramme :

1

k
1

k
1

k
1
−

k

k’

k’

k

k

k
’−

k ∼
∑
k, k′

kxk
′
xG

R
(k)G

A
(k)

w

Vol

∑
k1

G
R

(k1)G
A

(k1)︸ ︷︷ ︸
Λ(0,ω)

w

Vol
G

R
(k′)G

A
(k′)

où les fonctions retardées sont prises à énergie εF + ω et les avancées à εF .
La série de diagrammes en échelles, i.e. le milieu de la bulle de conductivité (IV.69)

Γd(q, ω) =

k k’

k+q +qk’

k1 k2

k +q1 k +q2k +q1

k1

+ + + ...= , (IV.70)

est appelé le Diffuson. Une impulsion supplémentaire q a été introduite dans les fonctions de
Green retardées, ce qui sera utile pour la suite. Il est facile de voir que Γd obéit à l’équation
de Bethe-Salpether

Γd(q, ω) =
w

Vol
+ Λ(q, ω) Γd(q, ω) , (IV.71)

où Λ(q, ω) est le bloc élémentaire

Λ(q, ω)
def
=

w

Vol

∑
k

G
R

(k + q; εF + ω)G
A

(k; εF ) =

+qk

k

(IV.72)

Autrement dit, Γd correspond à une série géométrique que nous resommons :

Γd(q, ω) =
w

Vol

1

1− Λ(q, ω)
(IV.73)

- Exercice IV.7 Calcul de Λ(q, ω) : Nous calculons Λ(q, ω) dans la limite q → 0 et ω → 0.

Vérifier que G
R

(k+ q; εF +ω) = G
R

(k) + (vk · q−ω)[G
R

(k)]2 + (vk · q)2[G
R

(k)]3 + · · · où toutes
les fonctions de Green du membre de droite sont prises à énergie de Fermi ; vk = k/m (on

admettra que le terme εq[G
R

(k)]2 d’ordre q2 peut être négligé, ainsi que le terme ω2). Comme

nous l’avons signalé, les quantités w
Vol

∑
k[G

R
(k)]n [G

A
(k)]m se calculent aisément en faisant

1
Vol

∑
k → ρ0

∫
R dεk puis en utilisant le théorème des résidus. 31 En déduire que

Λ(q, ω) = 1 + iωτe − q2`2e/d+ · · · (IV.75)

Ce résultat sera utilisé à plusieurs reprises.

Validité de l’approximation : ωτe � 1 et q`e � 1

31 Hikami boxes : the diagram contains little “boxes” of short range nature with several Green’s functions.
They can be computed by using the following useful integrals

fn,m
def
=

w

Vol

∑
k

[G
R

(k)]n [G
A

(k)]m = i−n+m
(n+m− 2)!

(n− 1)!(m− 1)!
τn+m−2
e . (IV.74)
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Approximation de la diffusIon – Pôle de diffusion.– D’après (IV.75), nous voyons que,
dans la limite ωτe � 1 et q`e � 1, le Diffuson cöıncide avec la fonction de Green de l’équation
de diffusion :

Γd(q, ω) ' w

Vol

1/τe
−iω +Dq2

def
=

w

Vol

1

Dτe
P̃d(q, ω) (IV.76)

Nous comprenons qu’il n’est pas possible de tronquer la série perturbative (IV.70) à un ordre
donné car la limite q → 0 et ω → 0 nous conduit au bord du domaine de convergence de la série
géométrique Γd = w

Vol

∑∞
n=0 Λn.

Nous sommes en mesure de calculer la contribution des diagramnes en échelle à la conduc-
tivité

σ(ω)
Diffuson

=
2se

2

2πm2

1

Vol

∑
k,k′

kx k
′
x |G

R
(k)|2 Γd(0, ω) |GR

(k′)|2 (IV.77)

L’isotropie de la relation de dispersion conduit à 1
Vol

∑
k kx |G

R
(k)|2 = 0 et donc

σ(ω)
Diffuson

= 0 (IV.78)

Ce résultat s’interprète facilement : rappelons-nous que la conductivité est reliée à constante
de diffusion, i.e. à la fonction de corrélation de la vitesse σ ∼ D =

∫∞
0 dt 〈vx(t) vx〉 (ce que

nous rappelle la présence de kxk
′
x dans (IV.48)). Le Diffuson (IV.70) décrit une séquence de

collisions arbitrairement grande, après laquelle la mémoire de la direction initiale de la vitesse
est perdue. 32

Remarque : pôle de diffusion et conservation du courant.– Le comportement de Γd
est la signature de la nature diffusive des trajectoires électroniques dans le métal (on pourrait
s’en convaincre en calculant la fonction de réponse densité-densité du métal qui est reliée au

Diffuson χ0(q, ω) ' −ρ0
Dq2

−iω+Dq2
[6] ; cette remarque permet de relier le pôle de diffusion à la

conservation du nombre de particules [134]).

- Exercice IV.8 Conductivité non locale : Nous discutons l’importance de l’ordre des
limites limq→0 et limω→0. Si le système est soumis à un champ inhomogène, la réponse sera
caractérisée par une conductivité non locale ja(r, t) =

∫
dt′
∫

dr′ σab(r, t; r
′, t′) Eb(r′, t′). Nous

considérons sa transformée de Fourier σ(q, ω). On admet que la conductivité moyenne à q 6= 0 est

donnée par : σxx(q, ω) = 2se2

2πm2
1

Vol

∑
k,k′ kx k

′
xG

R(k + q, k′ + q; εF + ω)GA(k′, k; εF ). Montrer

que la contribution des diagrammes en échelle (le Diffuson) est σxx(q, 0)
Diffuson

= −σ0
q2x
q2

(qui

diffère donc de σxx(0, ω)
Diffuson

= 0).
Indication : En utilisant les mêmes approximations que dans l’exercice IV.7, montrer que
w

Vol

∑
k kxG

R
(k + q)G

A
(k) ' −ikF `ed qx.

IV.G Quantum (coherent) correction : weak localisation

The discussion of the introduction, § IV.A, has underlined the importance of interferences be-
tween time reversed diffusive electronic trajectories. Starting from the Landauer picture of
quantum transport, we have reformulated more precisely this idea in § IV.E. This discussion has
emphasized the role of maximally crossed diagrams : 33 interference of reversed diffusive trajec-
tories corresponds to follow the same sequence of scattering events in reversed order (figure 28)

After twisting the diagram of the left part of Fig. 28, the structure of the central bloc is very
similar to the one involved in the Diffuson (right part of Fig. 28), up to a change in the relative

32 Notons que dans le cas où la diffusion est anisotrope, la contribution du Diffuson est non nulle. Elle fait
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+ ...+ = ≡
!c

Figure 28: Contribution of maximally crossed diagrams (Cooperon) σ(ω)
Cooperon

.

directions of the two Green’s function lines. It is useful to study carefully the structure of the
first diagram :

k’

k−k
k’ 1

k’

k

k

k +k+k’
1

∼
∑
k, k′

kxk
′
xG

R
(k)G

A
(k)

w

Vol

∑
k1

G
R

(k1 + k + k′)G
A

(−k1)︸ ︷︷ ︸
Λ(k+k′,ω)

w

Vol
G

R
(k′)G

A
(k′)

where retarded and advanced lines carry energies εF + ω and εF , respectively. This analysis
makes clear that the series of maximally crossed diagrams is also a geometric series involving
the quantity Λ(k + k′, ω) computed above :

Γc(Q = k + k′, ω) =

k k

k’k

k+ k’−

k k’

k’ k’

+ + ...==

k
1

k
1

(IV.79)

(the single impurity line was already included in the Diffuson). As a consequence, the calculation
is similar, and the resummation of the ladder diagrams is obtained by replacing the wave vector
q in the Diffuson (IV.70) by k + k′. This new object is named the Cooperon. As for the
Diffuson, the Cooperon presents a diffusion pole when Q = k + k′ → 0 :

Γc(Q,ω) =
w

Vol

Λ(Q,ω)

1− Λ(Q,ω)

def
=

w

Vol

1

Dτe
P̃c(Q,ω) ' w

Vol

1/τe
−iω +DQ2

. (IV.80)

Introducing the Cooperon in (IV.48) we obtain the structure

σ̃(ω)
Cooperon

=
2se

2

2πm2

1

Vol

∑
k, k′

kx k
′
x |G

R
(k)|2 Γc(k + k′, ω) |GR

(k′)|2 . (IV.81)

Contrary to the Diffuson contribution, where the sequence of scattering events on the disorder
decouples the incoming wavevector k′ to the outgoing one k, now the diffusion pole of the
Cooperon constraints the two wave vectors to be opposite. The diffusion approximation requires
a small momentum ||Q|| � 1/`e ; because the two momenta are on the Fermi surface ||k|| '
||k′|| ' kF � 1/`e, the sum over k and k′ is dominated by k + k′ ' 0 :

∑
k, k′

kx k
′
x |G

R
(k)|2 Γc(k + k′, ω) |GR

(k′)|2 ' −
k2
F

d

∑
k

|GR
(k)|4

∑
Q

Γc(Q,ω) (IV.82)

apparâıtre le temps de transport τtr lorsqu’elle est ajoutée à la contribution de Drude [2, 3].
33 Much before the development of the theory of weakly disordered metals by Altshuler, Aronov, Khmelniskii,

Lee, Stone, Anderson, etc in the early 1980’, the importance of maximally crossed diagrams was recognised by
Langer & Neal [82]
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The fact that σ̃(ω)
Cooperon

is dominated by the contribution of momenta such that k ' −k′ is
a manifestation of the enhancement of back-scattering of electrons, due to interferences of
reversed diffusive trajectories. This is the origin of the minus sign of the Cooperon’s contribution
to the conductivity, i.e. this is indeed a localisation effect.

- Exercice IV.9 : Check that f2,2 = w
Vol

∑
k |G

R
(k)|4 = 2τ2

e .

Using the result of exercice IV.9, and introducing the notation

∆σ(ω)
def
= σ̃(ω)

Cooperon ' σ̃(ω)− σ̃(ω)
Drude

(IV.83)

(the Cooperon contribution is the dominant correction to the classical result). We find

∆σ(ω) = −2se
2

π~
1

Vol

∑
Q

P̃c(Q,ω) where P̃c(Q,ω) =
1

−iω/D +Q2
(IV.84)

If we set the frequency to zero, the correction to the static conductivity seems at first sight
to involve a divergent quantity : ∆σ(ω = 0) = −2se2

π~
1

Vol

∑
QQ

−2. As usual, the occurence of
a divergence hides interesting physical phenomenon : this physical (measurable) observable is
controlled by the cutoffs. The large scale cutoff, which dominates in low dimensions (d 6 2) is
the interesting quantity.

Remark : Kubo vs Landauer and current conservation.– The comparison of the max-
imally crossed conductivity diagrams of Fig. 28 with the real space diagram of Fig. 27 leads
to the question of the precise correspondence, since the latter diagrams present two additional
Diffuson legs. The answer to this question lies in the connection between the Landauer picture
(conductance) and the Kubo picture (local conductivity), with some interesting relation to the
fundamental question of current conservation. This has been discussed in our paper [125] where
the weak localisation correction to the non local conductivity was constructed (in real space).

1) Small scale cutoff

The derivation of (IV.84) has involved several approximations : first of all, assuming weak disor-
der kF `e � 1, we have argued that the quantum correction to the conductivity is dominated by
the maximally crossed diagram (Ladder approximation). Then, the Diffuson and the Cooperon
were computed in the diffusion approximation, i.e. for

||Q|| � 1/`e . (IV.85)

This provides a first ultraviolet cutoff in the calculation of (IV.84). There remains the problem

of the infrared divergence ∆σ(ω = 0) = −2se2

π~
∫ 1/`e ddQ

(2π)d
Q−2, in low dimension d 6 2.

2) Large scale cutoff (1) : the system size

In a real situation, the transport is studied in finite size system. For example, if we consider a
transport in the Ox direction through a rectangular piece of metal of size Lx×Ly×Lz (Fig. 29),
when solving the diffusion equation, we must account for the geometry of the system ; as a con-
sequence the wavevectors are quantized. In order to account for the electric contacts (transport
experiment), we use the following phenomenological prescription : we assume Dirichlet bound-
ary condition in the Ox direction (absorbing boundary conditions for an electron touching one
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contact) and Neumann boundary conditions in the two other directions (reflexion boundary
conditions) :

Q =

(
πnx
Lx

,
πny
Ly

,
πnz
Lz

)
with nx ∈ N∗, ny ∈ N, nz ∈ N (IV.86)

I

Lx

L y

Lz

I

Figure 29: A metallic wire.

a) Wire (1D).– In the very asymmetric case Lx � Ly, Lz (quasi-1D geometry) we can neglect
the contributions of the transverse components of the wave vector :

∆σ(ω = 0) = −2se
2

π~
1

LxLyLz

∞∑
nx=1

1

(nxπ/Lx)2
= −2se

2

π~
Lx
LyLz

1

6
. (IV.87)

We prefer to translate the result in terms of the dimensionless conductance

g =
σ

2se2/h

LyLz
Lx

, (IV.88)

from which we get the universal weak localisation correction

∆g = −1

3
(IV.89)

independent on the material properties. This universal contribution to the mean conductance
must be compared to the large classical Drude conductance gD ∼ Nc`e/L� 1 (where Nc is the
number of conducting channels).

b) Plane (2D).– In the quasi 2D geometry L = Lx = Ly � Lz (thin film), the details of the
wave vector quantization are inessential and we can write

∆σ(ω = 0) = −2se
2

π~
1

Lz

∫
1/L<|| ~Q||<1/`e

d2 ~Q

(2π)2

1

~Q 2
= −2se

2

π~
1

Lz

1

2π

∫ 1/`e

1/L

dQ

Q
(IV.90)

In the 2D case, the weak localisation is controlled both by the short scale cutoff, `e, and by the
large scale cutoff, L. We get

∆σ(ω = 0) ' −2se
2

π~
1

Lz

1

2π
ln(L/`e) (IV.91)

therefore

∆g ' − 1

π
ln(L/`e) (IV.92)
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c) Bulk (3D).– In 3D, we consider a cubic box of size L = Lx = Ly = Lz

∆σ(ω = 0) = −2se
2

π~

∫
1/L<|| ~Q||<1/`e

d3 ~Q

(2π)3

1

~Q 2
= −2se

2

π~
1

2π2

∫ 1/`e

1/L
dQ = −2se

2

h

1

π2

(
1

`e
− 1

L

)
.

(IV.93)
Finally

∆g ' − 1

π2

(
L

`e
− 1

)
. (IV.94)

Note that in this case, contrary to the 2D case, the prefactor depends on the detail of the
regularization of the sum over Q.

3) Large scale cutoff (2) : the phase coherence length

Weak localisation correction arises from the (quantum) interferences of reversed trajectories,
i.e. is a coherent phenomenon. The results obtained in the previous paragraph hence describe
systems (of size L) fully coherent. In practice, phase coherence is extremely fragile and is
only preserved over lengths smaller than the phase coherence length Lϕ. This length is of
fundamental importance since it set a frontier between the semi-classical transport regime, where
quantum interferences are negligible, 34 and the quantum regime, where transport properties
depend on the wave nature of the electrons.

φ

φ

φ

φ
0

e
−

I( ) ⇒
’

φ

Figure 30: Aharonov-Bohm oscillations in a metallic ring. Aharonov-Bohm oscillations
realises the Young experiment. Oscillating curve is the magnetoconductance. From [140].

We can obtain a direct estimation of the phase coherence length with an experimental setup
realizing the principle of the Young experiment : the Aharonov Bohm (AB) ring (Fig. 30). The
geometry of the ring defines two paths and the interference fringes are revealed by changing the
magnetic field. One observes regular oscillations of the conductance with a period in magnetic
field corresponding to one quantum flux φ0 = h/e in the ring. The amplitude of the AB
oscillations can be studied as a function of the temperature (Fig. 31) : the experimental result
(for a ring of perimeter L ' 0.9 µm) shows that oscillations are only visible below few Kelvins.
We can keep in mind the typical value for the phase coherence length

Lϕ(T ∼ 1 K) ∼ 1 µm .

34 Eventhough the effect of quantum interferences has disappeared above few Kelvins, the electronic transport
is not really classical : up to high temperatures, the dynamics of the electron liquid in a metal is completly
dominated by the Pauli principle (the Fermi-Dirac distribution).

88



Figure 31: Aharonov-Bohm amplitude. The study of AB amplitude as a function of tem-
perature in a Gold ring (diameter 285 nm) with wire width 37 nm ; R ' 76 Ω. AB amplitude
(right) is obtained by averaging over 45 h/e periods (i.e. B ∈ [−1.1 T,+1.1 T]). From [137].

As decoherence arises from interaction between a given electron (the interfering wave) and
other degrees of freedom (phonons, other electrons, etc), it is rather complicate to modelize
(see chapters IX and X). We will limit ourselves, in a first time, to introduce decoherence
within a simple phenomenological description corresponding to the elimination of trajectories
spreading over scale larger than the phase coherence length Lϕ.

Remembering that 1/(−iω+DQ2) is a propagator, a natural way to introduce a cutoff is to
shift the pole by a rate 1/τϕ (now setting ω = 0), i.e. a “mass” term in the diffusion propagator :

∆σ = −2se
2

π~
D

Vol

∑
Q

1

DQ2
−→ ∆σ = −2se

2

π~
D

Vol

∑
Q

1

DQ2 + 1/τϕ
(IV.95)

where L2
ϕ = Dτϕ.

We can shed light on this substituion by reformulating the calculation of the weak localisation
correction in a time-space representation. The expression (IV.95) can be understood as a trace
of the diffusion propagator integrated over all time scale

∆σ = −2se
2

π~
D

∫ ∞
0

dt

∫
dr

Vol
Pt(r|r)︸ ︷︷ ︸

Pc(t)
def
=

where Pt(r|r′) = 〈r |etD∆|r′ 〉 (IV.96)

solves (∂t − D∆)Pt(r|r′) = δ(t)δ(r − r′). The space averaged return probability Pc(t) counts
the number of closed diffusive trajectories for a given time scale t. This representation makes
clear how the large scales can be eliminated : we simply cut the integral at the time τϕ, where
Lϕ =

√
Dτϕ. The most natural way is to introduce an exponential in the time integration 35

∆σ = −2se
2

π~
D

∫ ∞
0

dtPc(t) e−t/τϕ (IV.97)

Meanwhile, we can also eliminate the shortest scale contributions (< `e), where the diffusion

35This is justified within microscopic models of decoherence or dephasing. See chapter 6 and 7 of [3].
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approximation ceases to be valid, by introducing another exponential :

∆σ = −2se
2

π~
D

∫ ∞
0

dtPc(t)
(

e−t/τϕ − e−t/τ̃e
)

with Pc(t)
def
=

∫
dr

Vol
Pt(r|r) , (IV.98)

where τ̃e = `2e/D = τed (we have introduced this new scale to have an expression symmetric with
τϕ = L2

ϕ/D). This new representation (IV.98) will be very convenient for subsequent analysis.

Remark : Real space derivation : A direct real space derivation of the result (IV.98) is
possible. It can be found in chapters 4 and 7 of the book [2, 3].

Simple applications.– As an application we immediatly obtain the weak localisation in the
1D and 2D case by using that the return probability is simply 36

Pc(t) =
1

(4πDt)d/2
. (IV.99)

Using the integral ∫ ∞
0

dt
e−at − e−bt

td/2
= Γ

(
1− d

2

) [
a
d
2
−1 − b

d
2
−1
]

(IV.100)

we deduce the weak localisation correction

∆σ = −2se
2

h

2 Γ
(
1− d

2

)
(4π)d/2

(
L2−d
ϕ − `2−de

)
. (IV.101)

a) The narrow wire

We first consider the case of a long (quasi-1D) wire :

∆σ = −2se
2

h
(Lϕ − `e) ' −

2se
2

h
Lϕ in d = 1 (IV.102)

i.e. the WL correction to the dimensionless conductance

∆g = −Lϕ
L

(IV.103)

For L ∼ Lϕ we recover the result of the coherent wire ∆g ∼ −1, Eq. (IV.89).

b) The plane (or the thin film)

The 2D case can be simply studied by dimensional regularization d = 2(1 − ε) with ε → 0.
Remembering that Γ(ε) ' 1/ε, we find the logarithmic behaviour

∆σ = −2se
2

h

1

π
ln(Lϕ/`e) in d = 2 (IV.104)

i.e.

∆g = − 1

π
ln(Lϕ/`e) (IV.105)

We may again check that at the crossover L ∼ Lϕ we recover the result of the coherent plane
Eq. (IV.92). Contrary to the 1D case, controlled by the large scale cutoff only, both short scale
and large scale cutoffs appear in the 2D result.

36 We omit the section of the film for d 6 2 ; in principle we should write Pc(t) = 1

(4πDt)d/2W3−d where W is

the thickness of the film (d = 2) and W 2 the cross-section of the wire (d = 1).
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c) The 3D bulk

Finally, we mention the result in 3D for the sake of completeness

∆σ = −2se
2

h

1

2π

(
1

`e
− 1

Lϕ

)
in d = 3 (IV.106)

However we recall that the typical order of magnitudes for the elastic mean free path in bulk

makes the coherent properties unlikely to be in the diffusive regime (recall that in Gold `
(bulk)
e '

4 µm most surely exceeds Lϕ in usual situations). The related correction to the dimensionless
conductance is (square box)

∆g = − 1

2π

(
L

`e
− L

Lϕ

)
. (IV.107)

Note that the prefactor 1/(2π) differs from the one found above for the coherent wire, Eq. (IV.94),
the reason being that we used different regularizations in the two cases (the prefactor depends
on regularisation in d = 3 but not in d 6 2).

4) A pratical question : How to identify the WL ?

In d 6 2, the fact that (IV.84) exhibits an infrared (large scales) divergence has required a
regularization of the sum, what makes the weak localisation ∆g strongly dependent on Lϕ (we
mean that the dominant term of ∆g depends on Lϕ). The measurement of the WL provides
therefore a direct information on the phase coherence length. On the other hand, in d = 3, only
the subdominant term of the WL depends in Lϕ ; the WL is therefore not a good tool to probe
phase coherence in this case.

The WL is a very small correction to the classical conductance. The question is : how
can we identify the WL correction (. 1 %) on the top of a large conductance G =
GDrude+∆Gquantum ? Obviously, one should vary some parameter on which the WL depends.

Because decoherence is activated by increasing the temperature, a first natural suggestion
would be to study the temperature-dependence of the conductance. This is however not a good
idea for the reason that the WL is not the only temperature-dependent quantum correction
to the conductivity. We will see (chapter X) that the conductivity receives another correction
from the electronic interactions, named the Altshuler-Aronov (AA) correction. This has led to
some confusion in the analysis of the first measurements of temperature-dependent quantum
corrections to transport (like in Ref. [66]).

Another possibility is to vary the magnetic field, on which the WL depends, as we explain
below, but not the AA correction ∆Gee. In summary, the low field and low temperature con-
ductance may be written as

G(B, T ) = GDrude + ∆GWL(B, Lϕ(T ))︸ ︷︷ ︸
weak loc. corr.

+

Altshuler-Aronov corr.︷ ︸︸ ︷
∆Gee(T ) (IV.108)

The understanding of the WL’s magnetic-field dependence is thus a crucial issue in order to
identify the WL correction and extract the phase coherence length. This has been used in many
experiments in thin films [26] and narrow wires [108].

5) Magnetic field dependence – Path integral formulation

We have shown that the WL correction is related to the interference of time reversed trajectories,
what we write schematically as

∆σ ∼ −
∑
C
AC A∗C̃ , (IV.109)
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where C̃ is the reversed trajectory. In the presence of a weak magnetic field (recall that usual
magnetic field are not able to bend significantly the electronic trajectories on the scale `e), an
amplitude receives an additional magnetic phase :

AC = |AC | eikF `C e
ie
~
∫
C d~r· ~A . (IV.110)

The magnetic phase remains unchanged under the combination of complex conjugation and time
reversal, therefore the pair of amplitudes carries twice the magnetic phase

AC A∗C̃ =
∣∣AC A∗C̃∣∣ exp

{
2ie

~

∮
C

d~r · ~A(~r)

}
(IV.111)

This discussion, in the spirit of § IV.E, can be made precise by reformulating the analysis
of the Cooperon in time representation, Eq. (IV.98), within the frame of path integration. The
diffusion propagator has the path integral representation

Pt(~r|~r ′) =

∫ ~r(t)=~r

~r(0)=~r ′
D~r(τ) e−

1
4D

∫ t
0 dτ
(

d~r(τ)
dτ

)2
(IV.112)

where the integral corresponds to a summation over all diffusive paths ~r(τ) going from ~r ′ to ~r

with the Wiener measure D~r(τ) exp
[
− 1

4D

∫ t
0 dτ

(d~r(τ)
dτ

)2]
. The form of the measure ensures

that paths, which are Brownian motions, are continuous (i.e. the discontinuous functions in the
integral have zero weight) but is not differentiable. The path integral (IV.112) corresponds to a
summation over all diffusing electronic trajectories for a given time scale, i.e. for loops with a
given number of collisions 37 t/τe. In Eq. (IV.98), the remaining integral over time realises the
summation over the trajectories length :

∑
C
AC A∗C̃ −→

∫ ∞
τ̃e

dt

∫ ~r(t)=~r

~r(0)=~r
D~r(τ) e−

∫ t
0 dτ 1

4D
~̇r(τ)2 (IV.113)

(the time integral is cut off at the time τ̃e = `2e/D below which the diffusion approximation
breaks down).

The path integral representation (IV.112) allows us to add in a natural way the contribution
of the magnetic phase. We obtain the path integral representation of the Cooperon

Pt(~r|~r) =

∫ ~r(t)=~r

~r(0)=~r
Dr(τ) e−

∫ t
0 dτ
[

1
4D
~̇r(τ)2+ 2ie

~
~A(~r)·~̇r(τ)

]
. (IV.114)

From this representation, we deduce that Pt(~r|~r ′) solves[
∂

∂t
−D

(
~∇− 2ie

~
~A(~r)

)2
]
Pt(~r|~r ′) = δ(t) δ(~r − ~r ′) (IV.115)

The presence of the charge 2e reminds us that the Cooperon is a two particle propagator in the
particle-particle channel, which is the reason for the terminology “Cooperon”.

37 In a time t, an electron experiences t/τe collisions, i.e. the time t corresponds to trajectories of length
`C = `e (t/τe) = dDt/`e. The Brownian motion is the continuum limit of the random walk on defects, `e → 0 ; in
this limit the length of the Brownian curve is infinite `C ∝ t/`e →∞.
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Summary.– The weak localisation correction will be conveniently computed with the space-
time representation (IV.98) with (IV.115). The time integral can be performed to obtain the
useful representation

∆σ = −2se
2

π~

∫
dd~r

Vol
Pc(~r, ~r) (IV.116)

where the Cooperon is the Green’s function of a diffusion-like operator

Pc(~r, ~r
′) = 〈~r | 1

1/L2
ϕ −

(
~∇− 2ie

~
~A(~r)

)2 |~r ′ 〉 (IV.117)

In pratice, this means that the Cooperon is given by solving the equation[
1

L2
ϕ

−
(
~∇− 2ie

~
~A(~r)

)2
]
Pc(~r, ~r

′) = δ(~r − ~r ′) (IV.118)

The connection between these representation and the time-space representation is obviously
established through the transformation

Pc(~r, ~r
′) =

∫ ∞
0

dt e−t/τϕ Pt(~r|~r ′) .

Magneto-conductance in a narrow wire.– A precise study of the magneto-conductance of
a narrow wire could be done : we only give here a first qualitative description of the magnetic-
field dependence of the WL correction ∆g(B).

We first notice that we expect a quadratic weak magnetic field dependence (this results from
the fact that the WL involves a propagator at coinciding point, spatially integrated ; hence it
must be a symmetric function of B) :

∆g(B) '
B→0

∆g(0) + cB2 (IV.119)

with c > 0 (this is the positive – anomalous – magneto-conductance, cf. TD 4).
The large field behaviour is obtained as follows : the presence of the B field adds the magnetic

phase (IV.111) to the contributions of the reversed electronic trajectories. The presence of this
phase is responsible for an effective B-dependent cutoff since it eliminates all trajectories
encircling a magnetic flux larger that the quantum flux φ0 = h/e. For a given time scale t, a
diffusive trajectory typically spreads over a distance Lt ∼

√
Dt along the wire. If the wire has

a width W , the trajectory typical encloses a magnetic flux Φ ∼ BWLt. Contributions of the
trajectories such that Φ ∼ BWLt & φ0 are eliminated, what gives the cutoff

LB ∼
~

e|B|W
(narrow wire) . (IV.120)

For LB < Lϕ, the dominant cutoff is the magnetic field, hence we should perform the substitution
Lϕ → LB in Eq. (IV.103) :

∆g(B) ' −LB
L
∝ −1/|B| (IV.121)

at large field. The crossover between the low field and the high field behaviour occurs when
LB ∼ Lϕ, thus the WL curve has a typical width in magnetic field

∆Bwire =
φ0

WLϕ
, (IV.122)
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corresponding to one quantum flux φ0 = h/e in the area WLϕ.
We will demonstrate later that the correct definition for the magnetic length of the narrow

wire is LB = ~/(
√

3|B|W ) and will obtain the precise crossover function interpolating between
(IV.119) and (IV.121), perfectly describing the experimental results like the one of Fig. 23 or
Fig. 32.
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Figure 32: Weak localisation correction of a long wire. Left : Theoretical result,
Eq. (IV.152). Right : Experimental MC of a long wire (L = 150 µm) etched in a 2DEG ;
width W = 0.63 µm (lithographic width wlitho = 1 µm). From [100].

Magneto-conductance in thin metallic film.– We can repeat the same exercice for a
metallic film. The low field dependence is again expected to be quadratic, Eq. (IV.119). The
high field dependence is obtained as follows : for a given time scale t, a diffusive trajectory
typically spreads over a distance Lt ∼

√
Dt in the plane, and typical encloses a magnetic flux

Φ ∼ BL2
t . Longest trajectories, such as Φ ∼ BL2

t & φ0, do not contribute to the WL, what gives
the cutoff

LB ∼

√
~
e|B|

(thin film) . (IV.123)

Replacing Lϕ by LB in Eq. (IV.105) gives the large field behaviour

∆g(B) ' − 1

π
ln(LB/`e) ' +

1

2π
ln |B|+ cste . (IV.124)

As a consequence, the crossover between the low field and high field behaviours occurs on a scale

∆Bplane =
φ0

L2
ϕ

. (IV.125)

The precise magneto-conductance curve will be derived in the exercices (TD5, p. 101).

IV.H Scaling approach and localisation (from the metallic phase)

1) The β-function

The starting point of the scaling approach is the gedanken experiment where one analyses the
conductance of a cubic box of size Ld connected at two opoosite sides, as a function of the size.
The Drude conductance was analysed in the introductory chapter

gD = cd
(kFW )d−1`e

L
where cd =

(4π)1−d/2

2 Γ(d2 + 1)
=


2 in d = 1

1/2 in d = 2

1/(3π) in d = 3

(IV.126)
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The WL correction for a coherent piece of metal is (see above)

∆g =


−1

3 in d = 1

− 1
π ln(L/`e) in d = 2

− 1
2π

(
L
`e
− 1
)

in d = 3

(IV.127)

(note that, in d = 3, the subdominant term +1/2π is important : it will provide the asymptotic
of the β-function). As noticed, being a negative correction to the conductance, the WL is a
precursor of the localisation effect. We can now analyse the asymptotic behaviour of the scaling
approach’s β-function (i.e. from the conducting phase). We compute the β-function

β(g) =
dln g

d lnL
. (IV.128)

Note that in numerical calculations, scaling analysis is performed on the Lyapunov exponent,

i.e. consider ln g [81]. In the conducting limit, we can write ln g ' ln(gD) + ∆g
gD

. We deduce the
expression of the β-function in the metallic limit g →∞

β(g) '
g→∞

d− 2− ad
g

where ad =


1
3 in d = 1 (multichannel)
1
π in d = 2
1

2π in d = 3

(IV.129)

which suggests a monotonous behaviour, which is confirmed by numerical calculations (see
Fig. 15) [81].

2) Localisation length in 1D and 2D

The weak localisation phenomenon is a precursor of the strong localisation, as suggested by
the behaviour of the β-function. Since gD and ∆g have opposite signs, we can expect that the
localisation length corresponds to the length at which the two quantities become comparable
(although this is in principle out of the range of validity of the calculation of the WL) :

gD ∼ |∆g| for L ∼ ξloc . (IV.130)

Narrow wire.– The general expression of the Drude conductance in a wire is gD = kFW`e/2L =
αdNc`e/L where αd = Vd/Vd−1 (where Vd is the volume of the unit sphere) and Nc the number
of conducting channels : Nc = kFW/π in d = 2, i.e. for a wire of width W etched in a two
dimensional electron gas (2DEG). And Nc = (kFW )2/4π in d = 3, i.e. in a thin and narrow
metallic wire of section W 2.

This leads to

ξ
(1D)
loc ∼ Nc`e (IV.131)

This expression of the localisation length has been confirmed by other approaches, like the
random matrix approach of Dorokhov-Mello-Pereyra-Kumar (see the review by Beenakker [20]).

Planes and thin films.– In d = 2, i.e. in a 2DEG, we have gD = kF `e/2 and ∆g =
− 1
π ln(L/`e), therefore gD ∼ |∆g| gives the localisation length

ξ
(2D)
loc ∼ `e e

π
2
kF `e (IV.132)

is very large.
In d = 3, i.e. in a thin film of thickness W , we have gD = k2

FW`e/3π, therefore we obtain

ξ
(2D)
loc ∼ `e e

1
3
k2FW`e . (IV.133)
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IV.I Conclusion : a probe for quantum coherence

The main interest in WL analysis is to provide a practical probe of phase coherence properties.
Moreover, the analysis of ∆σ(B, Lϕ) defines 38 the phase coherence length Lϕ. We can show that
this method is effective in practical situation : in typical WL measurements, the value of Lϕ
can be obtained from the fit of the magneto-conductance curve at different temperatures, what
provides the temperature dependence of the phase coherent length. The typical temperature
dependence (for a narrow wire) is shown on Fig. 33. The analysis of the temperature depen-
dence provides information on the microscopic mechanisms responsible for the decoherence. For
example, the behaviour τϕ ∝ T−3 above T = 1 K is attributed to elctron-phonon interaction.
Below T = 1 K, the dominant decoherence mechanism is provided by electronic interacions,
characterised by the behaviour τϕ ∝ T−2/3 in 1D.

where !F is the density of states per unit volume at the Fermi
energy, and S is the cross section of the wire.
In order to test the theoretical predictions, the measured

"#(T) curves were fit with the functional form,

"#
!1"AT2/3#BT3, $4%

where the second term describes electron–phonon scattering,
dominant at higher temperatures.2 Fits are shown as continu-
ous lines in Fig. 4 $the fit parameters minimize the distance
between the data points and the fit curve in a log–log plot%.
Equation $4% describes accurately the temperature depen-
dence of "#(T) for samples Ag$6N%a, b, c and, with a
slightly reduced fidelity, for samples Ag$6N%d and sample
Au$6N%. In all these samples, fabricated using 6N source
materials of silver and gold, "#(T) follows very closely, be-
low about 1 K, the 1/T2/3 dependence expected when the
electron–electron interaction is the dominant inelastic pro-

cess. Nevertheless, if the exponent of T is left as a fit param-
eter, better fits are obtained with smaller exponents ranging
from 0.59 for samples Ag$6N%d and Au$6N% up to 0.64 for
sample Ag$6N%c. This issue will be discussed in Sec. VB.
The dashed line in Fig. 3 and Fig. 4 is the quantitative pre-
diction of Eq. $3% for electron–electron interactions in
sample Ag$6N%c. The dephasing times are close, though al-
ways slightly smaller, to the theoretical prediction of Eq. $3%.
Table III lists the best fit parameters A, B, together with the
prediction A thy of Eq. $3%.
This data set casts doubt on the claim by Mohanty, Jari-

wala, and Webb7 $MJW% that saturation of "# is a universal
phenomenon in mesoscopic wires. One can always argue that
the saturation temperature for our silver samples is below 40
mK, hence unobservable in our experiments. However, the
resistivity and dimensions of sample Ag$6N%a are similar to
those of sample Au-3 in the MJW paper,7 which exhibits
saturation of "# starting at about 100 mK, and has a maxi-
mum value of "#

max"2 ns. In contrast, "# reaches 9 ns in
Ag$6N%a.

B. Silver 5N and copper samples

In silver samples made from a 5N purity source, the phase
coherence time is systematically shorter than predicted by
Eq. $3% and displays an unexpectedly flat temperature depen-
dence below 400 mK. The same is true for all the copper
samples we measured, independently of source purity.18
These trends are illustrated for samples Ag$5N%b and
Cu$6N%b in Fig. 3.
What can be responsible for this anomalous behavior?

There have been several theoretical suggestions regarding
sources of extra dephasing. Some of these, such as the pres-
ence of a parasitic high frequency electromagnetic
radiation,19 can be ruled out purely on experimental grounds.
Indeed some samples do show a saturation of "# , while
others of similar resistance and geometry, measured in the
same cryostat, do not. This indicates that, in our experiments
at least, the observed excess dephasing is not an artifact of
the measurement. The main suggestions to explain the
anomalous behavior of "# are dephasing by very dilute mag-
netic impurities,11,20 dephasing by two-level systems associ-
ated with lattice defects,21,22 and dephasing by electron–
electron interactions through high energy electromagnetic
modes.23
The correlation between source material purity and excess

dephasing amongst silver samples fabricated using the exact
same process but with either our 5N or 6N source material
suggests that impurities are responsible for the anomalous
temperature dependence of "# . The fact that, among all the
6N silver samples, "#(T) deviates the most from the predic-
tion of electron–electron interactions in Ag$6N%d, fabricated
in MSU $see Fig. 4% would mean that the 6N silver source
material used at MSU contains more ‘‘dangerous’’ impurities
than the one at Saclay.
The phase coherence time in the copper samples is always

almost independent of temperature below about 200 mK
down to our base temperature of 40 mK $see Refs. 11,24,25%.
However, as opposed to silver samples, this unexpected be-

FIG. 4. Phase coherence time vs temperature in samples
Ag$6N%a (!), Ag$6N%b ("), Ag$6N%c (#), Ag$6N%d ($), and
Au$6N% $* %, all made of 6N sources. Continuous lines are fits of the
data to Eq. $4%. For clarity, the graph has been split in two part,
shifted vertically one with respect to the other. The quantitative
prediction of Eq. $3% for electron–electron interactions in sample
Ag$6N%c is shown as a dashed line.

TABLE III. Theoretical predictions of Eq. $3% and fit parameters
for "#(T) in the purest silver and gold samples using the functional
form given by Eq. $4%.

Sample A thy A B
(ns!1 K!2/3) (ns!1 K!2/3) (ns!1 K!3)

Ag$6N%a 0.55 0.73 0.045
Ag$6N%b 0.51 0.59 0.05
Ag$6N%c 0.31 0.37 0.047
Ag$6N%d 0.47 0.56 0.044
Au$6N% 0.40 0.67 0.069

DEPHASING OF ELECTRONS IN MESOSCOPIC METAL WIRES PHYSICAL REVIEW B 68, 085413 $2003%

085413-5

Figure 33: Phase coherence length of narrow silver wires as a fonction of temperature.
length ranging from 135 to 400 µm, thickness from 35 to 55 nm and with from 65 to 105 nm.
From [102].

In this chapter Lϕ was introduced as a cutoff put by hand. It will be the purpose of the
chapter IX to discuss the origin of this length scale on more microscopic grounds. In chapter X
we will analyse more deeply the particular role of electronic interaction.

38Each phase coherent physical property, like AB amplitude, persistent current, etc, does the same job. It is
not obvious that they all give the same length scale.
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Exercices

- Exercice IV.10 : Magnétoconductance classique et magnétoconductance anor-
male (d’un fil).– On rappelle que la conductivité de Drude varie à “bas” champ comme
∆σclass(B)/σ0 ' −(Bµ)2 où µ = eτe

m est la mobilité. On considère de l’argent avec `e = 30 nm
(on rappelle que k−1

F = 0.83 Å). Vérifier que ∆σclass(B)/σ0 ' −10−5B2 (B en Tesla).
On considère un fil d’argent de section S = W × a = 60 nm×50 nm soumis à un champ

magnétique perpendiculaire. Calculer la longueur LB pour B = 1 T. Vérifier que la localisation
faible décrôıt comme ∆σ/σ0 ' −10−5/B (B en Tesla).
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Thus, according to (3), rslrro= 5; the second term in (l) can therefore be neglected and
the phase of the oscillations coincides with the observed value.

In order for the spin-orbit effects to be insigrrificant, lithium, for which e must be
two orders of magnitude smaller than for Mg, was chosen as the material for the speci- .mens.

The results of the ex nt "A,lilhi-q1r.flm, similar to that described in Ref.4.
' ls. withR = 2 kO and D= I cm was obtained by condensation
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of lithium with an initial purity of 99.95% on a quartz filament. The helium temperature
in the experiment was l.l K. The measuring current, equal to 40 ltA,heated the speci.
mens by an amount of the order of l0- l K.

The dashed line in the figure shows the results of a calculation using Eq. (1) with
?so = -, F = O, t= 0.72 pm, I, = 2.32 prm, and a= 0.12 pm. The quantity 2r- a= 1.32
trlm is close to the value of the diameter of the quartz filament 1.3 pm, determined with
the help of an electron microscope. Another check of the theory is the agreement be-
tween the monotonic decrease and the damping of the oscillations, determined by the
same quantity a. Thus, theory and experiment apparently are in good quantitative agree-
ment,

It should be noted that it was possible to observe in these experiments the negative
longitudinal magnetoresistance of thin films.

Confirming the validity of the basic ideas of the theory of weak localization in quasi-
twodimensional systems, experiments of the type described above also make it possible
to study electron scattering mechanisms in thin films.

We are grateful to A. I. Larkin and D. E. KhmelhitskiY for discussing the results to,
A. V. Danilov for help in analyzing the experimental results, and to P. L. Kapitsa for his
interest in this work and for making it possible to carry out the experiments at the Insti'
tute of Physical Problems of the Academy of Sciences of the USSR.

l)An "rro, in expression (6) in Ref. I should be corrected. The total coefficient should be 1/22',
rather than 1 ln2 , and 2nZ. should be replaced by I..
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Figure 34: Magnetoresistance of a hollow metallic cylinder in Oersted (1 Oersted= 1 Gauss=
10−4 Tesla). From [9].

- Exercice IV.11 :
1/ Ballistic ring – Aharonov-Bohm oscillations.– We consider a metallic ring of micro-
metric dimension such that the transport can be considered fully coherent (at low temperature).
Discuss how the conductance depends on a magnetic field.

2/ Diffusive ring – Altshuler-Aronov-Sharvin oscillations.– Same question for a ring
made of weakly disordered metal, in the diffusive regime [base your analysis on Eq. (IV.111)].
The first experiment was performed in a famous experiment by Sharvin and Sharvin [111, 9].
What is the diameter of the cylinder ?

Further reading : review by Aronov and Sharvin [16] and also the one by Washburn and
Webb [138].

- Exercice IV.12 Complex geometry – Altshuler-Aronov-Spivak oscillations : De-
tailed study

• Weak localisation correction in a metallic ring.

• Hollow cylinder.

Theory by [8] ; experiment [111, 9]
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Master iCFP - Wave in random media February 18, 2021

TD 4 : Classical and anomalous magneto-conductance

4.1 Anomalous (positive) magneto-conductance

1/ Classical magneto-conductivity.– We first analyse transport coefficients in the presence
of a magnetic field within the semi-classical Drude-Sommerfeld theory of electronic transport.

a) Show that the conductivity tensor in the presence of an external magnetic field is

σxx = σ0
1

1 + (ωcτ)2
(IV.134)

σxy = σ0
ωcτ

1 + (ωcτ)2
(IV.135)

where ωc = eB
m∗

is the cyclotron pulsation and σ0 = ne2τ
m∗

the Drude conductivity. Deduce the

resistivity tensor ρ = σ−1.

b) Justify physically the decrease of σxx(B) as B increases.

c) At low temperature, the relaxation time saturates at the elastic mean free time τ → τe. What
is the typical scale of magnetic field needed to decrease significantly σxx(B) ? We give the inverse
of the Fermi wavevector k−1

F = 0.85 Å and the elastic mean free path `e = 4 µm in gold (bulk).

d) In thin metallic films with thickness 50nm, the elastic mean free path is reduced by two order
of magnitudes ! In thin silver wires, one measures `e ' 20 nm. How large must be the magnetic
field to bend significantly the electronic trajectories between collisions on impurities ?

2/ Coherent enhancement of back-scattering.– In a weakly disordered metal, interferences
of time reversed electronic trajectories enhance the back-scattering of electrons, and therefore
diminishes the conductivity. In the absence of a magnetic field, the phase of probability ampli-
tude is an orbital phase proportional to the length of the diffusive trajectory AC = |AC |eikF `C :

∆σ(B = 0) ∼ −
∑
C
ACA∗C̃ = −

∑
C

∣∣AC∣∣2 < 0 (IV.136)

where the sum runs over all closed diffusive trajectories.

’=
~

Figure 35: Interference of reversed electronic trajectories C and C̃ increases back-scattering (weak
localisation).

a) If a weak magnetic field is applied, what is the magnetic field dependence of the probability
amplitudes AC ?

b) How the right hand side of Eq. (IV.136) is modified ?

c) We consider a thin metallic film, i.e. diffusive electronic motion is effectively two-dimensional.
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Argue that the presence of the perpendicular magnetic flux introduces a cutoff in the summation
over electronic trajectories (IV.136).

d) Anomalous magneto-conductivity.– Deduce the qualitative behaviour of ∆σ(B) and
discuss the experimental result (Fig. 36).

Figure 36: Anomalous magneto-resistance of a thin Magnesium film (24
12Mg). From

Ref. [27].
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4.2 Green’s function and self energy

1) Propagator and Green’s functions

We introduce the propagator

K(~r, t|~r ′, 0) = −i θH(t) 〈~r |e−iĤt|~r ′ 〉 (IV.137)

where H is the Hamiltonian operator.

a) Check that K(~r, t|~r ′, 0) is the Green’s function of the time dependent Schrödinger equation.

b) Compute the Fourier transform GR(~r, ~r ′;E) =
∫ +∞
−∞ dt eiEtK(~r, t|~r ′, 0). Check that this is

the Green’s function of the stationary Schrödinger equation.

2) Green’s functions in momentum space and average Green’s function

1/ Free Green’s function.– The free Green’s function in momentum space is

GR
0 (~k,~k ′) = 〈~k | 1

EF −H0 + i0+
|~k ′ 〉 ≡ δ~k,~k ′G

R
0 (~k) (IV.138)

where |k 〉 is a plane wave, eigenvector of H0 = − 1
2m∆ (the dependence in Fermi energy is

implicit). Compute explicitly GR
0 (~r, ~r ′) in dimension d = 1 and d = 3.

Hint : in d = 1, compute G0(x, x′) for a negative energy E = − k2

2m and perform some analytic
continuation.
In d = 3, show that G

(3D)
0 (~r, ~r ′) can be related to a derivative of G

(1D)
0 (x, x′) (after integrations

over angles).

2/ Average Green’s function in the presence of a weak disorder.– Assuming that the

self energy is purely imaginary ΣR = −i/2τe, compute explicitly G
R

(~r, ~r ′) for d = 1, 3.

Hint : express
√

2m(EF + i/2τe) in terms of kF and `e.

Remark : cf. Appendix of chapter 10 of the book [118].

3) Self energy : stacking

1/ Recall the expression of the self energy at lowest order in the disorder, in terms of the free
Green’s function. Express its imaginary part.

2/ We now consider a particular class of diagrams :

ΣR
stack = = + + + · · · (IV.139)

Deduce an equation for ΣR
stack and solve it. Analyse the weak disorder limit εF � 1/τe.
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Master iCFP - Wave in random media February 18, 2021

TD 5 : Magneto-conductance of thin metallic films

The fit of the anomalous magneto-conductance of 2D electron gas (or metallic films) and wires
is a powerful tool which has been extensively used in order to extract the phase coherence length
Lϕ of metallic devices at low T (. few K). The fit of ∆σ(B, Lϕ) is performed at several temper-
atures what allows to extract the temperature dependence Lϕ(T ) and identify the microscopic
mechanisms responsible for dephasing and/or decoherence.

Figure 37: Magnetoresistance curves for a 2DEG as a function of the magnetic field in Gauss
(1 Gauss= 10−4 Tesla). From Ref. [57].

We consider a two dimensional electron gas (2DEG) submitted to a perpendicular magnetic
field B. In this case it will be convenient to write the Cooperon as an integral of the propagator
in time

∆σ = −2se
2D

π~

∫ ∞
0

dtPt(~r|~r)
(

e−t/τϕ − e−t/τ̃e
)

(IV.140)

where the second exponential cut off the contribution of small times, that are not described by
the diffusion approximation : τϕ = L2

ϕ/D and τ̃e = `2e/D. The factor 2s is the spin degeneracy.
The time propagator of the diffusion

Pt(~r|~r ′) = θH(t) 〈~r |eDt
(
~∇− 2ie

~
~A
)2
|~r ′ 〉 (IV.141)

solves the diffusion-like equation[
∂t −D

(
~∇− i

2e

~
~A

)2
]
Pt(~r|~r ′) = δ(t)δ(~r − ~r ′) (IV.142)

1/ Using the mapping onto the Landau problem, compute Pt(~r|~r) in the plane.

Hint : We recall that the spectrum of eigenvalues of the 2D Hamiltonian HLandau = − ~2
2m(~∇−

i
~e
~A)2 for a homogeneous magnetic field is the Landau spectrum εn = ~ωc(n+ 1/2) for n ∈ N,
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where ωc = eB/m and where each Landau level has a degeneracy proportional to the sur-
face of the plane dLL = eBSurf

h . The partition function of the Landau problem ZLandau =∫
d~r 〈~r |e−

t
~HLandau |~r 〉 can be easily calculated.

2/ a) Using the integral given in the appendix, deduce that

∆σ(B) =
2se

2

h

1

2π

[
ψ

(
1

2
+
L2
B

L2
ϕ

)
− ψ

(
1

2
+
L2
B
`2e

)]
(IV.143)

where LB will be related to the magnetic field.

b) What is the magnetic field corresponding to LB = 1 µm ? And LB = 20 nm ? Looking at
the range of magnetic field on the experimental curve, argue that it is justified to simplify the
result as

∆σ(B) =
2se

2

h

1

2π

[
ψ

(
1

2
+
L2
B

L2
ϕ

)
− ln

(
L2
B
`2e

)]
(IV.144)

c) Analyse the zero field value ∆σ(0). Discuss the limiting behaviours of ∆σ(B)−∆σ(0).

3/ Discuss the experimental data of Fig. 37.

Appendix :

We give the integral (formula 3.541 of Gradshteyn & Ryzhik, Ref. [68])∫ ∞
0

dx
e−ax − e−bx

sinhλx
=

1

λ

[
ψ

(
1

2
+

b

2λ

)
− ψ

(
1

2
+

a

2λ

)]
, (IV.145)

where ψ(z) = d
dz ln Γ(z) is the digamma function. We deduce the functional relation ψ(z+ 1) =

ψ(z) + 1
z . We give two values ψ(1) = −C ' −0.577215 (Euler-Mascheroni constant) and

ψ(1/2) = −C− 2 ln 2, and the limiting behaviour

ψ(x+ 1/2) =
x→∞

lnx+
1

24x2
+O(x−3) (IV.146)
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5.2 Magneto-conductance in narrow wires

The aim of the exercice is to analyse the magneto-conductance of a long wire of section W
submitted to a perpendicular homogeneous magnetic field. For simplicity we consider the two-
dimensional situation of a wire etched in a two-dimensional electron gas (2DEG). We recall that
the weak localisation correction to the conductivity is given by

∆σ = −2se
2

π~
Pc(~r, ~r) with

[
γ −

(
~∇− i

2e

~
~A

)2
]
Pc(~r, ~r

′) = δ(~r − ~r ′) , (IV.147)

where γ = 1/L2
ϕ.

We consider the geometry of a infinitly long quasi-1D wire, i.e. x ∈ R and y ∈ [0,W ].

1/ Relate the conductivity σ of the wire to the conductance G = I/V .

We choose the Landau gauge such that Ax is an antisymmetric function of the transverse
coordinate. If y ∈ [0,W ] we choose Ax(W − y) = −Ax(y), i.e.

Ax(y) = (W/2− y)B and Ay = 0 . (IV.148)

We assume that the confinment imposes Neumann boundary conditions

∂yPc(~r, ~r
′)
∣∣
y=0 & W

= 0 . (IV.149)

2/ Zero field.– The aim is to construct the spectrum of the Laplace operator ∆ = ∂2
x + ∂2

y in
the wire.

a) Use the separability of the problem to find the spectrum of eigenvectors and eigenvalues of
the Laplace operator in the infinitly long wire of width W .

b) Green’s function.– Justify the following representation

Pc(~r, ~r
′) =

∞∑
n=0

χn(y) 〈x | 1

γ + εn − ∂2
x

|x′ 〉︸ ︷︷ ︸
Pc(x,x′) for γ→γ+εn

χn(y′) (IV.150)

The functions χn(y) satisfy the differential equation −∂2
yχn(y) = εn χn(y) on [0,W ] with appro-

priate boundary conditions.
Under what condition on W and Lϕ can the Cooperon be approximated by the 1D Cooperon

Pc(x, x
′) = 〈x |

(
γ − ∂2

x)−1|x′ 〉 ?

3/ Weak magnetic field.– In the diffusion approximation, the Cooperon can be interpreted as
the Green’s function of the operator −(∇− i

~2eA)2, Eq. (IV.147). We recall that this treatment
of the magnetic field in the diffusion approximation supposes that `e � Rc, where Rc = vF /ωc
is the cyclotron radius of electrons with energy εF (ωc = eB/m∗ is the cyclotron pulsation). Our
aim is to compute the Cooperon in the weak magnetic field limit.

a) Projecting the differential equation (IV.147) (i.e.
∫W

0
dy
W × · · · ), show that the effect of

the magnetic field can be absorbed by a transformation of the phase coherence length in the
one-dimensional cooperon

1

L2
ϕ

−→ 1

Leff
ϕ (B)2

def
=

1

L2
ϕ

+
1

L2
B

where
1

L2
B

=
4e2

~2

∫ W

0

dy

W
Ax(y)2 . (IV.151)

b) Deduce explicitly LB and discuss the range of validity of this approximation, i.e. what is the
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condition on B, W and Lϕ ?

c) We recall the expression of the 1D Cooperon Pc(x, x) = 〈x | 1
1/L2

ϕ−∂2x
|x 〉 = Lϕ/2. Deduce the

expression of the magneto-conductivity ∆σ(B) of the infinitly long wire and show that the WL
correction to the dimensionless conductance can be written as

∆g(B) =
∆g(0)√

1 + (B/Bϕ)2
(IV.152)

Give the expression of the scale Bϕ and interpret physically this expression.

d) Discuss the experimental data of Fig. 38 at the light of this calculation. In particular, how
can one interpret the evolution of the curve when the sample is cooled down ?

Figure 38: Magnetoconductance curves for a long wire etched in a 2DEG as a function of the
magnetic field in Gauss (1 Gauss= 10−4 Tesla). Length of the wire is L = 150 µm, lithographic
width Wlitho = 1µm and effective width W = 630 nm. Electronic density is ne = 1.5× 1015 m−2.
Left : Resistance over a large window in B field, [−2 T,+2 T]. Right : Conductance over small
window around zero field, [−6 mT,+6 mT]. From Niimi et al. Phys. Rev. B 81, 245306
(2010) [100].

e) In the “high field” regime, LB < W , what expression do you expect for the MC ?

Remarks :
• This analysis was performed in a well-known paper : by Altshuler and Aronov, Sov. Phys. JETP
(1981) (Ref. [5]).

• Semi-ballistic regime.– Many experiments are performed on long wires etched in a two-dimensional

electron gas (2DEG) at the interface of two semiconductors (GaAs/GaAl1−xAsx). In this case the elastic

mean free path `
(2D)
e of the original 2DEG is usually larger than the section of the wire. The effective

elastic mean free path in the wire is also larger than the section `
(1D)
e > W . The dephasing by the

magnetic field involves different length scale due the phenomenon of flux cancellation. This has been

described by semiclassical methods by Dugaev and Khmelnitskii [50] and Beenakker and van Houten,

Phys. Rev. B (1988) (Ref. [21]).
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Master iCFP - Wave in random media February 18, 2021

TD 6 : Spin-orbit scattering and weak anti -localisation in metal-
lic films

The magneto-resistance of films made of usual metals is not well described by the simple theory
presented in the previous exercice session, i.e. by equation

∆σ(B) =
2se

2

h

1

2π

[
ψ

(
1

2
+
L2
B

L2
ϕ

)
− ψ

(
1

2
+
L2
B
`2e

)]
(IV.153)

The reason for this is that electronic spin degree of freedom cannot be ignored.

• First, the presence of spin-orbit coupling

HSO ∼ −
1

m2c2
(~p× ~∇V ) · ~S (IV.154)

is responsible for an additional phase originating from the rotation of the electronic spin, while
the electron is scattered on the disordered potential V . Spin-orbit coupling is weak in light
metals, like Lithium of Magnesium, but strong in heavy metals like Silver or Gold.

• Second, the presence of residual magnetic impurities is another source of electronic spin rota-
tion :

Hmag = −~S ·
∑
i

Ji ~si δ(~r − ~ri) (IV.155)

where ~ri are the positions of the magnetic impurities and ~si their spins (considered frozen).
The starting point of the study of quantum transport is the Kubo-Greenwood formula

σ̃(ω) =
e2

2πm2

1

Vol

∑
k, k′, σ, σ′

kx k
′
xG

R
σ,σ′(k, k

′; εF + ω)GA
σ′,σ(k′, k; εF ) , (IV.156)

where the Green’s function carry spin indices. Using that the average Green’s function is diagonal
in spin indices, we finally obtain the expression of the weak localisation correction

∆σ =
∑
σ, σ′

Γc

σ σ’

σ’

σ j,r’i,r

= −e
2

π

∑
σ, σ′

P
(c)
σσ′,σ′σ(~r, ~r) (IV.157)

where the Cooperon now propagates a pair of spins (Fig. 39).

Γ
(c)
αβ,γδ(~r, ~r

′) =

r

α r γ’

r’ δβ

r,

, ,

,

c
Γ

Figure 39: In the presence of spin flip and spin-orbit scattering, the Cooperon depends on four
spin indices.
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Figure 40: Magneto-resistance curves for metallic films made of an alloy of Magnesium and
Gold for difference concentration of gold. From Ref. [27].

1/ Argue that the Cooperon Γ
(c)
αβ,γδ(~r, ~r

′) = w
Dτe

P
(c)
αβ,γδ(~r, ~r

′) can be written as the sum of two
separate contributions associated with singlet and triplet channels.

2/ The efficiency of spin-orbit coupling and scattering by magnetic impurities are controlled by
two lengths Lso and Lm. Introducing the projector in the singlet space, (Π0)αβ,γδ = 1

2(δαγ δβδ −
δαδ δβγ), we can write the Cooperon (in the space of the two spins) under the form

P (c)(~r, ~r ′) = Pc(~r, ~r
′; 1/L2

S) Π0 + Pc(~r, ~r
′; 1/L2

T ) (1−Π0) , (IV.158)

where Pc(~r, ~r
′; γ) = 〈~r | 1

γ−∆ |~r
′ 〉 is the Cooperon in the absence of spin scattering. The two

lengths LS and LT combine the effect of spin-orbit and magnetic impurities :

1

L2
S

=
2

L2
m

and
1

L2
T

=
2

3L2
m

+
4

3L2
so

. (IV.159)

Explain why LS > LT .

3/ Discuss the effect of time reversal in the singlet and triplet channel. Write ∆σ in terms of
Pc(~r, ~r

′; 1/L2
S, T ).

Hint : examine the spin structure in the diagram in Eq. (IV.157).

4/ Using the formula (IV.153) for the magneto-conductance of a thin film, deduce the expression
of the weak localisation in the presence of spin-orbit and spin flip scattering. Explains (at least
qualitatively) the experimental data of Fig. 40.

Further reading : A review article on weak localisation in thin metallic films is the famous
article by Bergmann (1984) (Ref. [27]). A more intuitive description can be found in the review
article of Chakravarty and Schmid (1986) (Ref. [36]).
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V Conductance fluctuations/correlations

An important aspect on which we have been elusive up to now is the question of how disorder
average is realize. As we have pointed out, the theoretical tools can only provide information on
averaged quantities, like the mean conductivity σ. On the other hand, most of the experiments
are performed on a given sample. Two questions immediatly arise : first, how can we understand
that the weak localisation (an averaged quantity) describes so well the magnetoconductance of
a given sample, as it was illustrated by showing several experimental data ? Second, can we
characterize the sample to sample fluctuations (or correlations) of the conductance ?

V.A Disorder averaging in large samples : heuristic analysis

We can answer to the first question by a simple qualitative argument. If a system is much larger
than Lϕ, electronic wave in different parts separated by Lϕ do not interfere. When the system is
splitted in pieces of size Lϕ, they can therefore be considered as statistically independent. As an
illustration, we consider a long wire of size L� Lϕ. We recall that the resistance has additive
properties : we introduce ri, the resistance of a coherent piece, of size Lϕ. The different pieces
being incoherent, the classical law of addition of resistances holds

R '
N∑
i=1

ri where N = L/Lϕ . (V.1)

Weak localisation in a long wire.– The resistance of each coherent part can be written as
ri = rcl

i +∆ri where rcl
i is the classical resistance and ∆ri the quantum correction. The quantum

correction to the total resistance ∆R = R−Rcl can be related to the conductance correction

∆G︸︷︷︸
one sample

= −∆R

R2
= −

∑
i ∆ri(∑
i r

cl
i

)2 ' −
N ∆r(
N rcl

)2 =
1

N
∆Gϕ (V.2)

where we have introduced the weak localisation correction for the coherent piece ∆Gϕ =

−∆r/(rcl)2. We have shown above that ∆Gϕ = 2se2

h ∆gϕ ∼ −e2/h. We have thus recovered the
behaviour of the weak localisation correction

∆g︸︷︷︸
one sample

∼ − 1

N
∆gϕ ∼ −

Lϕ
L

(V.3)

and shown how the measurement on a given sample, ∆g = g−gcl, can coincide with the averaged
quantity, ∆g ' −Lϕ/L.

Conductance fluctuations in a long wire.– We can develope a similar argument in order
to analyse the conductance fluctuations. We introduce the (sample to sample) fluctuation δri =
ri − ri for the coherent piece of metal :

δG2 '
∑

i,j δriδrj(∑
i ri

)4 '
N δr2(
N r

)4 =
1

N 3
δG2

ϕ (V.4)

where δG2
ϕ is the conductance fluctuation for a coherent metal. We deduce that the conductance

fluctuations of the long wire behaves as

δg2 '
(
Lϕ
L

)3

δg2
ϕ . (V.5)
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Naively, as we have seen that the quantum correction such as the weak localisation is ∆gϕ ∼ 1,
we could expect that the fluctuations are also δgϕ ∼ 1. However we rather have δgϕ . 1 due to
the effect of thermal fluctuations which has not yet been discussed.

Effect of thermal fluctuations.— The conductance fluctuations of the coherent piece of
metal δg2

ϕ is controlled by two lengths : the phase coherence length Lϕ and also the thermal
length

LT
def
=
√
~D/kBT . (V.6)

This second length scale has its origin in thermal fluctuations. We recall that the conductivity
at finite temperature is a convolution of the zero temperature conductivity σ̃(εF ) :

σ =

∫
dε

(
−∂f
∂ε

)
σ̃(ε) . (V.7)

The average conductivity has no structure in energy, therefore the thermal smearing has no
effect on averaged transport properties. On the other hand, the conductivity fluctuations δσ2

involves correlations at different energies :

δσ2 =

∫
dεdε′

(
−∂f
∂ε

)(
− ∂f
∂ε′

)
δσ̃(ε)δσ̃(ε′) =

∫
dω δT (ω) δσ̃(εF )δσ̃(εF + ω) (V.8)

where δT (ω) is the convolution of the two derivatives of Fermi function, and therefore a narrow
function of width ∼ T . Correlations in energy decay over a characteristic energy scale which is
the Thouless energy

ETh =
~D
L2

(V.9)

(we will prove this below by a detailed analysis of the correlator). Roughly, this can be under-
stood from the structure of the diffusion propagator (diffusons and cooperons)

〈r | 1

1/L2
ϕ − iω/D −∆

|r′ 〉 (V.10)

involved in the conductance correlation : the denominator shows that we have to compare three
scales :

(i) the phase coherence length Lϕ,

(ii) the thermal length
√
D/T = LT (since ω . T , we have

√
D/ω & LT , hence the cutoff),

(iii) the size L associated with the Laplacian (with eigenvalues ∼ 1/L2).

This has some consequence on the temperature dependence of the fluctuations δσ2 as the two
Fermi functions constraint the two energies to be close, |ε− ε′| . T .

In a coherent system (Lϕ > L) and for T . ETh, the conductance fluctuations are of

order δg2 ∼ 1. On the other hand, when temperature is larger than the correlation energy,
T & ETh, i.e. LT . L, different energy shells of width ETh can be considered as independent
and the conductance fluctuations are reduced by a factor δg2 ∼ ETh/T = (LT /L)2. This will
be demonstrated by a precise calculation in the exercice.

We can repeat the argument in the regime Lϕ < L. If LT � Lϕ, the thermal smearing

is negligible, hence δg2
ϕ ∼ 1, however in the limit LT � Lϕ, it leads to a reduction of the

fluctuations, by a factor (LT /Lϕ)2. In conclusion, the conductance fluctuations of the long wire
are

δg2 ∼

{
(Lϕ/L)3 for Lϕ � LT � L

L2
TLϕ/L

3 for LT � Lϕ � L
(V.11)

The precise behaviours are obtained in the exercice (TD7).
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Conclusion : this behaviour shows that the fluctuations are much smaller than the average

δg ∼
(
Lϕ
L

)3/2

� |∆g| ∼ Lϕ
L

(V.12)

which explains which the weak localisation correction observed in a single sample of size L� Lϕ,
is very well described by the theoretical expression for the averaged correction to the conduc-
tance.

V.B Few experiments

1) Skocpol et al. (1986) :

Magneto-conductance measurements in coherent wires have been realised by Skocpol et al [112].
The conductance g(B) of a given sample is shown on figure 41 for different gate voltages. It
exhibits fluctuations of order g ∼ 1 (i.e. G ∼ e2/h). The complicate erratic structure, perfectly
reproducible (as soon as the disorder configuration is stable), represents the interference pattern
characteristic of the disorder configuration : it is called the “magneto-fingerprint” of the
sample.

Figure 41: Magneto-conductance of a short (coherent) wire in a 2DEG for different gate voltage.
From [112].

2) Mailly and Sanquer (1992) :

A remarkable experience was realised by Mailly and Sanquer [91] (Fig. 42) who were able to
produce a set of 46 magneto-conductance (MC) curves associated with different disorder con-
figurations. After having recorded a magneto-conductance curve, they changed the disorder
configuration by heating the sample and injecting a high current pulse. The 46 MC curves are
plotted on the figure. Then they perform some statistical analysis of the data by extracting the
mean conductance and the variance.

The mean conductance g(B) shows a dip around zero field over a scale Bc ∼ 200 Gauss,
which we can identify with the weak localisation correction, which is expected to be present at
zero field and vanish at high field. The form

∆g(B) = −Lϕ
L

(
1 +

1

3

(
eBWLϕ

~

)2
)−1/2

(V.13)
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Figure 42: Left : UCF : 46 MC curves obtained with a short (coherent) wire etched in a 2DEG
(T = 45mK). The different curves are obtained by modifying the disorder configuration. Right :
Averaging the MC leads to the weak localisation. Figures of Ref. [91].

has been obtained (see exercices, TD5), where W is the width of the wire.
Remarkably, the variance drops by a factor 2 over the same correlation field. We will explain

precisely this behaviour in the exercice.

3) Correlation function :

Not only the variance of the conductance was extracted from experimental data but also the
correlations C(∆B) = G(B0)G(B0 + ∆B) (Fig. 43) : the correlation function was obtained
from a given MC curve by sweeping the magnetic field B0. The authors have assumed the
equivalence of the two correlation functions

∫ B2

B1

dB0
B2−B1

G(B0)G(B0 + ∆B) and C(∆B) (the
“ergodic hypothesis”).

Figure 43: Correlations G(B0)G(B0 + ∆B) from the MC of a short wire in a 2DEG. From [112].
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V.C Conductivity correlations/fluctuations

In the spirit of what was done for the weak localisation, the identification of the diagrams
providing the conductivity fluctuations requires to correlate two conductivity “bubbles”, by
connecting them with impurities lines. We have already discussed the importance of ladder
diagrams. The game is then to couple the two bubbles with diffuson(s) and cooperon(s).

1) Identification of the four contributions (diagrams)

The first idea could be to introduce a single diffuson (or cooperon) to couple the two bubble
(Fig. 44), however a precise calculation (which we do not perform here) shows that it is negligible.
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Figure 44: A diagram that correlates the two conductivity bubbles with one diffuson only. The
diagram of the right is a different representation that shows more clearly the short range nature
of the contribution.

Next we look at diagrams involving either two diffusons or two cooperons (one diffuson and
one cooperon produces a more complicated diagram giving a negligible contribution again). We
obtain the four diagrams in Fig. 45 (in fact sixt diagram if we account for the fact that diagrams
equivalent to (c) and (d) can be obtained by exchanging R and A Green’s function lines).
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Figure 45: Correlations of the two conductivity bubble with pairs of diffusons or cooperons.
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It is convenient to deform the diagrams of Fig. 45 and redraw them as follows

CSR1 =

ε ,’ B’

ε , B

ε ,’ B’

ε , B

r ,a r’,b

r’’’,d

Γ
d

Γ
d

r’’ c, (V.14)

CSR2 =

ε , B

ε ,’ B’

ε ,’ B’

ε , B

r ,a r’,b

Γ
c

Γ
c

r’’’,d r’’ c,

(V.15)

CSR3 =

ε , B

ε ,’ B’

ε , B

ε ,’ B’

H4 H4

r ,a

r’,b

r’’ c,

r’’’,d

Γ
d

+ (R↔ A) (V.16)

CSR4 =

ε , B

ε ,’ B’

ε ,’ B’

ε , B

H4 H4

r ,a

r’,b

r’’ c,

r’’’,d

Γ
c

Γ
c

+ (R↔ A) , (V.17)

which makes more clear the short range objects, small “Hikami boxes”, and long range ones,
diffusons and cooperon (remember that a line is an average Green’s function line decaying
as exp[−||r − r′||/(2`e)] while a diffuson or a cooperon involves an arbitrary long sequence of
scattering events, only limited by the phase coherence length). The second term in (V.16)
and (V.17) correspond to exchange retarded Green’s function and advanced one. The two
first diagrams involves the same objects as the calculation of the weak localisation correction
performes above : a small box (called a “Hikami box”), appearing twice (instead of once for the
WL) on which are plugged two diffusons. We obtain the expressions :

CSR1 = 4

(
2se

2

h

)2

δacδbd

∫
dd~rdd~r ′

Vol2

∫
dω δT (ω)

∣∣Pd(~r, ~r ′;ω)
∣∣2 (V.18)

CSR2 = 4

(
2se

2

h

)2

δadδbc

∫
dd~rdd~r ′

Vol2

∫
dω δT (ω)

∣∣Pc(~r, ~r ′;ω)
∣∣2 (V.19)

CSR3 = 2

(
2se

2

h

)2

δabδcd

∫
dd~rdd~r ′′

Vol2

∫
dω δT (ω) Re

[
Pd(~r, ~r

′′;ω)Pd(~r
′′, ~r;ω)

]
(V.20)

CSR4 = 2

(
2se

2

h

)2

δabδcd

∫
dd~rdd~r ′′

Vol2

∫
dω δT (ω) Re

[
Pc(~r, ~r

′′;ω)Pc(~r
′′, ~r;ω)

]
. (V.21)

The thermal function is normalised, given by

δT (ω) =
1

2T
h
( ω

2T

)
with h(x) =

x cothx− 1

sinh2 x
(V.22)

(see for example Appendix B of [124]). The precise shape of the function will play no role. It
will be sufficient to use that

∫
dω δT (ω) = 1 and δT (0) = 1/(6T ).
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The specific correlations of the indices follow from the fact that an Hikami box with indices
a and b produces δab. The correlation function is finally

〈δσab δσcd〉 = CSR1 + CSR2 + CSR3 + CSR4 . (V.23)

We can already provide some physiscal interpretation by inspection of the correlation of
indices. Remember the Einstein relation σab = 2se

2ρDab relating the conductivity tensor to
the density of states per spin channel ρ and the diffusion tensor Dab (for isotropic material,
Dab = D δab). Einstein relation Since only the diffusion tensor carries indidces, one expect the
structure

〈δσab δσcd〉 = (2se
2)2
[
ρ2 〈δDab δDcd〉+ 〈δρ2〉D2 δabδcd

]
(V.24)

where we have assumed absence of correlations between ρ and Dab. Comparison with the above
expression shows that the two diagrams (V.14,V.15) can be interpreted as correlations of the
diffusion constant, as they present non trivial correlations of indices, while the four diagrams
(V.16,V.17) are related to density of states fluctuations, with trivial correlations of indices. This
is corroborated by comparing to the density of state fluctuation diagrams (see Ref. [12], or
Refs. [126, 124] for a more recent presentation).

We will see in the exercice how these contributions can be computed in a rather simple way
(for a narrow wire).

2) Effect of magnetic field

We have explained above, studying the weak localisation correction, how the introduction of the
magnetic field affect the diffuson and the cooperon. Here, the novelty is that when considering
the correlation function

〈δσab(B) δσcd(B′)〉

the Green’s function lines associated with the two conductivity bubbles carry different magnetic
phases associated with B or B′. The diffuson involves lines in opposite directions, see (IV.70),
while the cooperon involves lines going in the same direction, see (IV.79). Hence the diffusons
and cooperons involved in (V.18,V.19,V.20,V.21) are

Pd(~r, ~r
′) = 〈~r | 1

1/L2
ϕ −

(
~∇− 2ie

~
~A−
)2 |~r ′ 〉 (V.25)

Pc(~r, ~r
′) = 〈~r | 1

1/L2
ϕ −

(
~∇− 2ie

~
~A+

)2 |~r ′ 〉 (V.26)

where

~A± =
~A± ~A′

2
. (V.27)

For ~A = ~A′, the diffuson is independent of the magnetic field and we recover (IV.117), as it
should.

Remark : contrary to the diffuson involved in the calculation of σ, which characterizes in-
coherent (classical) transport, the diffuson involved in the conductivity correlations originates
from interference effects. This is why the cutoff of the phase coherence length is present in both
the diffuson and the cooperon, which play purely symmetric roles here.
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A simple consequence : We have noticed the symmetry between diffuson and cooperon
diagrams, i.e. that diagrams (1) and (2) are symmetric under Pd ↔ Pc and the same for
diagrams (3) and (4). When B = B′, only the cooperon depends on the magnetic field, which
provides another cutoff. Hence at strong field, cooperon contributions vanish while only diffuson
contributions survive. This simple remark explain the observation made on the experimental
data of Mailly and Sanquer :

δG(B)2 ' 1

2
δG(0)2 for strong B (V.28)

see Fig. 42.

3) Conductance correlations in the wire

In the exercice (TD7 below) we compute the correlation of the dimensionless conductance. We
distinguish two regimes :

Thermal smearing negligible (LT � min (L,Lϕ)) : In this case we obtain

δg2 =
2

15
for Lϕ =∞ (V.29)

' 3

(
Lϕ
L

)3

for Lϕ � L (V.30)

The second behaviour is in agreement with the behaviour discussed in the introduction of the
chapter.

The correlator can also be obtained easily, by substitution of 1/L2
ϕ → 1/L2

ϕ + 1/L2
(B∓B′)/2.

In the limit Lϕ � L, we get

δg(B)δg(B′) ' 3

2

(
Lϕ
L

)3

(

1 +
[e(B − B′)WLϕ]2

12~2

)−3/2

+

(
1 +

[e(B + B′)WLϕ]2

12~2

)−3/2


(V.31)
where the two terms corresponds to diffuson and cooperon contributions, respectively (W is the
width of the wire). This suggests correlations decaying (at high field) as δg(B)δg(B′) ∼ |B−B′|−3.

Thermal smearing dominant (LT � min (L,Lϕ)) : At “high” temperature, the effect of
thermal fluctuations become important. Remember that this corresponds to averaging over
independent shell of energy width EThouless = D/L2. As we show in the exercice, this leads to
the behaviour

δg2 ' 2π

3

L2
TLϕ
L3

(V.32)

when LT � Lϕ � L.
The correlations are obtained by the same substitution as for the first regime, leading to :

δg(B)δg(B′) ' π

3

L2
TLϕ
L3


(

1 +
[e(B − B′)WLϕ]2

12~2

)−1/2

+

(
1 +

[e(B + B′)WLϕ]2

12~2

)−1/2


(V.33)
i.e. decay of correlations δg(B)δg(B′) ∼ |B − B′|−1.

Remark : In pratice, at low temperature (T . 1K) the decoherence is dominated by electron-
electron interaction (unless the presence of magnetic impurities). In this case, the phase coher-
ence length satisfies the condition LT � Lϕ (see Appendix B of chapter 5 of [121]).
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V.D AB versus AAS oscillations

Conductance fluctuations can also be revealed by studying magnetoconductance oscillations in
devices with loops (ring, array of rings of large networks). The mangnetoconductance presents
an erratic behaviour, with however regular periodic oscillations corresponding to a period φ0 =
h/e ' 41Gauss.µm2 as a function of the flux through the ring. These are the Aharonov-Bohm
oscillations (Fig. 30 and Fig. 46 below).39

Interestingly, the Aharonov-Bohm φ0-periodic oscillations are clearly visible at strong field
(right part of the left figure of Fig. 46). Around zero field, the oscillations are rather φ0/2-
periodic : see the left part of the left figure of Fig. 46. Furthermore the φ0/2-periodic oscillations
are more regular for N = 30 rings (below) than for N = 1 ring (top). This indicates that φ0/2-
periodic oscillations are a consequence of disorder averaging.

Remember that the contribution of quantum interferences surviving disorder averaging are
the interference of reversed trajectories. Such interference terms accumulate twice the mag-
netic phase 4πφ/φ0, hence the period φ0/2. These φ0/2-periodic oscillations are denoted the
Al’tshuler-Aronov-Spivak oscillations [8]. Note that the phenomenon is the same as AB
oscillations. As a matter of fact, AAS oscillations are part of the contributions of the second
harmonic to the AB oscillations.

The Fig. 46 compare the oscillations around zero field, and in a window at strong magnetic
field :

• Around zero field (left parts of the four figures) : h/2e oscillations dominate. These are AAS
oscillations of the averaged conductance.

• At large field (right parts of the four figures), h/e oscillations dominate. These are AB
oscillations (fluctuations).

Figure 46: Magneto-conductance of a single ring (top) and a series of 30 rings (bottom). The
right part of the figure show the Fourier spectra: in a window centered on zero field (left) and in
a window at high field (right). From [131].

The amplitude of the AB and AAS oscillations have been studied in a series of rings (Fig. 47).
Amplitude of AB oscillations decay with the number of rings, which is expected as AB oscillations
corresponds to the conductance fluctuations. On the other hand, the AAS oscillation amplitude
remains finite, in the same way as the weak localisation correction.

39 In the ring, the electron can follow two trajectories, one in each arm, associated with two magnetic phases
χ1 and χ2 such that χ1−χ2 = eφ/~, where φ is the magnetic flux through the loop. Interference gives rise to the
behaviour G(φ) ∼ |eiχ1 + eiχ2 |2 = cste + cos(2πφ/φ0). Thus the conductance oscillates with a period φ0 = h/e.
In the metallic ring, one should in principle account for the multiple scattering in each arm, which makes the
conductance a non purely harmonic function.
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Figure 47: AB and AAS amplitudes as a function of the number of rings. From [131].

This has been further studied more recently in large networks of squares (Fig. 48). The
sample are large networks with N = Nx × Ny loops. The size is changed keeping the same
aspect ratio Nx/Ny fixed.

Figure 48: AB and AAS amplitudes as a function of the number of plaquettes in large arrays.
From [110].

116



Master iCFP - Wave in random media February 18, 2021

TD 7 : Conductance fluctuations and correlations in narrow wires

The purpose of the exercice is to analyse precisely the correlation function δg(B)δg(B′) for the
dimensionless conductance of a narrow wire of length L and width W .

W

L

II

Figure 49: Transport through a metallic wire of length L and width W .

VI.E Preliminary : weak localisation correction and role of boundaries

We recall that the weak localisation correction to the dimensionless conductance of a narrow
wire (W � L) is given by

∆g = − 2

L2

∫ L

0
dxPc(x, x) (VI.34)

where the Cooperon solves
[
γ − ∂2

x

]
Pc(x, x

′) = δ(x − x′) where γ = 1/L2
ϕ encodes dephasing.

We account for the connections at the two boundaries by imposing some Dirichlet boundary
conditions Pc(x, x

′)
∣∣
x=0, L

= 0.

1/ Show that the weak localisation correction can be expressed in terms of the spectrum of
eigenvalues {λn} of the Laplace operator in the wire (i.e. −∂2

xφn(x) = λnφn(x) for φn(0) =
φn(L) = 0).

2/ Write the weak localisation as ∆g = −(2/L)G(γ), where G(γ) is the spatial averaged
Cooperon. Give G(γ) and analyse the limiting behaviours L� Lϕ and L� Lϕ.

VI.F Fluctuations and correlations

The correlation function for the narrow wire can be expressed as

δg(B)δg(B′) =
4

L2

∫
dω δT (ω)

∫ L

0

dxdx′

L2

[∣∣Pd(x, x′;ω)
∣∣2 +

1

2
Re
{
Pd(x, x

′;ω)2
}

+ ( Pd −→ Pc )

]
(VI.35)

where δT (ω) is a normalised function of width T such that δT (0) = 1/(6T ). The diffuson and
cooperon solve [

−iω/D + γd,c − ∂2
x

]
Pd,c(x, x

′;ω) = δ(x− x′) , (VI.36)

where the expressions of the dephasing rates differ for diffuson and cooperon in the presence of
a magnetic field :

γd =
1

L2
ϕ

+
1

L2
B−B′

2

and γc =
1

L2
ϕ

+
1

L2
B+B′

2

where LB =
√

3
~

e|B|W
. (VI.37)

1/ Compare the fluctuations at zero field B = B′ = 0 to the one at large field (no calculation).
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2/ Show that the two diffuson contributions can be written in terms of the spectrum {λn} under
the form

δg(B)δg(B′)(diffuson)
=

4

L3

∫
dω δT (ω)F(γω) (VI.38)

where γω = γd − iω/D. Express the function F(γω) as a series.

3/ With the help of the representation obtained in the previous question, show that the ex-
pression of the correlator involves a new cutoff at the length given by the thermal length
LT

def
=
√
D/T . Identify a “low temperature” regime and a “high temperature” regime by com-

paring the three lengths LT , Lϕ and L.

a) “Low” temperature regime (LT =∞)

In this case we simplify the calculation by performing the substitution δT (ω) → δ(ω) which
allows for a straightforward integration over frequency.

1/ Show that the correlator δg(B)δg(B′)(diffuson)
can be formally related to the weak localisation

(i.e. that the two functions F(γ) and G(γ) are related).

2/ Analyse the limiting behaviours for L � Lϕ and L � Lϕ. Recall the physical origin of the

decay of δg2 with L/Lϕ when L� Lϕ.

3/ Adding the cooperon contribution, analyse the structure of the correlator as a function of
the magnetic fields in the limit Lϕ � L.

b) “High” temperature regime (small LT )

1/ In the “high temperature” regime, justify the substitution δT (ω) → δT (0) (the value δT (0)

was given above). Deduce that the correlator δg(B)δg(B′)(diffuson)
is simply related to the WL,

i.e. expressed in terms of G(γ).

2/ Analyse the limiting behaviours for L� Lϕ and L� Lϕ.

3/ Analyse the magnetic field dependence of the full correlator (diffuson and cooperon) when
Lϕ � L.

c) Experiment

The weak localisation correction ∆g(B) and the conductance fluctuations δg(B)2 have been
measured in a short wire etched in a 2DEG with a direct averaging procedure (Fig. 50). Discuss
the experimental data at the light of your calculations.

Appendix

∞∑
n=1

1

(nπ)2 + y2
=

1

2y

(
coth y − 1

y

)
.

cothx =
1

x
+

1

3
x− 1

45
x3 +

2

945
x5 +O(x7) .
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Figure 50: WL and CF of a short wire (L ' 10 µm) etched in a 2DEG at T = 45 mK. Curves
from Ref. [91].

Further reading :

• The effect of boundary conditions in wires has been studied in the paper of Al’tshuler, Aronov
and Zyuzin B. L. Al’tshuler, A. G. Aronov and A. Yu. Zyuzin, Size effects in disordered con-
ductors, Sov. Phys. JETP 59, 415 (1984).

• A measurement of conductance fluctuations with direct averaging over disorder configurations
has been performed by Dominique Mailly and Marc Sanquer, Sensitivity of quantum conductance
fluctuations and 1/f noise to time reversal symmetry, J. Phys. I France 2, 357 (1992).

• For a recent theoretical paper (with a short review) : Christophe Texier & Gilles Montambaux,
Four-terminal resistances in mesoscopic networks of metallic wires: Weak localisation and cor-
relations, Physica E 75, 33–46 (2016), special issue “Frontiers in quantum electronic transport
– in memory of Markus Büttiker”, available as preprint cond-mat arXiv:1506.08224.
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**** Exercices écrits pour le cours à Aussois en 2005 ****

7/ Correction de localisation faible du fil.– On rappelle que 〈∆σ〉 = − e2

πL

∫ L
0 dxPc(x, x).

a) Fil connecté cohérent.– Construire la solution de l’équation − d2

dx2
Pc(x, x

′) = δ(x− x′) qui
s’annule aux bords : Pc(0, x

′) = Pc(L, x
′) = 0. En déduire la correction à la conductance 〈∆g〉.

b) Fil infini.– Dans la limite L → ∞ on utilise l’invariance par translation pour simplifier le

calcul. Construire la solution invariante par translation de ( 1
L2
ϕ
− d2

dx2
)Pc(x, x

′) = δ(x− x′). En

déduire 〈∆g〉.

9/ Déterminant spectral.– Lorsqu’il est légitime de considérer une conductivité locale, une
manière très efficace de calculer différentes quantités est de considérer le déterminant spectral
S(γ) = det(γ −∆). Pour des réseaux de fils, on rappelle que

S(γ) =
∏
(αβ)

sinh
√
γlαβ√
γ

detM (VI.39)

où le produit porte sur tous les fils du réseau. La matrice M contient toute l’information sur
le réseau. Cette matrice est de dimension V × V où V est le nombre de vertex. La matrice
de conectivité est notée aαβ (on a aαβ = 1 si (αβ) est un fil et aαβ = 0 sinon). lαβ désigne la
longueur du fil (αβ) et θαβ le flux magnétique.

Mαβ = δαβ

(
λα +

√
γ
∑
µ

aαµ coth(
√
γlαµ)

)
− aαβ

√
γ e−iθαβ

sinh(
√
γlαβ)

(VI.40)

La présence de la matrice de connectivité dans
∑

µ aαµ · · · contraint la somme à porter sur les
vertex voisins de α. Si le vertex α est connecté à un réservoir λα =∞, sinon λα = 0.

a) Donner l’expression de M pour un fil isolé de longueur L. Calculer S(γ).

b) Même question pour un fil connecté. On rappelle que

〈∆σ〉 = −e
2

π

1

Vol

∂

∂γ
lnS(γ) with γ = 1/L2

ϕ (VI.41)

En déduire 〈∆g〉. Étudier les limites Lϕ � L et Lϕ � L.

c) Montrer que pour un anneau isolé de périmètre L

S(γ) = 2(cosh
√
γL− cos θ) (VI.42)

où θ = 4πφ/φ0 est le flux réduit. Retrouver le résultat de Al’tshuler, Aronov & Sharvin (Sov.
Phys. JETP, 1981). Déduire les harmoniques de la magnétoconductivité.

10/ Nonlocalité du cooperon.– On s’intéresse au réseau représenté sur la figure 51.

a) Que vaut la conductance classique gcl ? On introduit la longueur L définie par gcl = αdNc`e/L.

b) On rappelle que la correction de localisation faible est donnée en intégrant le cooperon dans
le réseau, tout en pondérant l’intégrale le long d’un fil i par un poids ∂L/∂ li :

〈∆g〉 = − 2

L2

∑
i

∂L
∂ li

∫
wire i

dxPc(x, x) (VI.43)
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Calculer les poids des fils a, b, c et d.

c) Le cooperon est solution de l’équation[
1

L2
ϕ

−
(

d

dx
− 2ieA

)2
]
Pc(x, x

′) = δ(x− x′) (VI.44)

Rappeler le comportement de Pc(x, x
′) pour |x− x′| � Lϕ.

d) Déduire le comportement des harmoniques de magnétoconductance en fonction de lc et ld.

ld
φ

2

3 4
1

la l
b

lc

Figure 51: Les lignes ondulées représentent les contacts aux réservoirs.

11/ Châıne d’anneaux.– On considère la châıne de Nr anneaux représentée sur la figure 52.

a) Que vaut la conductance classique gcl de la châıne ?

c
2

b

c
1

d
1 d

2

a
...

Figure 52: Châıne d’anneaux

b) Déduire les poids des différents fils.

c) Montrer que dans la limite d’un grand nombre d’anneaux symétriques (lc = ld = L/2),
〈∆g〉 peut s’exprimer comme une intégrale uniforme du cooperon dans le réseau.

d) En négligeant les effets de bord, exprimer 〈∆g〉 en fonction du déterminant spectral.

e) Calculer le déterminant spectral d’une châıne infinie d’anneaux. Pour cela on vérifie que la
matrice M a une structure tridiagonale

M =


. . . −B 0

−B A −B 0

0 −B A
. . .

0
. . .

. . .

 (VI.45)

Calculer detM (en admettant des conditions aux limites périodiques). Exprimer A et B en
fonction de L, γ = 1/L2

ϕ et du flux réduit θ = 4πφ/φ0. Déduire 〈∆g〉.
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f) Analyser la première harmonique AAS dans la limite Lϕ � L. comparer avec le résultat de
l’exercice 9.c.

12/ Correction Al’tshuler-Aronov à la densité d’états du fil infini.– On rappelle que
la correction Al’tshuler-Aronov est donnée par :

δρ(ε) = −λρ
2π

∫ ∞
0

dt
πT t

sinhπTt
P(t) cos εt (VI.46)

où P(t) = 1
Vol

∑
n e−Ent. Les En sont les valeurs propres de l’équation de diffusion −∆ψn =

Enψn.

a) Rappeler l’expression de P(t) pour le fil infini.

b) Calculer (VI.46) dans les limites T � ε et T � ε.

13/ Longueur de Nyquist.– La longueur de Nyquist donne l’échelle de longueur sur laquelle
l’interaction électron-électron détruit la cohérence de phase.

a) Montrer que la longueur de Nyquist

LN =

(
σ0SD

e2T

)1/3

(VI.47)

peut s’écrire LN =
(
αd
π Nc`eL

2
T

)1/3
où LT =

√
D/T est la longueur thermique, Nc le nombre de

canaux et αd = Vd/Vd−1 où Vd est le volume de la sphère unité en dimension d.

b) Application numérique.
Calculer LN pour l’échantillon Ag(6N)c de l’article : F. Pierre et al, Phys. Rev. B 68, 085413
(2003). On donne : la longueur L = 400 µm, la largeur W = 105 nm, l’épaisseur : t = 55 nm, la
constante de diffusion D = 185 cm2/s, et le vecteur de Fermi de l’argent : k−1

F = 0.85 Å.

14/ Fluctuations de conductance.– On rappelle que les fluctuations de conductivité locale
pour Lϕ � LT s’expriment en fonction du déterminant spectral comme :

〈δσ2〉 = −6

(
e2

h

)2
1

Vol2

[
∂2

∂γ2
d

lnS(γd) +
∂2

∂γ2
c

lnS(γc)

]
(VI.48)

où γd = 1/L2
ϕ et γc = 1/L2

ϕ + 1/L2
B avec 1/LB = eBW√

3 ~ .

a) À l’aide du calcul de l’exercice 9.b donner l’expression de 〈δg2〉 pour un fil connecté de
longueur L. Étudier les limites Lϕ � L et Lϕ � L.

b) Dans la limite LT � Lϕ on montre en revanche que

〈δσ2〉 =
2π

3

(
e2

h

)2
L2
T

Vol2

[
∂

∂γd
lnS(γd) +

∂

∂γc
lnS(γc)

]
(VI.49)

Exprimer 〈δg2〉 pour le fil connecté puis étudier les limites Lϕ � L et Lϕ � L.

15/ Oscillations AB dans un anneau isolé.– Pour l’étude des corrélations paramétriques
〈δσ(B) δσ(B′)〉 on utilise (VI.48,VI.49) où les contributions du diffuson et du cooperon sont
calculées pour des champs magnétiques (B ∓ B′)/2. On négligera l’effet de pénétration du
champ magnétique dans les fils pour simplifier.
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a) Rappeler ∂
∂γ lnS(γ) pour un anneau isolé. En déduire l’expression des corrélations paramétriques

dans les limites LT � Lϕ et LT � Lϕ.

b) Déduire l’amplitude des oscillations AB dans la limite Lϕ � L.

16/ Oscillations AB dans la châıne d’anneaux symétriques.– À l’aide des résultats de
l’exercice 11, donner l’expression de l’amplitude des oscillations AB dans la limite LT � Lϕ � L.

Annexe

Règles de Feynman.– Pour le désordre gaussien défini par l’équation (??). Dans l’espace
réciproque :

1. dessiner le diagramme, associer à chaque ligne une impulsion compatible avec la conser-
vation des moments aux intersections.

2. chaque ligne est associée à une fonction de Green GR
0 (k) (ou G

R
(k)).

3. une ligne d’impureté (double interaction avec le désordre) est associée à un facteur w/Vol.

4. on somme sur toutes les impulsions
∑

k ≡
∫

ddk
(2π)d

.

Quelques intégrales.∫ 2π

0

dθ

2π

sinh a

cosh a+ cos θ
einθ = e−|n|a (VI.50)∫ ∞

0
dxxµ−1 cos ax =

Γ(µ)

aµ
cos

πµ

2
0 < Reµ < 1 (VI.51)∫ ∞

0
dx

xµ−1

sinh ax
=

2µ − 1

2µ−1aµ
Γ(µ) ζ(µ) Reµ > 1 (VI.52)

(VI.53)
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VII Coherent back-scattering

Figure 53: Image of Saturn rings. The white spot is partly explained as a CBS (and partly by a
shadow effect). From http://saturn.jpl.nasa.gov/
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VIII Toward strong disorder – Self consistent theory of locali-
sation

Aim : After diagrammatic approach : come back on scaling theory and develope a quantitative
analysis. I.e. use the weak localisation as a precursor of the strong localisation.

VIII.A Self-consistent theory of localization

A “mean field” like scaling theory of localization.
Ioffe-Regel criterion in 3D and the difficulty to observe the Anderson transition.

VIII.B Importance of symmetry properties

(Graphene may be discussed here).

VIII.C Transport by thermal hopping

transport between localised states (impurity states in a semiconductor)

σ(T ) ∼ exp−(T0/T )α (VIII.1)

competition between thermal activation and

• tunneling (VRH)

• Coulomb interaction (Efros-Schklovskii)
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IX Dephasing and decoherence

Aim : In chapter IV, we have seen that calculations require to introduce a large scale cutoff,
denoted Lϕ, that was put by hand. It is the purpose of the chapter to justify the introduction
of cutoffs more rigorously.

More important : this chapter also emphasizes on the practical interest for studying such
small corrections (. %1) to transport coefficient for metals. Being a coherent property, the
weak localisation may be used as a probe for quantum interference effects.

� Coupling with the environment and the induced dephasing.

� Microscopic processes leading to decoherence in solid state physics (phonons, magnetic impu-
rities, electron-electron interaction...).

� Bloch oscillations and the restoration of classical transport in the presence of decoherence.

� Effect of decoherence on weak localization. Discussion of positive magneto-resistance in the
presence of spin-orbit interaction.

� Effect of decoherence on CBS.

� Diffusive wave spectroscopy as a diagnostic tool in turbid media.

126



X Interaction effects

X.A Quantum (Altshuler-Aronov) correction to transport

• Useful practically : a local thermometer. Important for phase coherence measurement.

Figure 54: Altshuler-Aronov correction to the conductivity of a long wire ∆σee ∝ −1/
√
T .

The deviation of the experimental data from the straight line for the largest current indicates a
temperature larger than the fridge temperature, due to Joule heating ; from [18].

• Importance for the scaling theory : In the presence of strong spin-orbit (“heavy” metals),
there is no transition due to interaction.

m
etal

insulator

β(g)

)gln(

(a) β(g)

)gln(

(b)

withoutSO e−e interaction e−e interactionwithSO

+1

−1 −1
d

+1

=1

d=2

d=3

Figure 55: Allure de la fonction β(g) = d ln g
d lnL en présence de forte diffusion spin-orbite ; (a)

sans prendre en compte les interactions électroniques ; (b) en les prenant en compte.

X.B Decoherence by electronic interactions

• Important : dominates at low T .

• Build a microscopic theory.

Path integral → influence functional approach

Extract typical length scales :
Lee
ϕ ∼ LN ∼ (L2

T ξ)
1/3 ∼ T−1/3 in 1D

LN ∼ T−1/2 in 2D The problem : short scale versus long scale cutoff
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• Show recent experiments :
F. Pierre, H. Pothier, N. Birge (2003)
Saminadayar & Bäuerle, (2009) ; Niimi et al (2011)

X.C More advanced topics (???)

� Disordered superconductivity

� Mean field approximation for condensed bosons, Gross-Pitaevskii equation. Effect of weak
disorder, localization of Bogolyubov excitations in the presence of disorder. Interpretation of
experimental results on cold atoms in terms of a classical fluid+percolation.

� Beyond mean field : Mott insulator, MI/superfluid transition, Bose glass

� Breaking of superfluidity by disorder. Recent experiments by Esslinger
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Master iCFP - Wave in random media February 18, 2021

TD 8 : Decoherence by electronic interactions – Influence func-
tional approach

We have seen, within the diagrammatric approach, that the weak localisation (WL) correction
to the conductivity ∆σ involves a two particle propagator (in the particle-particle channel).
In low dimensions (d 6 2) and at low temperature (T . 1 K), the dominant decoherence
mechanism is the electronic interaction. As we have seen, the interesting dependence of
the WL in the phase coherence length Lϕ arises from large scale (infrared) cutoff. The treatment
of electronic interactions within diagrammatic technics is well formulated in the Fourier space,
where small scale-high energy (ultraviolet) cutoff emerges naturally (due to the presence of
Fermi distributions), but makes difficult a proper description of large scale cutoff : perturbation
theory in Fourier space presents infrared divergences cut off usually by hand (see Fukuyama &
Abrahams [61] ; the review by Chakravarty & Schmid [36]).

An alternative approach, pioneered by Al’tshuler, Aronov and Khmel’nitzkĭı in 1982, was to
follow an influence functional approach formulated in real space with path integral.

Let us first recall the expression of the WL seen in the lecture :

∆σ = −2se
2

π~
D

∫ ∞
0

dt e−Γϕ t

Pt(~r|~r)︷ ︸︸ ︷∫ ~r(t)=~r

~r(0)=~r
D~r(τ) e−

∫ t
0 dτ 1

4D
~̇r(τ)2 , (X.1)

where the decoherence (cut off of large length scale L & Lϕ =
√
D/Γϕ) was introduced by hand

through an exponential damping with the rate Γϕ. Our purpose is now to provide a microscopic
theory justifying such a cutoff arising from electronic interactions.

Altshuler, Aronov and Khmelniskii have proposed to model interaction of a given electron
with the surrounding electrons as the interaction with a fluctuating potential V (~r, t) (the vector
potential was rather considered in the originial paper). Each contribution in (X.1) should be
thus weighted by eiΦV , where

ΦV [~r(τ)] =
1

~

∫ t

0
dτ
[
V (~r(τ), τ)− V (~r(τ), t− τ)

]
(X.2)

is the phase peaked up by the two reversed electronic trajectories in the fluctuating field.

1/ Fluctuation-dissipation theorem.– The electric potential fluctuations are characterised
by FDT (written in the classical regime ~ω � kBT )

〈
V (~r, t)V (~r ′, t)

〉
V
' 2e2kBT

σ0
δ(t− t′)Pd(~r, ~r ′) (X.3)

where the Diffuson solves −∆Pd(~r, ~r
′) = δ(~r − ~r ′). The Drude conductivity is σ0 = 2se

2ρ0D
where ρ0 is the DoS per spin channel. Using the Gaussian nature of the fluctuations, perform
averaging over potential fluctuations in

〈
eiΦV

〉
V

. Show that the result can be interpreted in
terms of a trajectory dependent decoherent rate

∆σ = −2se
2

π~
D

∫ ∞
0

dt

∫ ~r(t)=~r

~r(0)=~r
D~r(τ) e−

∫ t
0 dτ 1

4D
~̇r(τ)2e−Γee[~r(τ)] t . (X.4)
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2/ Decoherence in a long wire.– In a long and narrow wire, justify the following expression
of the diffuson :

Pd(~r, ~r
′) ' − 1

2s
|x− x′| (X.5)

where x measures the distance along the wire and s is the cross-section of the wire. Rescaling the
variables in the path integral in order to deal with dimensionless coordinate and time, deduce
the characteristic time scale and length scale controlling the decoherence in this case. Analyze
the temperature dependence. Interpret physically the dependence of the phase coherent time
with s and the diffusion constant D (remember FDT). Compare with experimental data.

Indication : The change of variable {
x = λy
t = ητ

(X.6)

is implemented in the path integral with the help of 40∫ x(t=ητ)=λy

x(0)=0
Dx e−

∫ t
0 dt′ (ẋ2+V (x)) =

1

λ

∫ y(τ)=y

y(0)=0
Dy e

−
∫ τ
0 dτ ′ [λ

2

η
ẏ2+ηV (λy)]

, (X.8)

which can be interpreted as “Dx = 1
λDy”.

Figure 56: Left : Phase coherence length at low T in wire etched in 2DEG ; from Ref. [100].
Right : The phase coherence time in Al and Ag wires as a function of the width ; from [143].

3/ Decoherence in confined geometry.– In a confined geometry, we may simply use the
estimate Pd(~r, ~r

′) ∼ 1
sL, where L is the size of the wire. Deduce the new temperature dependence

of the phase coherence length.
In a recent experiment, the phase coherence lengths obtained in two different devices were

compared : from the magneto-conductance of a long wire and the one from the analysis of the
Aharonov-Bohm oscillations in a mesoscopic ring of perimeter L ' 14 µm. Discuss the result
(Fig. 57).

40 Proof relies on the fact that

Kt(x|0) = θH(t)

∫ x(t)=x

x(0)=0

Dx e−
∫ t
0 dt′ ( 1

4
ẋ2+V (x)) solves

(
∂

∂t
− ∂2

∂x2
+ V (x)

)
Kt(x|0) = δ(x) δ(t) . (X.7)
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Figure 57: From Ref. [34].

The two-dimensional case : The study of the two-dimensional case along the same lines is
more complicated because both large scale cutoff (well acounted for by the influence functional
discussed above) and short scale cutoff (more naturally introduced in conventional perturbation
theory in Fourier space) matter. The appropriate formulation within influence functional was
finally achieved by Jan von Delft and collaborators [92, 136] (see also the review [135]. A more
simple discussion was provided in Ref. [130].

Further reading :
• The famous paper : B. L. Altshuler, A. G. Aronov and D. E. Khmelnitsky [7].

• The pedagogical review : S. Chakravarty and A. Schmid [36].

• The present text is inspired by our article [122].
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A Linear response theory

This is a piece of my lecture notes [117].
Consider the time dependent Hamiltonian

Ĥ(t) = Ĥ0 − f(t) Â (A.1)

where the time dependent perturbation is controlled by the force f(t), coupled to the observable
A. The question is to determine the quantum/statistical average of another observable B, under
the form of an expansion in powers of the force

〈B̂(t)〉f = 〈B̂〉+

∫
dt′ χBA(t− t′) f(t′) +O(f2) . (A.2)

The question is now to determine the expression of the response function χBA(t), which can be
done by using perturbation theory. We derive the formula (IV.8).

Density matrix.– Nous allons maintenant déterminer l’évolution de la moyenne de l’observable
〈B(t)〉f = Tr{ρ(t)B} où la matrice densité encode l’information statistique et la dynamique, i.e.
obéit à l’équation de von Neunmann (ou Liouville)

d

dt
ρ(t) =

i

~
[ρ(t) , H(t)] avec H(t) = H0 +Hpert(t) (A.3)

pour Hpert(t) = −f(t)A.

Représentation d’interaction.– Lorsqu’on développe une théorie de perturbation pour un
problème dépendant du temps, il est naturel de commencer par “extraire” l’évolution libre en
introduisant

ρ̃(t)
def
= eiH0t/~ ρ(t) e−iH0t/~ (A.4)

Ce faisant on reporte une partie de l’interaction sur les opérateurs (l’évolution libre) alors
que les fonctions d’onde, ou plutôt la matrice densité, caractérise l’effet de la perturbation
sur l’évolution. Ce point de vue intermédiaire entre les points de vue de Schrödinger (toute
l’évolution est dans ρ(t)) et de Heisenberg (toute l’évolution est dans les observables) est ap-
pelée la représentation d’interaction :

〈B(t)〉f =

représ. de Schröd.︷ ︸︸ ︷
Tr{ρ(t)B} =

représ. d’inter.︷ ︸︸ ︷
Tr{ρ̃(t)B(t)} avec B(t) = eiH0t/~B e−iH0t/~ . (A.5)

Nous obtenons facilement l’équation différentielle satisfaite par la matrice densité trans-
formée :

d

dt
ρ̃(t) =

i

~
[
ρ̃(t) , HI(t)

]
(A.6)

où
HI(t)

def
= eiH0t/~Hpert(t)e

−iH0t/~ = −f(t)A(t) (A.7)

désigne la perturbation en représentation d̂ıte “d’interaction”.
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Analyse perturbative.– L’équation (A.6) est maintenant parfaitement adaptée à la recherche
de la solution sous la forme d’un développement en puissances de la perturbation ρ(t) =
ρ(0)(t) + ρ(1)(t) + ρ(2)(t) + · · · où ρ(n)(t) = O(fn). Nous déduisons immédiatement la récurrence

d

dt
ρ̃(n)(t) =

i

~
[
ρ̃(n−1)(t) , HI(t)

]
(A.8)

que nous résolvons en supposant que le système est initialement à l’équilibre thermodynamique :
ρ(−∞) = ρ0 (c’est le cas si f(−∞) = 0). Les conditions aux limites sont donc : ρ(n)(−∞) =
ρ0 δn,0, ce qui conduit à

ρ̃(n)(t) = − i

~

∫ t

−∞
dt′ f(t′)

[
ρ̃(n−1)(t′) , A(t′)

]
. (A.9)

Finalement, si l’on se limite au premier ordre, nous obtenons

ρ̃(t) = ρ0 −
i

~

∫ t

−∞
dt′ f(t′) [ρ0, A(t′)] +O(f2) , (A.10)

qui permet de calculer 〈B(t)〉f = Tr {ρ̃(t)B(t)}. En remarquant que Tr {[A,B]C} = Tr {A[B,C]},
on aboutit au résultat

χBA(t)︸ ︷︷ ︸
réponse

=
i

~

causalité︷︸︸︷
θ(t) 〈[B(t), A]〉︸ ︷︷ ︸
corrélation à l’équil.

= 2iθ(t) ξBA(t) = θ(t)β KBȦ(t) (A.11)

Nous venons donc d’identifier laquelle des fonctions de corrélation est reliée à la fonction de
réponse. Insistons : cette fonction de réponse dynamique, cöıncidant avec une fonction de
corrélation d’équilibre, caractérise la façon dont le système réagit lorsqu’il est soumis à une
perturbation extérieure, i.e. lorsqu’il est mis dans une situation (faiblement) hors équilibre.
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