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1/ The oscillations of the resistance with B at high field are the Shubnikov-de-Haas oscillations :
a strong enough magnetic field induces density of states ρ(εF ) oscillations (precursor of the
Landau spectrum), which induce oscillations of the conductivity σ = 2se

2ρ(εF )D.

2/ We solve (3). The solution is continuous at x = x0 :

C(x, x0; γ) = A

{
e+
√
γ(x−x0) for x < x0

e−
√
γ(x−x0) for x > x0

(8)

Imposing the second boundary condition, we find −2
√
γA = −1, hence

C(x, x0; γ) =
1

2
√
γ
e−
√
γ|x−x0| . (9)

3/ We sandwich (2) between χn(y) and χm(y) and integrate. We use∫ w

0
dydy′ χn(y) ∂2

yPc(~r, ~r
′)χm(y′) =

∫ w

0
dydy′ ∂2

yχn(y)︸ ︷︷ ︸
−εnχn(y)

Pc(~r, ~r
′)χm(y′)

and ∫ w

0
dydy′ χn(y) δ(~r − ~r ′)χm(y′) = δ(x− x′)

∫ w

0
dy χn(y)χm(y) = δ(x− x′) δn,m

Finally [
γ + εn − ∂2

x

]
Pn,m(x, x′) = δ(x− x′) δn,m (10)

as a consequence

Pn,m(x, x′) = δn,m C(x, x′; γ + εn) = δn,m
1

2
√
γ + εn

e−
√
γ+εn|x−x′| . (11)

4/ “Quasi-1D approximation” : We consider length scales much larger than the width, i.e.
Lϕ � w (recall that Lϕ set the typical size of trajectories contributing to the weak localisation).
The Cooperon is

Pc(~r, ~r
′) =

∞∑
n=0

χn(y)Pn,n(x, x′)χn(y′) (12)

The first term P0,0(x, x′) =
Lϕ

2 e−|x−x
′|/Lϕ is a function of height Lϕ and width Lϕ. Using that√

γ + εn ' nπ/w, we see that the next terms Pn,n(x, x′) = w
2nπe

−nπ|x−x′|/w (height w/n and
width w/n) are negligible. Finally we deduce that the sum over traverse modes is dominated by

the first term : Pc(~r, ~r
′) ' Lϕ

2w e
−|x−x′|/Lϕ .
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5/ We only need the Cooperon at coinciding points, thus ∆σ = −2se2

π~
Lϕ

2w . Using ∆g = (w/L)×
(h/2se

2)×∆σ, we recover the result

∆g = −Lϕ
L

(13)

6/ Strong localisation ?

a) In the strongly localised regime we expect g ∼ exp[−2L/ξ] for L� ξ, instead of g ' gDrude =
πξ/(2L) where ξ = Nc`e. Using the data : the number of channels is Nc = 630/(10π) ' 20, thus
ξ = 20× 340 ' 7.2 µm.

b) The largest phase coherence length is Lϕ(10 mK) ' 8.2 µm, i.e. it is comparable, but not
much larger. We cannot observe the strong localisation under such conditions (note that in
narrow wires, w ' 50 nm, made of 3D metal deposited on a substrate, the elastic mean free
path is shorter `e ' 20 nm but the number of channels is much larger, Nc & 50 000, so that the
localisation length is larger ξ ∼ 1 mm and strong localisation irrealistic).

c) In 2D metal, the Drude dimensionless conductance is gDrude = πNc`e/(2L) = πξ/(2L). The
relative correction is thus

∆g

gDrude
= −2Lϕ

πξ
(14)

The weak localisation is “weak” (validity of the diagrammatic approach) for Lϕ � ξ (no strong
localisation). The experiment is slightly at the border of this condition, Lϕ(36 mK) ' 5.3 µm
(and shorter for higher temperatures).

7/ The heuristic argument is based on

∆σ(B) ∼ −
∑

Ct with t<τϕ

e4πiΦ[Ct]/φ0

where the sum runs over closed diffusive trajectories (loops) smaller than Lϕ. The magnetic flux
encircled by the trajectory is Φ[Ct]. The magnetic field introduces a second cutoff as it eliminates
all trajectories which intercept a flux Φ[Ct] > φ0. This makes the sum decaying with B, so that
∆σ(B) grows with B. This is the anomalous magnetoconductance.

The new cutoff LB corresponds to trajectories carrying one quantum flux. The typical surface
of a trajectory in the wire is Ltw therefore we write LBwB ∼ φ0 hence LB ∼ ~/(eBw). At strong
magnetic field (LB < Lϕ) the magnetic field provides the dominant cutoff so that

∆g = −Lϕ
L
−→ ∆g(B) ' −LB

L
∼ −1/|B|

8/ We still assume the structure Pc(~r, ~r
′) ' 1

wP0,0(x, x′) : this allows to “project” equation (2)
on the first transverse mode. Assuming Pc(~r, ~r

′) depends only on x and x′ :∫ w

0

dy

w

[ 1

L2
ϕ

− ∂2
x +

4ie

~
Ax(y) ∂x +

4e2

~2
Ax(y)2

]
Pc(~r, ~r

′) =
1

w
δ(x− x′)

The choice of the gauge leads to
∫ w

0 dy Ax(y) = 0 and
∫ w

0 dy Ax(y)2 = B2w2/12. Finally we
obtain [ 1

L2
ϕ

− ∂2
x +

e2B2w2

3~2

]
Pc(~r, ~r

′) =
1

w
δ(x− x′)
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that is the same equation as for B = 0, provided

γ =
1

L2
ϕ

−→ 1

Leff
ϕ (B)2

=
1

L2
ϕ

+
1

L2
B

with LB =

√
3

|eB|w
. (15)

We have now obtained the precise expression of LB.

9/ a) Performing the substitution (15) in ∆g = −Lϕ

L , we deduce the magnetoconductance

∆g(B) = −Lϕ
L

1√
1 + (B/Bϕ)2

with Bϕ
def
=

√
3~

ewLϕ
=

√
3

2π

φ0

wLϕ
(16)

b) The limiting behaviours are ∆g(B) − ∆g(0) ' +
Lϕ

2LB2ϕ
B2 at B � Bϕ and ∆g(B) ' −LB

L ∼
−1/|B| as expected for B � Bϕ.

c) The magnetoconductance curve ∆g(B) has height Lϕ/L and width Bϕ ∝ 1/Lϕ. The expe-
rimental data show that Lϕ(T ) ↘ as T ↗. As temperature increases, the extrinsic degrees of
freedom are activated and decoherence becomes more efficient.

d) The validity of the quasi-1D treatment is Lϕ � w at B = 0. Similarly we expect that the
validity at high field is LB � w, i.e.

|B| � φ0

w2
.

Using w = 0.63 µm this gives |B| � 100 Gauss, which is the case for the data.

e) For strong magnetic field such that |B| � φ0/w
2, the cutoff is shorter than the width.

Assuming that the diffusion approximation still holds, this means that one enters into the 2D
regime (the diffusion cannot anymore be considered as effectively 1D). In 2D we have ∆σ '
−2se2

πh ln(Lϕ/`). At strong field Lϕ → L
(2D)
B =

√
φ0/B hence ∆σ(B) ∼ − lnL

(2D)
B ∼ + ln |B|.

It is not really what the experimental data show : for strong field, there is probably a problem
with the diffusion approximation in these samples with very large `e...

* To know more about it

• This analysis was proposed in a well-known paper :
B. L. Al’tshuler and A. G. Aronov, Magnetoresistance of thin films and of wires in a longitudinal magnetic
field, JETP Lett. 33(10), 499 (1981).

• Semi-ballistic regime.– Many experiments (like the one studied here) are performed with long wires
etched in a 2DEG at the interface of two semiconductors (GaAs/GaAl1−xAsx). In this case the elastic

mean free path `
(2D)
e of the original 2DEG is usually larger than the section of the wire (this is not the

case here). The effective elastic mean free path in such wires is also larger than the section `
(1D)
e > w,

mostly due to reflections on the boundaries. The dephasing by the magnetic field involves the different
length scales due the phenomenon of flux cancellation. This has been described by semiclassical methods
by Dugaev-Khmelnitski and Beenakker-van Houten :.
V. K. Dugaev and D. E. Khmel’nitzkĭı, Magnetoresistance of metal films with low impurity concentrations
in parallel magnetic field, Sov. Phys. JETP 59(5), 1038 (1984).
C. W. J. Beenakker and H. Van Houten, Boundary scattering and weak localization of electrons in a
magnetic field, Phys. Rev. B 38(5), 3232 (1988).

• The experiment analysed here was performed at the Institut Néel (Grenoble), cf. :
Y. Niimi, Y. Baines, T. Capron, D. Mailly, F.-Y. Lo, A. D. Wieck, T. Meunier, L. Saminadayar, and
C. Bäuerle, Quantum coherence at low temperatures in mesoscopic systems : Effect of disorder, Phys.
Rev. B 81, 245306 (2010).
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