
Universités Paris 6, Paris 7 & Paris-Sud, École Normale Supérieure, École Polytechnique
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Subject :

Quantum electronic transport in narrow 2D disordered metallic wires

Introduction : The magnetoconductance of narrow wires at low temperature has been measu-
red recently. The results of these measurements are shown in Fig. 1. The aim of the problem is
to derive the precise form of the magnetoconductance curve explaining these experimental data.

Samples : The samples are wires patterned in a two-dimensional-electron-gas (2DEG), i.e.
electrons trapped at the interface of two semiconductors GaAs and GaAlAs, forming a two-
dimensional metal.
• The length of the wires is L = 150 µm and the width 1 w = 630 nm.
• The electronic density is ne = 1.5×1015m−2 leading to the Fermi wave vector kF given by k−1

F =
10 nm. Recalling that the effective mass in GaAs is m∗ = 0.067me (where me = 0.9× 10−30 kg
is the bare electron mass), we deduce the Fermi velocity vF = ~kF /m∗ = 0.17× 106 m/s.
• The disorder is characterised by the diffusion constant D = 290 cm2/s, hence we deduce the
elastic mean free path `e = 340 nm.

Bc=1.6 G for L!=1 "m. The suppression of the WL effect
is complete when B#$ /2ele

2. These fields are always much
weaker than classically strong fields B!!m! / "e%e#.

B. Experimental results

1. Quasi-1D wires

In order to determine the phase coherence length L!, we
have performed standard magnetoresistance measurements
as a function of temperature. A typical example for such a
magnetoresistance curve is displayed in Fig. 5. Let us first
concentrate on the field range up to a magnetic field of 2 T. A
sharp peak which is due to WL is clearly seen at zero field.
With increasing the magnetic field the WL peak disappears
and another type of negative magnetoresistance is observed
which is due to magnetic focusing. When going to even
higher fields "#0.5 T# the well-known Shubnikov de Haas
"SdH# oscillations appear.

Analyzing the WL peak allows to obtain the phase coher-
ence length L!. In Fig. 6, we show magnetoconductance
curves in units of e2 /h for w=1000 and 1500 nm wide wires
at different temperatures. Note that the field scale is about
three orders of magnitude smaller than that in Fig. 5. Since
we are in a diffusive regime where le is smaller than w, the
standard WL formula, Eq. "6#, can be used. In Eq. "6#, there
are two parameters, i.e. L!, and weff. The effective width weff,
however, is determined by fitting the magnetoconductance at
a given temperature and diffusion coefficient. For litho-
graphic widths w=1000 and 1500 nm, we obtain weff=630
and 1130 nm, respectively. The effective width is then kept
fixed for the entire fitting procedure and L! remains the only
fitting parameter.

The observed WL curves are nicely fitted using Eq. "6#
over the field ranges of &60 and &30 G for w=1000 nm
and 1500 nm, respectively. At a higher field "above
$100 G#, however, the measured WL curves start to deviate
from the theoretical fittings "insets of Fig. 6#. For this reason,
when we fit the magnetoconductance with the standard
theory, we limit the field scale within lB#weff, i.e., %B%'15
and 5 G for weff=630 nm and 1130 nm, respectively.

The extracted phase coherence length L! is plotted as a
function of T at D=290 cm2 /s for w=1000 and 1500 nm
wide wires in Fig. 7. At low temperatures, L! nicely follows

a T−1/3 law down to the lowest temperatures for both the
wires. Note that the temperature below 40 mK has been cor-
rected by measuring in situ the electron temperature of the
quasi-1D wire based on e-e interaction corrections as de-
tailed in Sec. VI. The absolute values of L! at low tempera-
tures are different between the two wires, which is expected
in the AAK theory in Eq. "3#. Similar temperature depen-
dence of L! has also been observed in GaAs/GaAlAs
networks.44

Above &1 K, L! follows a T−1 law and its absolute value
does not depend on the width of the wire. This is because L!
is not limited by disorder any more but follows the FL theory
without disorder as shown in Eq. "5#.23,35 When we fit the
L! vs T curves, the following equation is used:
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FIG. 5. "Color online# Magnetoresistance curves of 1000 and
1500 nm wide wires at T=36 mK and D=290 cm2 /s.
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FIG. 6. "Color online# WL curves of "a# 1000 and "b# 1500 nm
wide wires at D=290 cm2 /s and 170 cm2 /s, respectively. The
conductance here is divided by e2 /h. The broken lines are the best
fits of Eq. "6#. The insets in "a# and "b# show the magnetoconduc-
tance at T=140 mK in larger field ranges.
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FIG. 7. "Color online# Phase coherence length of 1000 and 1500
nm wide wires as a function of T at D=290 cm2 /s. The solid lines
are the best fits with Eq. "8#.
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Figure 1 : Magnetoresistance (left) and magnetoconductance (right) curves obtained with long
wires etched in a 2DEG. The magnetic field is in Gauss (1 Gauss= 10−4 Tesla). From Niimi et
al., Physical Review B 81, 245306 (2010).

1 The width indicated in the figure is the lithographic width, wlitho = 1 µm. The effective width, w = 630 nm,
taking into account the real confinment of the electrons with Fermi energy εF is shorter
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1/ The curve on the left of the figure shows the magnetoresistance over a broad window of
magnetic field, B ∈ [−2 T,+2 T]. A condensed matter question : what is the physical
origin of the oscillations ?

In the rest of the problem, we concentrate ourselves on the sharp peak visible near B = 0
on the left part of Fig. 1, and which we argue to be the weak localisation correction to the
conductance. This small peak has been enlarged on the right part of the figure, which shows the
magnetoconductance over a small window of magnetic field [−6 mT,+6 mT] and for different
temperatures.

Weak localisation.– We recall that the weak localisation correction ∆σ
def
= σ − σDrude to the

conductivity is given by

∆σ = −2se
2

π~
Pc(~r, ~r) (1)

(we omit the integral
∫

dd~r
Vol by assuming translation invariance). The Cooperon is solution of[

1

L2
ϕ

−
(
~∇− 2ie

~
~A

)2
]
Pc(~r, ~r

′) = δ(~r − ~r ′) , (2)

where ~A is the vector potential and Lϕ the phase coherence length. In order to apply the formula
(1), we need to solve the diffusion like equation (2).

A. Zero magnetic field.– We first consider the wire in the absence of the magnetic field, B = 0
(i.e. ~A = 0).

2/ Preliminary : strictly 1D.– We consider the equation[
γ − ∂2

x

]
C(x, x0; γ) = δ(x− x0) where γ = 1/L2

ϕ . (3)

Justify the matching conditions C(x+
0 , x0; γ) = C(x−0 , x0; γ) and ∂xC(x, x0; γ)

∣∣x=x+0
x=x−0

= −1.

Solve the differential equation (3) on ]−∞, x0[ and ]x0,+∞[ and match the two solutions (which
decay at ±∞). Deduce C(x, x0; γ).
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Figure 2 : The geometry of a 2D wire (i.e. the coordinate belongs to a stripe : ~r ∈ R× [0, w]).

3/ From 1D to quasi-1D.– We now want to solve[
γ −∆

]
Pc(~r, ~r

′) = δ(~r − ~r ′) with ~r = (x, y) ∈ R× [0, w] (4)

(Fig. 2). We introduce a basis of solutions χn(y) satisfying the transverse Neumann boundary
conditions (at y = 0 and y = w) describing the reflection of the electron at the boundary :

−∂2
yχn(y) = εn χn(y) with εn =

(nπ
w

)2
for n ∈ N .
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We have χ0(y) = 1/
√
w and χn(y) =

√
2/w cos(nπy/w) for n > 0. It will be useful to necall

that they form a basis∫ w

0
dy χn(y)χm(y) = δn,m and

∞∑
n=0

χn(y)χn(y′) = δ(y − y′) .

We can decompose the Cooperon over the transverse diffusion modes

Pn,m(x, x′)
def
=

∫ w

0
dydy′ χn(y)Pc(~r, ~r

′)χm(y′) and Pc(~r, ~r
′) =

∑
n,m

χn(y)Pn,m(x, x′)χm(y′) .

By projecting the diffusion equation (4) over the transverse modes, deduce an equation for
Pn,m(x, x′) and show (without further calculation) that Pn,m(x, x′) = δn,m C(x, x′; γ + εn).

Hint : analyse
∫ w

0 dydy′ χn(y)
[
(γ −∆)Pc(~r, ~r

′)− δ(~r − ~r ′)
]
χm(y′) = 0.

4/ Finally, argue that in the limit Lϕ � w (“quasi-1D” approximation), the Cooperon has the
form

Pc(~r, ~r
′) ' Lϕ

2w
e−|x−x

′|/Lϕ . (5)

5/ Weak localisation correction.– The conductance is related to the conductivity as G =
σ w/L, where L is the length of the wire. Recover the weak localisation correction ∆g to the

dimensionless conductance g
def
= G/Gc where Gc = 2se

2/h is the quantum of conductance.

6/ Crossover to strong localisation.– In a fully coherent wire (Lϕ = ∞) we expect strong
localisation to occur over large scale, L� ξ, where ξ is the localisation length.

a) What is the expected dependence of the dimensionless conductance in this case (no calcu-
lation) ? The random matrix theory and the non-linear-σ-model give ξ = Nc`e (for Nc � 1),
where Nc = kFw/π is the number of conducting channels in the wire. Using the data given in
the introduction, compute Nc and deduce ξ.

b) The measurement is performed down to T = 36 mK, however the refrigerator could reach
T = 10 mK. The phase coherence is then Lϕ(10 mK) ' 8.2 µm. Is the observation of strong
localisation possible under such conditions (sample and refrigerator) ?

c) For 2D wires, the Drude dimensionless conductance is gDrude = πξ/(2L). Express the relative
correction ∆g/gDrude. Deduce a condition of validity of the diagrammatic study of the average
conductance (up to the weak localisation correction).

B. Finite magnetic field.– We now analyse the weak localisation correction in the presence
of a finite magnetic field B 6= 0.

7/ Recall the heuristic argument which explains the positive (anomalous) magnetoconductance
(few lines). Draw a typical electronic trajectory contributing to the weak localisation (for Lϕ �
w) and identify another characteristic B-dependent length LB which plays the role (with Lϕ) of
a second cutoff for the contributions to ∆σ. Deduce how ∆g(B) behaves at “large” field.

Our purpose is now to derive the precise form for ∆g(B). It will be convenient to choose the
asymmetric (Landau) gauge

Ax(y) =
(w

2
− y
)
B and Ay = 0 . (6)
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8/ We assume that it is still justified to do the quasi-1D approximation for the Cooperon, i.e.
project on the transverse mode χ0(y) only. Following the same projection procedure of the
differential equation (2) as in question 3, i.e. analysing∫ w

0
dydy′ χ0(y)

[
equation (2)

]
χ0(y′)

where χ0(y) = 1/
√
w. show that the Cooperon is given by (5) provided one performs the

substitution Lϕ −→ Leff
ϕ (B) with

1

Leff
ϕ (B)2

=
1

L2
ϕ

+
1

L2
B
. (7)

Derive the precise expression of LB. What is the interest of the choice made for the gauge, such
that Ax(w − y) = −Ax(y) ?

9/ Magnetoconductance

a) Deduce the expression of the magnetoconductance ∆g(B) as a function of ∆g(0) and the ratio

B/Bϕ where Bϕ
def
= φ0/(Lϕw) and φ0 = h/e the quantum flux. Analyse the limiting behaviours

for B → 0 and “large” B.

b) Plot neatly ∆g(B) by indicating what is the typical width and height of this curve. Compare
with the experimental curves of the right part of figure 1.

c) Argue that the analysis of the temperature dependence of the magnetoconductance (Fig. 1)
provides the temperature dependence of Lϕ. Explain physically the main behaviour of Lϕ(T )
(growth or decay).

d) Validity of the quasi-1D approximation.— Argue that the validity of the quasi-1D approxi-
mation (at question 4 : Lϕ � w) now requires a second condition |B| � φ0/w

2. We give
φ0 = 41 Gauss.µm2 : are the experimental data (right part of figure 1) in this range ?

e) Bonus : We now consider the case when the magnetic field is stronger, |B| & φ0/w
2, but

such that the diffusion approximation is still justified, i.e. (2) is still valid but the derivation of
Pc(~r, ~r) would be different. What do you expect for ∆σ(B) in this case ?

Appendix

Fundamental constants : ~ = 1.054× 10−34 J.s and kB = 1.38× 10−23 J.K−1.

Solutions disponibles sur la page du cours : http://www.lptms.u-psud.fr/christophe_texier/
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