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Ondes en milieux désordonnés et phénomenes de localisation — Examen
Mercredi 29 mars 2017

Duration : 3 hours.

You may use the lecture’s notes (any other document is prohibited).

Subject :
’Quantum electronic transport in narrow 2D disordered metallic Wires‘

Introduction : The magnetoconductance of narrow wires at low temperature has been measu-
red recently. The results of these measurements are shown in Fig.[I}] The aim of the problem is
to derive the precise form of the magnetoconductance curve explaining these experimental data.

Samples : The samples are wires patterned in a two-dimensional-electron-gas (2DEG), i.e.
electrons trapped at the interface of two semiconductors GaAs and GaAlAs, forming a two-
dimensional metal.

e The length of the wires is L = 150 um and the width E| w = 630 nm.

e The electronic density is n. = 1.5x10m~2 leading to the Fermi wave vector kr given by k;l =
10 nm. Recalling that the effective mass in GaAs is m, = 0.067 m, (where m, = 0.9 x 1073 kg
is the bare electron mass), we deduce the Fermi velocity vy = hkp/m. = 0.17 x 10° m/s.

e The disorder is characterised by the diffusion constant D = 290 cm? /s, hence we deduce the
elastic mean free path £, = 340 nm.
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FIGURE 1 : Magnetoresistance (left) and magnetoconductance (right) curves obtained with long
wires etched in a 2DEG. The magnetic field is in Gauss (1 Gauss= 10~* Tesla). From Niimi et
al., Physical Review B 81, 245306 (2010).

! The width indicated in the figure is the lithographic width, wiithe = 1 pm. The effective width, w = 630 nm,
taking into account the real confinment of the electrons with Fermi energy er is shorter



1/ The curve on the left of the figure shows the magnetoresistance over a broad window of
magnetic field, B € [-2 T,+2 T]. A CONDENSED MATTER QUESTION : what is the physical
origin of the oscillations ?

In the rest of the problem, we concentrate ourselves on the sharp peak visible near B = 0
on the left part of Fig. [I and which we argue to be the weak localisation correction to the
conductance. This small peak has been enlarged on the right part of the figure, which shows the
magnetoconductance over a small window of magnetic field [-6 mT, 46 mT| and for different
temperatures.

Weak localisation.— We recall that the weak localisation correction Ag & & — ODrude to the

conductivity is given by

2,62
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(we omit the integral [ ‘{%T; by assuming translation invariance). The Cooperon is solution of
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where A is the vector potential and L, the phase coherence length. In order to apply the formula
(1)), we need to solve the diffusion like equation .

Ao = P.(F,7) (1)

Pc(Fa 77/) = 5(77_ 77/) ’ (2)

A. Zero magnetic field.— We first consider the wire in the absence of the magnetic field, B =0
(i.e. A=0).

2/ Preliminary : strictly 1D.— We consider the equation
[v - ag]C(J:,xo;’y) =d(x — xo) where v = 1/Li . (3)
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Solve the differential equation (3]) on | — oo, o[ and |zg, +00[ and match the two solutions (which
decay at +00). Deduce C(z, xo;7).

Justify the matching conditions C(z{, zo;y) = C(z , z0;) and 8,C(z, zo; )|

FIGURE 2 : The geometry of a 2D wire (i.e. the coordinate belongs to a stripe : ¥ € R x [0,w]).
3/ From 1D to quasi-1D.— We now want to solve
[v = A|P(7, 7)) = 6(F = 7')  with 7= (z,y) € R x [0, w] (4)

(Fig. . We introduce a basis of solutions y,(y) satisfying the transverse Neumann boundary
conditions (at y = 0 and y = w) describing the reflection of the electron at the boundary :
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Oyxn(y) = enxn(y) withe, = (w ) forne N.
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We have xo(y) = 1/v/w and x,(y) = +/2/w cos(nmy/w) for n > 0. It will be useful to necall
that they form a basis
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We can decompose the Cooperon over the transverse diffusion modes

Pz, 2) = /0 dydy xn(y) Pe(7, ™) xm(y))  and  Pe(7,7") = Xn(y) Pam(@,2") xm (') -

By projecting the diffusion equation over the transverse modes, deduce an equation for
Py (z,2") and show (without further calculation) that Py, y,(z,2") = 0pm C(z, 2'; 7 + €5).

Hint : analyse fow dydy’ xn(y) [(7 — A)P.(7,7") — §(F — F’)] xm(y') = 0.

4/ Finally, argue that in the limit L, > w (“quasi-1D” approximation), the Cooperon has the
form I

P i) ~ L qlasliLy 5

()~ (5)

5/ Weak localisation correction.— The conductance is related to the conductivity as G =

ow/L, where L is the length of the wire. Recover the weak localisation correction Ag to the
dimensionless conductance g a /G where G, = 2,62 /h is the quantum of conductance.

6/ Crossover to strong localisation.— In a fully coherent wire (L, = 00) we expect strong
localisation to occur over large scale, L > &, where ¢ is the localisation length.

a) What is the expected dependence of the dimensionless conductance in this case (no calcu-
lation) ? The random matrix theory and the non-linear-o-model give £ = Nl (for N, > 1),
where N, = kpw/7 is the number of conducting channels in the wire. Using the data given in
the introduction, compute N, and deduce £.

b) The measurement is performed down to T = 36 mK, however the refrigerator could reach
T = 10 mK. The phase coherence is then L,(10 mK) ~ 8.2 um. Is the observation of strong
localisation possible under such conditions (sample and refrigerator) ?

¢) For 2D wires, the Drude dimensionless conductance is gprudge = 7€/ (2L). Express the relative
correction Ag/gprude- Deduce a condition of validity of the diagrammatic study of the average
conductance (up to the weak localisation correction).

B. Finite magnetic field.— We now analyse the weak localisation correction in the presence
of a finite magnetic field B # 0.

7/ Recall the heuristic argument which explains the positive (anomalous) magnetoconductance
(few lines). Draw a typical electronic trajectory contributing to the weak localisation (for L, >
w) and identify another characteristic B-dependent length Lg which plays the role (with L) of
a second cutoff for the contributions to Ac. Deduce how Ag(B) behaves at “large” field.

Our purpose is now to derive the precise form for Ag(B). It will be convenient to choose the
asymmetric (Landau) gauge

A (y) = (5 — y) B and A,=0. (6)



8/ We assume that it is still justified to do the quasi-1D approximation for the Cooperon, i.e.
project on the transverse mode xo(y) only. Following the same projection procedure of the
differential equation as in question 3, i.e. analysing

/0 dydy’ xo(y) [equation ] xo(y')

where xo(y) = 1/y/w. show that the Cooperon is given by provided one performs the
substitution L, — L‘fpﬁ(B) with
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Derive the precise expression of L. What is the interest of the choice made for the gauge, such
that Az(w —y) = —A,(y)?

9/ Magnetoconductance

a) Deduce the expression of the magnetoconductance Ag(B) as a function of Ag(0) and the ratio

B/B, where B, < o/ (Lyow) and ¢9 = h/e the quantum flux. Analyse the limiting behaviours
for B — 0 and “large” B.

b) Plot neatly Ag(B) by indicating what is the typical width and height of this curve. Compare
with the experimental curves of the right part of figure

¢) Argue that the analysis of the temperature dependence of the magnetoconductance (Fig.
provides the temperature dependence of L,. Explain physically the main behaviour of L,(T)
(growth or decay).

d) Validity of the quasi-1D approzimation.— Argue that the validity of the quasi-1D approxi-

mation (at question 4 : L, > w) now requires a second condition |B] < ¢o/w?. We give
¢o = 41 Gauss.um? : are the experimental data (right part of figure[1)) in this range ?

e) BONUS : We now consider the case when the magnetic field is stronger, |B| = ¢o/w?, but
such that the diffusion approximation is still justified, i.e. is still valid but the derivation of
P.(7,7) would be different. What do you expect for Ao (B) in this case?

Appendix
Fundamental constants : h = 1.054 x 1073% J.s and kg = 1.38 x 10~23 J. K1,

Solutions disponibles sur la page du cours : http://www.lptms.u-psud.fr/christophe_texier/
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