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Wave dynamics in random media

TD no4 : Classical and anomalous magneto-conductance
Green’s function and self energy

4.1 Anomalous (positive) magneto-conductance

1/ Classical magneto-conductivity.– We first analyse transport coefficients in the presence
of a magnetic field within the semi-classical Drude-Sommerfeld theory of electronic transport.

a) Show that the conductivity tensor in the presence of an external magnetic field is

σxx = σ0
1

1 + (ωcτ)2
(1)

σxy = σ0
ωcτ

1 + (ωcτ)2
(2)

where ωc = eB
m∗

is the cyclotron pulsation and σ0 = ne2τ
m∗

the Drude conductivity. Deduce the

resistivity tensor ρ = σ−1.

b) Justify physically the decrease of σxx(B) as B increases.

c) At low temperature, the relaxation time saturates at the elastic mean free time τ → τe. What
is the typical scale of magnetic field needed to decrease significantly σxx(B) ? We give the inverse
of the Fermi wavevector k−1F = 0.85 Å and the elastic mean free path `e = 4 µm in gold (bulk).

d) In thin metallic films with thickness 50nm, the elastic mean free path is reduced by two order
of magnitudes ! In thin silver wires, one measures `e ' 20 nm. How large must be the magnetic
field to bend significantly the electronic trajectories between collisions on impurities ?

2/ Coherent enhancement of back-scattering.– In a weakly disordered metal, interferences
of time reversed electronic trajectories enhance the back-scattering of electrons, and therefore
diminishes the conductivity. In the absence of a magnetic field, the phase of probability ampli-
tude is an orbital phase proportional to the length of the diffusive trajectory AC = |AC |eikF `C :

∆σ(B = 0) ∼ −
∑
C
ACA∗C̃ = −

∑
C

∣∣AC∣∣2 < 0 (3)

where the sum runs over all closed diffusive trajectories.

’=
~

Figure 1: Interference of reversed electronic trajectories C and C̃ increases back-scattering (weak
localisation).

a) If a weak magnetic field is applied, what is the magnetic field dependence of the probability
amplitudes AC ?
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b) How the right hand side of Eq. (3) is modified ?

c) We consider a thin metallic film, i.e. diffusive electronic motion is effectively two-dimensional.
Argue that the presence of the perpendicular magnetic flux introduces a cutoff in the summation
over electronic trajectories (3).

d) Anomalous magneto-conductivity.– Deduce the qualitative behaviour of ∆σ(B) and
discuss the experimental result (Fig. 2).

Figure 2: Anomalous magneto-resistance of a thin Magnesium film (2412Mg). From
Ref. [1].
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4.2 Green’s function and self energy

1) Propagator and Green’s functions

We introduce the propagator

K(~r, t|~r ′, 0) = −i θH(t) 〈~r |e−iĤt|~r ′ 〉 (4)

where H is the Hamiltonian operator.

a) Check that K(~r, t|~r ′, 0) is the Green’s function of the time dependent Schrödinger equation.

b) Compute the Fourier transform GR(~r, ~r ′;E) =
∫ +∞
−∞ dt eiEtK(~r, t|~r ′, 0). Check that this is

the Green’s function of the stationary Schrödinger equation.

2) Green’s functions in momentum space and average Green’s function

1/ Free Green’s function.– The free Green’s function in momentum space is

GR0 (~k,~k ′) = 〈~k | 1

EF −H0 + i0+
|~k ′ 〉 ≡ δ~k,~k ′G

R
0 (~k) (5)

where |k 〉 is a plane wave, eigenvector of H0 = − 1
2m∆ (the dependence in Fermi energy is

implicit). Compute explicitly GR
0 (~r, ~r ′) in dimension d = 1 and d = 3.

Hint : in d = 1, compute G0(x, x
′) for a negative energy E = − k2

2m and perform some analytic
continuation.
In d = 3, show that G

(3D)
0 (~r, ~r ′) can be related to a derivative of G

(1D)
0 (x, x′) (after integrations

over angles).

2/ Average Green’s function in the presence of a weak disorder.– Assuming that the

self energy is purely imaginary ΣR = −i/2τe, compute explicitly G
R

(~r, ~r ′) for d = 1, 3.

Hint : express
√

2m(EF + i/2τe) in terms of kF and `e.

Remark : cf. Appendix of chapter 10 of the book [?].

3) Self energy : stacking

1/ Recall the expression of the self energy at lowest order in the disorder, in terms of the free
Green’s function. Express its imaginary part.

2/ We now consider a particular class of diagrams :

ΣR
stack = = + + + · · · (6)

Deduce an equation for ΣR
stack and solve it. Analyse the weak disorder limit εF � 1/τe.
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