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Wave dynamics in random media

TD no5 : Magneto-conductance of 2D metals

The fit of the anomalous magneto-conductance of 2D electron gas (or metallic films) and
wires is a powerful tool which has been extensively used in order to extract the phase coherence
length Lϕ of metallic devices at low T (. few K). The fit of ∆σ(B, Lϕ) is performed at sev-
eral temperatures what allows to extract the temperature dependence Lϕ(T ) and identify the
microscopic mechanisms responsible for dephasing and/or decoherence.

Figure 1: Magnetoresistance curves for a 2DEG as a function of the magnetic field in Gauss
(1 Gauss= 10−4 Tesla). From Ref. [1].

We consider a two dimensional electron gas (2DEG) submitted to a perpendicular magnetic
field B. In this case it will be convenient to write the Cooperon as an integral of the propagator
in time

∆σ = −2se
2D

π~

∫ ∞
0

dtPt(~r|~r)
(

e−t/τϕ − e−t/τ̃e
)

(1)

where the second exponential cut off the contribution of small times, that are not described by
the diffusion approximation : τϕ = L2

ϕ/D and τ̃e = `2e/D. The factor 2s is the spin degeneracy.
The time propagator of the diffusion

Pt(~r|~r ′) = θH(t) 〈~r |eDt
(
~∇− 2ie

~
~A
)2
|~r ′ 〉 (2)

solves the diffusion-like equation[
∂t −D

(
~∇− i

2e

~
~A

)2
]
Pt(~r|~r ′) = δ(t)δ(~r − ~r ′) (3)

1/ Using the mapping onto the Landau problem, compute Pt(~r|~r) in the plane.

Hint : We recall that the spectrum of eigenvalues of the 2D Hamiltonian HLandau = − ~2
2m(~∇−

i
~e
~A)2 for a homogeneous magnetic field is the Landau spectrum εn = ~ωc(n+ 1/2) for n ∈ N,
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where ωc = eB/m and where each Landau level has a degeneracy proportional to the sur-
face of the plane dLL = eBSurf

h . The partition function of the Landau problem ZLandau =∫
d~r 〈~r |e−

t
~HLandau |~r 〉 can be easily calculated.

2/ a) Using the integral given in the appendix, deduce that

∆σ(B) =
2se

2

h

1

2π

[
ψ

(
1

2
+
L2
B

L2
ϕ

)
− ψ

(
1

2
+
L2
B
`2e

)]
(4)

where LB will be related to the magnetic field.

b) What is the magnetic field corresponding to LB = 1 µm ? And LB = 20 nm ? Looking at
the range of magnetic field on the experimental curve, argue that it is justified to simplify the
result as

∆σ(B) =
2se

2

h

1

2π

[
ψ

(
1

2
+
L2
B

L2
ϕ

)
− ln

(
L2
B
`2e

)]
(5)

c) Analyse the zero field value ∆σ(0). Discuss the limiting behaviours of ∆σ(B)−∆σ(0).

3/ Discuss the experimental data of Fig. 1.

Appendix :

We give the integral (formula 3.541 of Gradshteyn & Ryzhik, Ref. [2])∫ ∞
0

dx
e−ax − e−bx

sinhλx
=

1

λ

[
ψ

(
1

2
+

b

2λ

)
− ψ

(
1

2
+

a

2λ

)]
, (6)

where ψ(z) = d
dz ln Γ(z) is the digamma function. We deduce the functional relation ψ(z+ 1) =

ψ(z) + 1
z . We give two values ψ(1) = −C ' −0.577215 (Euler-Mascheroni constant) and

ψ(1/2) = −C− 2 ln 2, and the limiting behaviour

ψ(x+ 1/2) =
x→∞

lnx+
1

24x2
+O(x−3) (7)
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5.2 Magneto-conductance in narrow wires

The aim of the exercice is to analyse the magneto-conductance of a long wire of section W
submitted to a perpendicular homogeneous magnetic field. For simplicity we consider the two-
dimensional situation of a wire etched in a two-dimensional electron gas (2DEG). We recall that
the weak localisation correction to the conductivity is given by

∆σ = −2se
2

π~
Pc(~r, ~r) with

[
γ −

(
~∇− i

2e

~
~A

)2
]
Pc(~r, ~r

′) = δ(~r − ~r ′) , (8)

where γ = 1/L2
ϕ.

We consider the geometry of a infinitly long quasi-1D wire, i.e. x ∈ R and y ∈ [0,W ].

1/ Relate the conductivity σ of the wire to the conductance G = I/V .

We choose the Landau gauge such that Ax is an antisymmetric function of the transverse
coordinate. If y ∈ [0,W ] we choose Ax(W − y) = −Ax(y), i.e.

Ax(y) = (W/2− y)B and Ay = 0 . (9)

We assume that the confinment imposes Neumann boundary conditions

∂yPc(~r, ~r
′)
∣∣
y=0 & W

= 0 . (10)

2/ Zero field.– The aim is to construct the spectrum of the Laplace operator ∆ = ∂2
x + ∂2

y in
the wire.

a) Use the separability of the problem to find the spectrum of eigenvectors and eigenvalues of
the Laplace operator in the infinitly long wire of width W .

b) Green’s function.– Justify the following representation

Pc(~r, ~r
′) =

∞∑
n=0

χn(y) 〈x | 1

γ + εn − ∂2
x

|x′ 〉︸ ︷︷ ︸
Pc(x,x′) for γ→γ+εn

χn(y′) (11)

The functions χn(y) satisfy the differential equation −∂2
yχn(y) = εn χn(y) on [0,W ] with appro-

priate boundary conditions.
Under what condition on W and Lϕ can the Cooperon be approximated by the 1D Cooperon

Pc(x, x
′) = 〈x |

(
γ − ∂2

x)−1|x′ 〉 ?

3/ Weak magnetic field.– In the diffusion approximation, the Cooperon can be interpreted
as the Green’s function of the operator −(∇− i

~2eA)2, Eq. (8). We recall that this treatment of
the magnetic field in the diffusion approximation supposes that `e � Rc, where Rc = vF /ωc is
the cyclotron radius of electrons with energy εF (ωc = eB/m∗ is the cyclotron pulsation). Our
aim is to compute the Cooperon in the weak magnetic field limit.

a) Projecting the differential equation (8) (i.e.
∫W

0
dy
W ×· · · ), show that the effect of the magnetic

field can be absorbed by a transformation of the phase coherence length in the one-dimensional
cooperon

1

L2
ϕ

−→ 1

Leff
ϕ (B)2

def
=

1

L2
ϕ

+
1

L2
B

where
1

L2
B

=
4e2

~2

∫ W

0

dy

W
Ax(y)2 . (12)

b) Deduce explicitly LB and discuss the range of validity of this approximation, i.e. what is the
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condition on B, W and Lϕ ?

c) We recall the expression of the 1D Cooperon Pc(x, x) = 〈x | 1
1/L2

ϕ−∂2x
|x 〉 = Lϕ/2. Deduce the

expression of the magneto-conductivity ∆σ(B) of the infinitly long wire and show that the WL
correction to the dimensionless conductance can be written as

∆g(B) =
∆g(0)√

1 + (B/Bϕ)2
(13)

Give the expression of the scale Bϕ and interpret physically this expression.

d) Discuss the experimental data of Fig. 2 at the light of this calculation. In particular, how
can one interpret the evolution of the curve when the sample is cooled down ?

Figure 2: Magnetoconductance curves for a long wire etched in a 2DEG as a function of the
magnetic field in Gauss (1 Gauss= 10−4 Tesla). Length of the wire is L = 150 µm, lithographic
width Wlitho = 1µm and effective width W = 630 nm. Electronic density is ne = 1.5× 1015 m−2.
Left : Resistance over a large window in B field, [−2 T,+2 T]. Right : Conductance over small
window around zero field, [−6 mT,+6 mT]. From Niimi et al. Phys. Rev. B 81, 245306
(2010) [?].

e) In the “high field” regime, LB < W , what expression do you expect for the MC ?

Remarks :
• This analysis was performed in a well-known paper : by Altshuler and Aronov, Sov. Phys. JETP
(1981) (Ref. [?]).

• Semi-ballistic regime.– Many experiments are performed on long wires etched in a two-dimensional

electron gas (2DEG) at the interface of two semiconductors (GaAs/GaAl1−xAsx). In this case the elastic

mean free path `
(2D)
e of the original 2DEG is usually larger than the section of the wire. The effective

elastic mean free path in the wire is also larger than the section `
(1D)
e > W . The dephasing by the

magnetic field involves different length scale due the phenomenon of flux cancellation. This has been

described by semiclassical methods by Dugaev and Khmelnitskii [?] and Beenakker and van Houten,

Phys. Rev. B (1988) (Ref. [?]).
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