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Wave dynamics in random media

TD n°5 : Magneto-conductance of 2D metals

The fit of the anomalous magneto-conductance of 2D electron gas (or metallic films) and
wires is a powerful tool which has been extensively used in order to extract the phase coherence
length L, of metallic devices at low T' (< few K). The fit of Ac(B, L) is performed at sev-
eral temperatures what allows to extract the temperature dependence L, (7") and identify the
microscopic mechanisms responsible for dephasing and/or decoherence.
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Figure 1: Magnetoresistance curves for a 2DEG as a function of the magnetic field in Gauss
(1 Gauss= 10~* Tesla). From Ref. [1]].

We consider a two dimensional electron gas (2DEG) submitted to a perpendicular magnetic
field B. In this case it will be convenient to write the Cooperon as an integral of the propagator
in time
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where the second exponential cut off the contribution of small times, that are not described by
the diffusion approximation : 7, = L /D and 7, = {Z/D. The factor 2; is the spin degeneracy.
The time propagator of the diffusion

PuAF) = ou(t) (7l (5D | 1) @)

solves the diffusion-like equation
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1/ Using the mapping onto the Landau problem, compute P (7]7) in the plane.

Pu(rl") = 0(2)6 (7 — ) 3)

Hint : We recall that the spectrum of eigenvalues of the 2D Hamiltonian Hiyangau = —%(ﬁ -
%61‘1’)2 for a homogeneous magnetic field is the Landau spectrum ¢, = fiw.(n 4+ 1/2) for n € N,



where w. = eB/m and where each Landau level has a degeneracy proportional to the sur-
face of the plane drj, = @. The partition function of the Landau problem Ziandau =

fdf'(ﬂe_%HLaﬂda“W) can be easily calculated.

2/ a) Using the integral given in the appendix, deduce that
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where Lg will be related to the magnetic field.

b) What is the magnetic field corresponding to Ly = 1 um ? And Lg = 20 nm ? Looking at
the range of magnetic field on the experimental curve, argue that it is justified to simplify the

result as
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¢) Analyse the zero field value Ao (0). Discuss the limiting behaviours of Ao (B) — Ac(0).

3/ Discuss the experimental data of Fig.

Appendix :
We give the integral (formula 3.541 of Gradshteyn & Ryzhik, Ref. [2])
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where 9(z) = & InT'(2) is the digamma function. We deduce the functional relation 1(z +1) =
¥(z) + 1. We give two values 1(1) = —C =~ —0.577215 (Euler-Mascheroni constant) and
(1/2) = —C — 21In 2, and the limiting behaviour
— -3
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5.2 Magneto-conductance in narrow wires

The aim of the exercice is to analyse the magneto-conductance of a long wire of section W
submitted to a perpendicular homogeneous magnetic field. For simplicity we consider the two-
dimensional situation of a wire etched in a two-dimensional electron gas (2DEG). We recall that
the weak localisation correction to the conductivity is given by
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Ao =— Sh P.(7,7)  with [7 - <6 — 127: E) P.(7,7) = 6(F—7") , (8)
T

where 7 = 1/[@.
We consider the geometry of a infinitly long quasi-1D wire, i.e. x € R and y € [0, W].

1/ Relate the conductivity o of the wire to the conductance G = I/V.

We choose the Landau gauge such that A, is an antisymmetric function of the transverse
coordinate. If y € [0, W] we choose A, (W —y) = —A,(y), i.e

Ay(y)=(W/2—-y)B and A, =0. 9)
We assume that the confinment imposes Neumann boundary conditions

8, P. (7,7 =0. (10)
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2/ Zero field.— The aim is to construct the spectrum of the Laplace operator A = 92 + 85 in
the wire.

a) Use the separability of the problem to find the spectrum of eigenvectors and eigenvalues of
the Laplace operator in the infinitly long wire of width W.

b) Green’s function.— Justify the following representation

1
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P.(z,x’) for y—vy+en

The functions x,(y) satisfy the differential equation —8§Xn(y) = &, Xn(y) on [0, W] with appro-
priate boundary conditions.

Under what condition on W and L, can the Cooperon be approximated by the 1D Cooperon
Pe(z,2') = (z|(y - 07)'|a') ?

3/ Weak magnetic field.— In the diffusion approximation the Cooperon can be interpreted
as the Green’s function of the operator —(V — QeA , Eq. . We recall that this treatment of
the magnetic field in the diffusion approximatlon supposes that ¢, < R, where R, = vp/w, is
the cyclotron radius of electrons with energy ep (w. = eB/m, is the cyclotron pulsation). Our
aim is to compute the Cooperon in the weak magnetic field limit.

a) Projecting the differential equation (§)) (i.e. fOW %y x -+ - ), show that the effect of the magnetic
field can be absorbed by a transformation of the phase coherence length in the one-dimensional

cooperon
1 1 def 1 1 / dy
— —— —— s = =5 + — where — = A (12)
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b) Deduce explicitly L and discuss the range of validity of this approximation, i.e. what is the



condition on B, W and L, ?
¢) We recall the expression of the 1D Cooperon P.(z,x) = (x |1/L2%32| x) = L,/2. Deduce the
© T

expression of the magneto-conductivity Ac(B) of the infinitly long wire and show that the WL
correction to the dimensionless conductance can be written as

v Ag(0)

M08 = B

Give the expression of the scale B, and interpret physically this expression.

(13)

d) Discuss the experimental data of Fig. |2 at the light of this calculation. In particular, how
can one interpret the evolution of the curve when the sample is cooled down ?
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Figure 2: Magnetoconductance curves for a long wire etched in a 2DEG as a function of the
magnetic field in Gauss (1 Gauss= 10~* Tesla). Length of the wire is L = 150 pum, lithographic
width Wiitho = 1 pm and effective width W = 630nm. Electronic density is n, = 1.5 x 1015 m=2.
Left : Resistance over a large window in B field, [-2 T, 42 T|. Right : Conductance over small
window around zero field, [—6 mT,+6 mT]. From Niimi et al. Phys. Rev. B 81, 245306

(2010) [2].

e) In the “high field” regime, Ly < W, what expression do you expect for the MC 7

Remarks :

e This analysis was performed in a well-known paper : by Altshuler and Aronov, Sov. Phys. JETP
(1981) (Ref. [?7]).

e Semi-ballistic regime.— Many experiments are performed on long wires etched in a two-dimensional
electron gas (2DEG) at the interface of two semiconductors (GaAs/GaAl;_,As,). In this case the elastic

£2D) of the original 2DEG is usually larger than the section of the wire. The effective

mean free path /¢
elastic mean free path in the wire is also larger than the section Zng) > W. The dephasing by the
magnetic field involves different length scale due the phenomenon of flux cancellation. This has been
described by semiclassical methods by Dugaev and Khmelnitskii [?] and Beenakker and van Houten,

Phys. Rev. B (1988) (Ref. [?]).
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