TD n ${ }^{\circ} 5$: Magneto-conductance of 2D metals

The fit of the anomalous magneto-conductance of 2D electron gas (or metallic films) and wires is a powerful tool which has been extensively used in order to extract the phase coherence length L_{φ} of metallic devices at low $T(\lesssim$ few K$)$. The fit of $\overline{\Delta \sigma}\left(\mathcal{B}, L_{\varphi}\right)$ is performed at several temperatures what allows to extract the temperature dependence $L_{\varphi}(T)$ and identify the microscopic mechanisms responsible for dephasing and/or decoherence.

Figure 1: Magnetoresistance curves for a $2 D E G$ as a function of the magnetic field in Gauss (1 Gauss $=10^{-4}$ Tesla). From Ref. [1].

We consider a two dimensional electron gas (2DEG) submitted to a perpendicular magnetic field \mathcal{B}. In this case it will be convenient to write the Cooperon as an integral of the propagator in time

$$
\begin{equation*}
\overline{\Delta \sigma}=-\frac{2_{s} e^{2} D}{\pi \hbar} \int_{0}^{\infty} \mathrm{d} t \mathcal{P}_{t}(\vec{r} \mid \vec{r})\left(\mathrm{e}^{-t / \tau_{\varphi}}-\mathrm{e}^{-t / \tilde{\tau}_{e}}\right) \tag{1}
\end{equation*}
$$

where the second exponential cut off the contribution of small times, that are not described by the diffusion approximation : $\tau_{\varphi}=L_{\varphi}^{2} / D$ and $\tilde{\tau}_{e}=\ell_{e}^{2} / D$. The factor 2_{s} is the spin degeneracy. The time propagator of the diffusion

$$
\begin{equation*}
\mathcal{P}_{t}\left(\vec{r} \mid \vec{r}^{\prime}\right)=\theta_{\mathrm{H}}(t)\langle\vec{r}| \mathrm{e}^{D t\left(\vec{\nabla}-\frac{2 \mathrm{ie} e}{\hbar} \vec{A}\right)^{2}}\left|\vec{r}^{\prime}\right\rangle \tag{2}
\end{equation*}
$$

solves the diffusion-like equation

$$
\begin{equation*}
\left[\partial_{t}-D\left(\vec{\nabla}-\mathrm{i} \frac{2 e}{\hbar} \vec{A}\right)^{2}\right] \mathcal{P}_{t}\left(\vec{r} \mid \vec{r}^{\prime}\right)=\delta(t) \delta\left(\vec{r}-\vec{r}^{\prime}\right) \tag{3}
\end{equation*}
$$

1/ Using the mapping onto the Landau problem, compute $\mathcal{P}_{t}(\vec{r} \mid \vec{r})$ in the plane.
Hint: We recall that the spectrum of eigenvalues of the 2D Hamiltonian $H_{\text {Landau }}=-\frac{\hbar^{2}}{2 m}(\vec{\nabla}-$ $\left.\frac{\mathrm{i}}{\hbar} e \vec{A}\right)^{2}$ for a homogeneous magnetic field is the Landau spectrum $\varepsilon_{n}=\hbar \omega_{c}(n+1 / 2)$ for $n \in \mathbb{N}$,
where $\omega_{c}=e B / m$ and where each Landau level has a degeneracy proportional to the surface of the plane $d_{\mathrm{LL}}=\frac{e \mathcal{B S u r f}}{h}$. The partition function of the Landau problem $Z_{\mathrm{Landau}}=$ $\int \mathrm{d} \vec{r}\langle\vec{r}| \mathrm{e}^{-\frac{t}{\hbar} H_{\text {Landau }}}|\vec{r}\rangle$ can be easily calculated.
2/a) Using the integral given in the appendix, deduce that

$$
\begin{equation*}
\overline{\Delta \sigma}(\mathcal{B})=\frac{2_{s} e^{2}}{h} \frac{1}{2 \pi}\left[\psi\left(\frac{1}{2}+\frac{L_{\mathcal{B}}^{2}}{L_{\varphi}^{2}}\right)-\psi\left(\frac{1}{2}+\frac{L_{\mathcal{B}}^{2}}{\ell_{e}^{2}}\right)\right] \tag{4}
\end{equation*}
$$

where $L_{\mathcal{B}}$ will be related to the magnetic field.
b) What is the magnetic field corresponding to $L_{\mathcal{B}}=1 \mu \mathrm{~m}$? And $L_{\mathcal{B}}=20 \mathrm{~nm}$? Looking at the range of magnetic field on the experimental curve, argue that it is justified to simplify the result as

$$
\begin{equation*}
\overline{\Delta \sigma}(\mathcal{B})=\frac{2_{s} e^{2}}{h} \frac{1}{2 \pi}\left[\psi\left(\frac{1}{2}+\frac{L_{\mathcal{B}}^{2}}{L_{\varphi}^{2}}\right)-\ln \left(\frac{L_{\mathcal{B}}^{2}}{\ell_{e}^{2}}\right)\right] \tag{5}
\end{equation*}
$$

c) Analyse the zero field value $\overline{\Delta \sigma}(0)$. Discuss the limiting behaviours of $\overline{\Delta \sigma}(\mathcal{B})-\overline{\Delta \sigma}(0)$.

3/ Discuss the experimental data of Fig. 1.

Appendix :

We give the integral (formula 3.541 of Gradshteyn \& Ryzhik, Ref. [2])

$$
\begin{equation*}
\int_{0}^{\infty} \mathrm{d} x \frac{\mathrm{e}^{-a x}-\mathrm{e}^{-b x}}{\sinh \lambda x}=\frac{1}{\lambda}\left[\psi\left(\frac{1}{2}+\frac{b}{2 \lambda}\right)-\psi\left(\frac{1}{2}+\frac{a}{2 \lambda}\right)\right], \tag{6}
\end{equation*}
$$

where $\psi(z)=\frac{\mathrm{d}}{\mathrm{d} z} \ln \Gamma(z)$ is the digamma function. We deduce the functional relation $\psi(z+1)=$ $\psi(z)+\frac{1}{z}$. We give two values $\psi(1)=-\mathbf{C} \simeq-0.577215$ (Euler-Mascheroni constant) and $\psi(1 / 2)=-\mathbf{C}-2 \ln 2$, and the limiting behaviour

$$
\begin{equation*}
\psi(x+1 / 2) \underset{x \rightarrow \infty}{=} \ln x+\frac{1}{24 x^{2}}+\mathcal{O}\left(x^{-3}\right) \tag{7}
\end{equation*}
$$

5.2 Magneto-conductance in narrow wires

The aim of the exercice is to analyse the magneto-conductance of a long wire of section W submitted to a perpendicular homogeneous magnetic field. For simplicity we consider the twodimensional situation of a wire etched in a two-dimensional electron gas (2DEG). We recall that the weak localisation correction to the conductivity is given by

$$
\begin{equation*}
\overline{\Delta \sigma}=-\frac{2_{s} e^{2}}{\pi \hbar} P_{c}(\vec{r}, \vec{r}) \quad \text { with } \quad\left[\gamma-\left(\vec{\nabla}-\mathrm{i} \frac{2 e}{\hbar} \vec{A}\right)^{2}\right] P_{c}\left(\vec{r}, \vec{r}^{\prime}\right)=\delta\left(\vec{r}-\vec{r}^{\prime}\right) \tag{8}
\end{equation*}
$$

where $\gamma=1 / L_{\varphi}^{2}$.
We consider the geometry of a infinitly long quasi-1D wire, i.e. $x \in \mathbb{R}$ and $y \in[0, W]$.
1/ Relate the conductivity σ of the wire to the conductance $G=I / V$.
We choose the Landau gauge such that A_{x} is an antisymmetric function of the transverse coordinate. If $y \in[0, W]$ we choose $A_{x}(W-y)=-A_{x}(y)$, i.e.

$$
\begin{equation*}
A_{x}(y)=(W / 2-y) \mathcal{B} \quad \text { and } \quad A_{y}=0 . \tag{9}
\end{equation*}
$$

We assume that the confinment imposes Neumann boundary conditions

$$
\begin{equation*}
\left.\partial_{y} P_{c}\left(\vec{r}, \vec{r}^{\prime}\right)\right|_{y=0 \& W}=0 \tag{10}
\end{equation*}
$$

2/ Zero field.- The aim is to construct the spectrum of the Laplace operator $\Delta=\partial_{x}^{2}+\partial_{y}^{2}$ in the wire.
a) Use the separability of the problem to find the spectrum of eigenvectors and eigenvalues of the Laplace operator in the infinitly long wire of width W.
b) Green's function.- Justify the following representation

$$
\begin{equation*}
P_{c}\left(\vec{r}, \vec{r}^{\prime}\right)=\sum_{n=0}^{\infty} \chi_{n}(y) \underbrace{\langle x| \frac{1}{\gamma+\varepsilon_{n}-\partial_{x}^{2}}\left|x^{\prime}\right\rangle}_{P_{c}\left(x, x^{\prime}\right) \text { for } \gamma \rightarrow \gamma+\varepsilon_{n}} \chi_{n}\left(y^{\prime}\right) \tag{11}
\end{equation*}
$$

The functions $\chi_{n}(y)$ satisfy the differential equation $-\partial_{y}^{2} \chi_{n}(y)=\varepsilon_{n} \chi_{n}(y)$ on $[0, W]$ with appropriate boundary conditions.

Under what condition on W and L_{φ} can the Cooperon be approximated by the 1D Cooperon $P_{c}\left(x, x^{\prime}\right)=\langle x|\left(\gamma-\partial_{x}^{2}\right)^{-1}\left|x^{\prime}\right\rangle$?
3/ Weak magnetic field.- In the diffusion approximation, the Cooperon can be interpreted as the Green's function of the operator $-\left(\nabla-\frac{i}{\hbar} 2 e A\right)^{2}$, Eq. (8). We recall that this treatment of the magnetic field in the diffusion approximation supposes that $\ell_{e} \ll R_{c}$, where $R_{c}=v_{F} / \omega_{c}$ is the cyclotron radius of electrons with energy $\varepsilon_{F}\left(\omega_{c}=e \mathcal{B} / m_{*}\right.$ is the cyclotron pulsation). Our aim is to compute the Cooperon in the weak magnetic field limit.
a) Projecting the differential equation (8) (i.e. $\int_{0}^{W} \frac{\mathrm{~d} y}{W} \times \cdots$), show that the effect of the magnetic field can be absorbed by a transformation of the phase coherence length in the one-dimensional cooperon

$$
\begin{equation*}
\frac{1}{L_{\varphi}^{2}} \longrightarrow \frac{1}{L_{\varphi}^{\text {eff }}(\mathcal{B})^{2}} \stackrel{\text { def }}{=} \frac{1}{L_{\varphi}^{2}}+\frac{1}{L_{\mathcal{B}}^{2}} \quad \text { where } \frac{1}{L_{\mathcal{B}}^{2}}=\frac{4 e^{2}}{\hbar^{2}} \int_{0}^{W} \frac{\mathrm{~d} y}{W} A_{x}(y)^{2} \tag{12}
\end{equation*}
$$

b) Deduce explicitly $L_{\mathcal{B}}$ and discuss the range of validity of this approximation, i.e. what is the
condition on \mathcal{B}, W and L_{φ} ?
c) We recall the expression of the 1D Cooperon $P_{c}(x, x)=\left\langle\left. x\right|_{\frac{1}{1 / L_{\varphi}^{2}-\partial_{x}^{2}}} \mid x\right\rangle=L_{\varphi} / 2$. Deduce the expression of the magneto-conductivity $\overline{\Delta \sigma}(\mathcal{B})$ of the infinitly long wire and show that the WL correction to the dimensionless conductance can be written as

$$
\begin{equation*}
\overline{\Delta g}(\mathcal{B})=\frac{\overline{\Delta g}(0)}{\sqrt{1+\left(\mathcal{B} / \mathcal{B}_{\varphi}\right)^{2}}} \tag{13}
\end{equation*}
$$

Give the expression of the scale \mathcal{B}_{φ} and interpret physically this expression.
d) Discuss the experimental data of Fig. 2 at the light of this calculation. In particular, how can one interpret the evolution of the curve when the sample is cooled down?

Figure 2: Magnetoconductance curves for a long wire etched in a 2DEG as a function of the magnetic field in Gauss (1 Gauss $=10^{-4}$ Tesla). Length of the wire is $L=150 \mu \mathrm{~m}$, lithographic width $W_{\text {litho }}=1 \mu \mathrm{~m}$ and effective width $W=630 \mathrm{~nm}$. Electronic density is $n_{e}=1.5 \times 10^{15} \mathrm{~m}^{-2}$. Left : Resistance over a large window in \mathcal{B} field, $[-2 \mathrm{~T},+2 \mathrm{~T}]$. Right: Conductance over small window around zero field, $[-6 \mathrm{mT},+6 \mathrm{mT}]$. From Niimi et al. Phys. Rev. B 81, 245306 (2010) [?].
e) In the "high field" regime, $L_{\mathcal{B}}<W$, what expression do you expect for the MC ?

Remarks :

- This analysis was performed in a well-known paper : by Altshuler and Aronov, Sov. Phys. JETP (1981) (Ref. [?]).
- Semi-ballistic regime.- Many experiments are performed on long wires etched in a two-dimensional electron gas (2DEG) at the interface of two semiconductors ($\mathrm{GaAs} / \mathrm{GaAl}_{1-x} \mathrm{As}_{x}$). In this case the elastic mean free path $\ell_{e}^{(2 \mathrm{D})}$ of the original 2DEG is usually larger than the section of the wire. The effective elastic mean free path in the wire is also larger than the section $\ell_{e}^{(1 \mathrm{D})}>W$. The dephasing by the magnetic field involves different length scale due the phenomenon of flux cancellation. This has been described by semiclassical methods by Dugaev and Khmelnitskii [?] and Beenakker and van Houten, Phys. Rev. B (1988) (Ref. [?]).

References

[1] M. Eshkol, E. Eisenberg, M. Karpovski, and A. Palevski, Dephasing time in a twodimensional electron Fermi liquid, Phys. Rev. B 73(11), 115318 (2006).
[2] I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series and products, Academic Press, fifth edition, 1994.

