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Abstract

The kicked rotor is a simple deterministic (i.e. not random) system display-
ing classical diffusive motion, where quantum interference may lead to dynamical
localization, an effect closely related to Anderson localization.

1 Classical dynamics of the kicked rotor

We consider a one-dimensional system with spatial periodicity (position x defined modulo
2π) whose Hamiltonian is given by:

H =
p2

2
+K cosx

+∞∑
n=−∞

δ(t− n) (1)

where p is the momentum, t the time, δ the Dirac function and K a number called
“stochasticity parameter”.

This Hamiltonian describes a free particle (more precisely a free rotor, because of the
2π periodicity of the position) which, when the time t is equal to an integer, receives a
kick.

Compute the classical position x−n+1 and momentum p−n+1 at time t = (n + 1)− (just
before the (n + 1)th kick) as functions of the position x+

n and momentum p+
n at time

t = n+ (just after the nth kick). Compute the effect of the kick, that is x+
n , p

+
n as functions

of x−n , p
−
n . Show that the map describing the evolution over one period, from t = n− to

t = (n+ 1)− is given by:

x−n+1 = x−n + p−n+1 (2)

p−n+1 = p−n +K sinx−n (3)

This map is known as the Standard Map.
Show that this map makes it possible to simply study the long time dynamics of the

system. Figure 1 shows the Poincaré surface of section (successive iterates of an initial
point) for the Standard Map, for increasing K values. Why is it doubly periodic in x and
p? For K > 6, it is almost fully chaotic. The figure also shows the average momentum
squared momentum p2(t), where the average is performed over a set of trajectories starting
close to p = 0 at t = 0. What does it suggest?

At large K, each kick changes significantly the momentum. Show that this is likely to
make correlations between successive positions (modulo 2π) very small. Assuming com-
plete decorrelation, compute the diffusion constant and the mean free path in momentum
space.
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Figure 1: Poincaré surfaces of section for the Standard Map for K = 0.5, 0.97 and
5 (from left to right), showing the progressive onset of chaos (from Scholarpedia). The
lower figure shows the evolution of p2(t) (averaged over a set of initial conditions) as a
function of time, showing a diffusive behaviour, for sufficiently large K.

2 Quantum dynamics of the kicked rotor

We consider now the quantum Hamiltonian of the same system:

H = − h̄
2

2

d2

dx2
+K cosx

+∞∑
n=−∞

δ(t− n) (4)

What is the “natural” basis of the Hilbert space for this problem? Give the corresponding
wavefunctions in position space.

What is the evolution operator from t = n+ to t = (n + 1)−? What is the evolution
operator due to a kick, from t = n− to t = n+? What is the evolution operator U over
one period?

Figure 2 shows the average expectation value 〈p2(t)〉, averaged over a set of initial
states. What do you observe at short time? At long time? This phenomenon is called
dynamical localization.
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Figure 2: Comparison between the classical and quantum dynamics of the kicked rotor.
Parameters are K = 11.6, h̄ = 1.

3 Link with Anderson localization

The eigenstates of the evolution operator over one period U are called “Floquet” eigen-
states:

U |φj〉 = λj|φj〉 (5)

Show that the eigenvalues are complex numbers of unit modulus, so that one can write
λj = e−iEj/h̄, where Ej is the (real) “quasi-energy” of the Floquet state. Why quasi-
energy?

Show that the kick operator can be written like:

exp
(
−iK cosx

h̄

)
=

1− iW (x)

1 + iW (x)
(6)

where W (x) is an Hermitian operator.
Proceed similarly with the evolution operator between consecutive kicks:

exp

(
−ip

2

2h̄
+
iEj

h̄

)
=

1− iV (j)

1 + iV (j)
(7)

Show that the state |χj〉 = 1
1+iW

|φj〉 is such that (V (j) +W )|χj〉 = 0. Expand |χj〉 in the

momentum eigenbasis, and show that the coefficients χ(j)
m obey the equations:

V (j)
m χ(j)

m +
∑
r 6=0

Wrχ
(j)
m+r = 0 (8)

where Wr are the Fourier components of W (x) and:

V (j)
m = tan

[
h̄

4

(
m2 − 2Ej

h̄2

)]
(9)

Show that these equations describe a deterministic 1D Anderson-like model. Show
that, for a sufficiently irrational h̄/π value, the sequence of ”on-site energies” V (j)

m can be
considered as a pseudo-random sequence.
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Figure 3: Left: Average value 〈p2(t)〉 for a cloud of cold atoms exposed to a series of
kicks [3] (the value plotted on the vertical axis is 〈p2(t)〉/2h̄2. Right: Experimental time
evolution of the momentum distribution; N is the number of kicks.

What is the localization length for K → 0?
For large K, the localization length ploc is expected to be large. We now try to compute

it approximately. Using the Floquet eigenbasis, express the evolution of an initial state
|ψ(t = 0)〉 after n kicks. For a state initially localized in momentum space, estimate
the number of Floquet states which will significantly contribute. Deduce the associated
Heisenberg time. Combine with the classical diffusion and show that the localization
length (in momentum space) and localization time are given by:

ploc =
K2

4h̄
tloc =

K2

4h̄2 (10)

It turns out that this is the exact result, which can be computed from the 1D Anderson-like
model [1].

The kicked rotor model can be realized in an experiment using cold atoms: the p2/2
term of the Hamiltonian is the kinetic energy of the atoms, the cosx potential is obtained
by shining a far-detuned standing wave on the atoms, the laser intensity being modulated
to create the sequence of kicks

∑
n δ(t− n). The temporal period T of the sequence is

directly related to the effective Planck constant in scaled units by h̄ = 8ωrT, where ωr is
the recoil frequency of the atoms [3, 5]. Figure 3 shows the experimental results obtained
in the group of M. Raizen in 1995, for K = 11.6 and h̄ = 2. How do they compare to the
theoretical predictions?

What happens when h̄/π is a rational number (“quantum resonance”)? Deduce that
dynamical localization is destroyed.

4 Self-consistent theory of dynamical localization

Because the kicked rotor is not a usual time-independent system, the standard self-
consistent theory of localization must be specifically adapted (for example, the density of
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states is meaningless for the quasi-energy spectrum). The self-consistent equation deter-
mining the frequency-dependent diffusion constant D(ω) writes [2, 6]:

1

D(ω)
=

1

DB

(
1 + 2h̄d

∫ 1

(2π)d
dq

−iω +D(ω)q2

)
(11)

where DB is the diffusion constant without interference, d the dimension and h̄ plays here
the role of the small parameter 1/k` in the standard theory.

Show, that, for the 1D kicked rotor, the self-consistent equation can be solved exactly.
Especially, at small ω, show that D(ω) = −iωp2

loc with ploc given by eq. (10).

5 The quasi-periodically kicked rotor

A generalization of dynamical localization to higher dimensions is possible by keeping the
spatial dimensionality to 1 but introducing a quasi-periodic excitation [4]:

Hqp =
p2

2
+K(t) cosx

+∞∑
n=−∞

δ(t− n) (12)

with
K(t) = K (1 + ε cosω2t) (13)

where ε is a additional control parameter and ω2 a modulation frequency.
We now introduce a two-dimensional kicked pseudo-rotor with Hamiltonian:

H =
p2

1

2
+ ω2p2 +K cosx1 [1 + ε cosx2]

∑
n

δ(t− n) (14)

Show that the evolution of the initial state:

Ψ(x1, x2, t = 0) ≡ ψ(x1, t = 0) δ(x2) (15)

under the influence ofH generates exactly Ψ(x1, x2, t) = ψ(x1, t) δ(x2−ω2t) where ψ(x1, t)
is the wavefunction of the kicked rotor evolved under the influence of Hqp.

Show that, for sufficiently large K and ε, the average classical dynamics generated by
H is an anisotropic diffusion in momentum space. Compute the diffusion coefficients.

Following section 3, show that the Floquet eigenstates associated by the time-periodic
Hamiltonian H can be mapped on a 2D Anderson-like model. Conclude about dynamical
localization for Hamiltonian Hqp.

The quasi-periodic Hamiltonian Hqp can be straightforwardly extended with a third
frequency taking:

K(t) = K (1 + ε cosω2t cosω3t) (16)

Show that one can expect a transition from a localized regime at low K to a diffusive
regime at high K.

The self-consistent theory of localization predicts the position of the critical point.
Following section 4 and assuming for simplicity that the classical diffusion is isotropic,
show that:

D(ω)

DB

= 1− C1h̄
3

π2
√

3D
3/2
B

[
1− arctan `(ω)

`(ω)

]
(17)
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Figure 4: Experimentally measured temporal dynamics of the quasi-periodically kicked
rotor [5], for increasing values of the kick strength.

with `(ω) =
√

D(ω)
−iω qmax, where qmax = C1/` is a cut-off of the order of 1/`. Show that the

critical point is such that:

D3
B =

C2
1 h̄

6

3π4
(18)

If anisotropy is taken into account, show that the result is obtained by replacing DB

in the previous equation by (D11D22D33)1/3.
Show that the transition line in the (K, ε) plane is approximately given by [6]:

Kc(ε) =

(
25C1√

3π2

)1/3
h̄

(ε2
√

1 + ε2/4)1/3
(19)

Along the critical line between the localized and diffusive regimes, how will 〈p2(t)〉
scale with t? Typical experimental results are shown in Fig. 4.
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