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Problem 1 : Linear and non-linear transport in a coherent wire

Introduction : The aim of the problem is to analyse the quantum transport in a fully coherent
(weakly disordered) metallic wire of length L, both in the linear and non-linear regime. Non-
linear transport reveals interesting features. For example, while classically the current-voltage
characteristic of a metallic wire is expected to be an odd function, I(—V) = —I(V'), Al'tshuler

and Khmel’nitskii showed in 1985 that the disorder is responsible for deviations to this clas-

sical symmetry : in a coherent metallic device (L < L) they obtained [I(V)+ I (—V)]2 ~

(e2V/h)?(eV/Ety)? where Ery, is the Thouless energy; --- denotes disorder averaging. Larkin
and Khmel’nitskii further studied the problem in a seminal paper published in 1986.

A. Preliminary : Diffuson and Cooperon in a narrow wire.— We study the form of the
Diffuson and Cooperon in a disordered narrow wire. When width<length, it is legitimate to
consider the 1D limit.

1/ What represent the Diffuson and Cooperon (diagrammatically) ?

FIGURE 1 : Sketch of a wire connected to two large
contacts.

2/ Technically, the Diffuson and Cooperon are Green’s function of a diffusion type equation
[v - 83] P(x,2') = 6(z — 2') (1)

In order to describe the connections of the wire to the large contats (cf. Fig. , we assume
Dirichlet boundary conditions P(x = 0,2') = P(x = L,2’) = 0 (and the same for the second
argument). We now construct the solution of :

a) Homogeneous equation : Assuming v € R4, give the solution of [7 — 8%] Y (x) = 0 which
satisfies the left boundary condition ¢ (z = 0) = 0. Then give the solution ©g(x) of the
homogeneous equation which fulfills the right boundary condition ¢r(z = L) = 0.

b) Consider as a differential equation for a function of z. Write the solution P(x,z’), as
a function of z, in terms of ¥r(x) and ¥ (z) on the two intervals [0,2'] and [2/, L]. Justify
that P(z,2")|,—p+ = P(x,2")|4—p—. Find a second condition which relates 0, P(z, z")|,—.+ and
Op P2, )|y -

Hint : consider f;,/j: dz of Eq. for e — 0%,



¢) Combining a) and b), show that

P(z,2') = (2)

/7 sinh(,/7L)

sinh(y/72<) sinh(\/7(L — z-)) where 4%<= min (z, z’)

x> = max (x,z’)
d) Simplify P(z,z') in the limit 4 = 0 and plot neatly the function as a function of z € [0, L]
(choose 2/ where you want in the interval).

3/ Thouless energy.— Show that P(z,z’) becomes independent of the boundary conditions
(i.e. translation invariant) in the limit v — oo and in the bulk of the wire (i.e. < far » from
the boundaries) ; give its simplified expression. What is the precise condition on v ? L.e. what is
the scale which can be compared to v ? Interpret this in relation with the diffusion problem by
introducing the Thouless energy Er, &= D /L? (with h = 1), where D is the diffusion constant
of the wire, or equivalently the Thouless time 7p = 1/Ery,.

B. Conductance correlator.— We denote by g(¢r) the linear conductance of the wire at

T = 0 for Fermi energy er. We introduce the correlator € (w) = dg(cr + w)dg(er).

1/ Can you draw one diffuson diagram controlling the diffuson correlator ?

The Diffuson P\ (z,2") and Cooperon pY (x,2') involved in the correlator solve the dif-
ferential equation [L—I?O —iw/D — 0%] pido (z,2") = 0(x — '), ie. Eq. for a complex ~ (in
the absence of a magnetic field, pY (z,2") and P (z,2") solve the same equation). Given
those propagators, one can then deduce the correlator from ¢ (w) = OL %{4 Pu(,d)(:v, x') ’ +
2Re [P“(,d) (.TU,.CI}/)2:| + (PLd) — P“(,C))}. In a coherent wire (L, = 00), using for v = —iw/D,
one gets

inh 2 in 2 1 D
¢(w) 3 <s1n u + sin 2z _> where u = \/w/(2E,) & ETh:ﬁ, (3)

:ﬁ cosh2u —cos2u u

2/ One can show that the function presents the behaviour 2/15 — 8u*/1575 + O(u) for
u — 0. Give the limiting behaviours of ¥(w) as a function of w, and plot neatly the function,
assuming it is monotone.

C. I-V characteristic.

1/ What is the dimension of the rescaled current I < (h/2,e)I (2, is the spin degeneracy) ?

Larkin and Khmel'nitskii’s result for the fluctuations of the I — V' characteristic is (after
correcting all typos!)

STV = / dede’ TI(; V, T) TI(e V. T) € — €/) — / dw F(w; V, T) €(w) (@)

where the thermal function I(e; V,T) = f(e¢ — eV/2) — f(e + €V/2) is a difference of two Fermi
functions, and F(w;V,T) convoluates two such functions.

We now aim to analyse the limiting behaviours of the fluctuations 61(V)2 at T'= 0. We have
thus TI(g; V,0) = 0 (eV/2 — |e|), where 0y is the Heaviside step function, and

eV — |w| for |w| < eV
(5)
| > eV

0 for |w

F(w;V,O)Z{



2/ Compute [ dw F(w;V,0). From the analysis of B.2, justify that [dw%(w) is finite and
express it as a function of Ety up to an unkown dimensionless numerical factor (do not try to
compute any integral, use a scaling argument, i.e. dimensional analysis).

3/ Linear regime.— Argue that, for eV < Ery, one can write §I1(V)2 ~ €(0) [ dw F(w; V;0).
Deduce the typical behaviour of 61(V)2.

4/ Non-linear regime.— Simplify the integral (4) (at T = 0) with a similar argument when

eV > Epyp. Deduce the typical behaviour of 67(V)?2 in the non-linear regime.

rms(6V;,) (nV)

I (nA)

FIGURE 2 : The response of the voltage of an Antimony (Sb) wire (80nm thick and 100nm wide)
to a current modulated at frequency w. The different curves correspond to the different Fourier
harmonics of the voltage dV,, (response of the voltage at frequency nw) : rms(dV;,) = [@] 12,
Figure from : R. A. Webb, S. Washburn, and C. P. Umbach, Ezxperimental study of nonlinear
conductance in small metallic samples, Phys. Rev. B 37, p. 8455-8458 (1988).

5/ An experimental study of the non-linear response of a coherent Antimony wire was performed
by Webb and collaborators. In the experiment, the current I is imposed (instead of the voltage
V) and the mesoscopic voltage fluctuations 6V are measured (instead of 6I). Tt is possible to
describe this situation by making the substitutions eV — I /g and 61 — edV g in the above
results, where g is the Drude conductance of the wire. Express 6V2 as a function of I in both
the linear and non-linear regimes.

The imposed current is modulated at a small frequency, I(t) = Iy coswt with w ~ 100 Hz. Why
does the response have different harmonics, 6V (t) = >, 0V}, cos(nwt)? Can you explain the
behaviour of the first harmonic 0V} with I (cf. Fig. 2)) ?

6/ (OPTIONAL, difficult) : The study of the current-voltage characteristic correlator 61(V3)81(V5)
exhibits correlation over a scale AV =V — V5 ~ Epy,. Deduce that the differential conductance

ga(V) = %5 should change in sign.

Hint : use the results of questions 3 & 4 to draw the typical shape of f(V)

To learn more :
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e A. 1. Larkin and D. E. Khmel’niskii, Mesoscopic fluctuations of current-voltage characteristics, Zh.
Eksp. Teor. Fiz. 91, 1815-1819 (1986) [Sov. Phys. JETP 64(5), 1075-1077 (1986)].

e Christophe Texier and Johannes Mitscherling, Nonlinear conductance in mesoscopic weakly disordered
wires — Interaction and magnetic field asymmetry , Phys. Rev. B 97, 075306 (2018).



Problem 2 : Effect of decoherence on coherent backscattering and
on Anderson localization

In this exercise, we discuss the effect of decoherence on the coherent backscattering (CBS) peak
and on the Anderson phase transition. At a phenomenological level, the effect of decoherence
can be accounted for by modifying the diffusion propagator according to

~ 1 1

Pq,Q)=— 5 — , 6
(9, 9) —i 4+ Dq? T;l—iQ—Fqu ©)

where 7, is the phase coherence time.
Decoherence and CBS We remind that the coherent part of the albedo of a semi-infinite
disordered medium illuminated by a plane wave is given by

o
 4qe?

Qe

/ dzydzye 122/ / d*p[P(p, 21— 22,2 =0) = P(p,z1 + 22,2 = 0)] e *L P, (7)

where / is the mean free path. This leads to a.(0) e for the CBS angular lineshape,

_ 3 1
= 8r (IFkL
where k| ~ k6 in the limit of small reflection angle, || < 1.

1. Without calculation, show that in the presence of decoherence the CBS lineshape becomes

) !
- 8 (1+ Jkeo)? + 62/L30)2’

and give L, as a function of 7,. What is the physical interpretation of L, 7

ac(6)

(8)

2. On the same graph, plot schematically a.(6) with and without decoherence. What are the
main effects of decoherence ?

3. Explain qualitatively why the CBS angular profile is not very much affected by decoherence
at large angles.

Decoherence and Anderson localization In three dimensions, the self-consistent equation

of localization % = DLB [1 + % i éi?g —oF llj(Q)qQ] leads to the following algebraic equation

for the frequency-dependent diffusion coefficient :

D(Q) n 3 3 Dp

Dy w2 202\ Dy Y =L )

where 7 is the scattering time.

1. Recall what happens when k¢ = /3 /7.

2. We now include decoherence and assume that 7, > 7. By applying the Ansatz (6], give
the asymptotic expression of D(£2 = 0) as a function of k¢ and 7, when k¢ > /3/7 and

kl < \/3/m. Give also D(Q2 =0) at k{ = /3/.

3. On the same graph, plot schematically D(Q2 = 0) as a function of k¢ with and without
decoherence. Explain what is the effect of decoherence on the Anderson transition.



4. The effect of decoherence on the evolution of atomic wave packets in the localization
regime has been studied in [I]. In this article, the mean square width (r?)(¢) of wave
packets spreading in a disordered potential was measured as a function of time, 7, = 44r,
7, = 227 and 7, = 97, as shown in Fig. [3| How does (r?)(t) vary with ¢ at long times
(explain) ? Associate each value of 7, to each curve a, b and c.
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3 FIGURE 3 : Mean square width (r2?)(t) of a
~ wave packet expanding in a disordered poten-
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— tial in the presence of decoherence, for 7, =
i 447, 7, = 227 and 7, = 97. The localization
< time is on the order of 107. Figure adapted
~ 2

.' from [I].
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