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Problem 1 : Linear and non-linear transport in a coherent wire

Introduction : The aim of the problem is to analyse the quantum transport in a fully coherent
(weakly disordered) metallic wire of length L, both in the linear and non-linear regime. Non-
linear transport reveals interesting features. For example, while classically the current-voltage
characteristic of a metallic wire is expected to be an odd function, I(−V ) = −I(V ), Al’tshuler
and Khmel’nitskii showed in 1985 that the disorder is responsible for deviations to this clas-

sical symmetry : in a coherent metallic device (L . Lϕ) they obtained
[
I(V ) + I(−V )

]2 ∼
(e2V/h)2(eV/ETh)2 where ETh is the Thouless energy ; · · · denotes disorder averaging. Larkin
and Khmel’nitskii further studied the problem in a seminal paper published in 1986.

A. Preliminary : Diffuson and Cooperon in a narrow wire.– We study the form of the
Diffuson and Cooperon in a disordered narrow wire. When width�length, it is legitimate to
consider the 1D limit.

1/ What represent the Diffuson and Cooperon (diagrammatically) ?

L

W
II

0 x
L Figure 1 : Sketch of a wire connected to two large

contacts.

2/ Technically, the Diffuson and Cooperon are Green’s function of a diffusion type equation[
γ − ∂2

x

]
P (x, x′) = δ(x− x′) (1)

In order to describe the connections of the wire to the large contats (cf. Fig. 1), we assume
Dirichlet boundary conditions P (x = 0, x′) = P (x = L, x′) = 0 (and the same for the second
argument). We now construct the solution of (1) :

a) Homogeneous equation : Assuming γ ∈ R+, give the solution of
[
γ − ∂2

x

]
ψL(x) = 0 which

satisfies the left boundary condition ψL(x = 0) = 0. Then give the solution ψR(x) of the
homogeneous equation which fulfills the right boundary condition ψR(x = L) = 0.

b) Consider (1) as a differential equation for a function of x. Write the solution P (x, x′), as
a function of x, in terms of ψR(x) and ψL(x) on the two intervals [0, x′] and [x′, L]. Justify
that P (x, x′)|x=x′+ = P (x, x′)|x=x′− . Find a second condition which relates ∂xP (x, x′)|x=x′+ and
∂xP (x, x′)|x=x′− .

Hint : consider
∫ x′+ε
x′−ε dx of Eq. (1) for ε→ 0+.

1



c) Combining a) and b), show that

P (x, x′) =
sinh(

√
γx<) sinh(

√
γ(L− x>))

√
γ sinh(

√
γL)

where

{
x< = min (x, x′)

x> = max (x, x′)
(2)

d) Simplify P (x, x′) in the limit γ = 0 and plot neatly the function as a function of x ∈ [0, L]
(choose x′ where you want in the interval).

3/ Thouless energy.– Show that P (x, x′) becomes independent of the boundary conditions
(i.e. translation invariant) in the limit γ → ∞ and in the bulk of the wire (i.e. � far � from
the boundaries) ; give its simplified expression. What is the precise condition on γ ? I.e. what is
the scale which can be compared to γ ? Interpret this in relation with the diffusion problem by
introducing the Thouless energy ETh

def
= D/L2 (with ~ = 1), where D is the diffusion constant

of the wire, or equivalently the Thouless time τD = 1/ETh.

B. Conductance correlator.— We denote by g(εF ) the linear conductance of the wire at

T = 0 for Fermi energy εF . We introduce the correlator C (ω)
def
= δg(εF + ω)δg(εF ).

1/ Can you draw one diffuson diagram controlling the diffuson correlator ?

The Diffuson P
(d)
ω (x, x′) and Cooperon P

(c)
ω (x, x′) involved in the correlator solve the dif-

ferential equation
[

1
L2
ϕ
− iω/D − ∂2

x

]
P

(d,c)
ω (x, x′) = δ(x − x′), i.e. Eq. (1) for a complex γ (in

the absence of a magnetic field, P
(d)
ω (x, x′) and P

(c)
ω (x, x′) solve the same equation). Given

those propagators, one can then deduce the correlator from C (ω) =
∫ L

0
dxdx′

L4

{
4
∣∣∣P (d)
ω (x, x′)

∣∣∣2 +

2 Re
[
P

(d)
ω (x, x′)2

]
+
(
P

(d)
ω → P

(c)
ω

)}
. In a coherent wire (Lϕ =∞), using (2) for γ = −iω/D,

one gets

C (ω) =
3

2u3

(
sinh 2u+ sin 2x

cosh 2u− cos 2u
− 1

u

)
where u =

√
ω/(2ETh) & ETh =

D

L2
. (3)

2/ One can show that the function (3) presents the behaviour 2/15 − 8u4/1575 + O(u6) for
u → 0. Give the limiting behaviours of C (ω) as a function of ω, and plot neatly the function,
assuming it is monotone.

C. I-V characteristic.

1/ What is the dimension of the rescaled current Ĩ
def
= (h/2se)I (2s is the spin degeneracy) ?

Larkin and Khmel’nitskii’s result for the fluctuations of the I − V characteristic is (after
correcting all typos !)

δĨ(V )2 =

∫
dεdε′Π(ε;V, T ) Π(ε′;V, T ) C (ε− ε′) =

∫
dω F (ω;V, T ) C (ω) (4)

where the thermal function Π(ε;V, T ) = f(ε− eV/2)− f(ε+ eV/2) is a difference of two Fermi
functions, and F (ω;V, T ) convoluates two such functions.

We now aim to analyse the limiting behaviours of the fluctuations δĨ(V )2 at T = 0. We have
thus Π(ε;V, 0) = θH(eV/2− |ε|), where θH is the Heaviside step function, and

F (ω;V, 0) =

{
eV − |ω| for |ω| 6 eV

0 for |ω| > eV
(5)
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2/ Compute
∫

dω F (ω;V, 0). From the analysis of B.2, justify that
∫

dω C (ω) is finite and
express it as a function of ETh up to an unkown dimensionless numerical factor (do not try to
compute any integral, use a scaling argument, i.e. dimensional analysis).

3/ Linear regime.– Argue that, for eV � ETh, one can write δĨ(V )2 ' C (0)
∫

dω F (ω;V, 0).

Deduce the typical behaviour of δĨ(V )2.

4/ Non-linear regime.– Simplify the integral (4) (at T = 0) with a similar argument when

eV � ETh. Deduce the typical behaviour of δĨ(V )2 in the non-linear regime.

rm
s(
δV

n
)

(n
V

)

BRIEFREPORTS

and 4', for example) simultaneously as a function of
magnetic Seld. Examples of the Fourier transforms of
the voltage fluctuations observed at frequency co (solid
curve) and at frequency 2' (dashed curve) are displayed
in Fig. 2(a) for the same 0.6-pm-long line segment dis-
cussed above. The random voltage Auctuations dkV are
centered around 485 nV (I=10 nA) for the fundamental
and 0 nV for the second harmonic. Cross correlation of
the two traces shows that the voltage fluctuations at co
and 2' are uncorrelated. The rms value of the second
harmonic signal is only a factor of -4 smaller than that
at the fundamental.
In Fig. 2(b) we show the results of a detailed study of

the current dependence of the harmonic content, mea-
sured at co, 2', 3', 4u, and 6'„ofthe voltage fluctua-
tions. At low drive currents, I & ka T/eR& the rms signal
at the fundamental or any harmonic is proportional to
the current. At higher current, the amplitude grows asI'~, as expected from energy averaging over uncorrelat-
ed voltage fluctuation patterns. We believe that there are
no severe electron heating effects contained within these
data because the average value of the fundamental fluc-
tuations would grow more rapidly than I' if I.& were
decreasing. For the fundamental, the value of the current
where the power law changes from I to I '~ is
I—ksT/eR&. The current at which the power law
changes is larger for each successive harmonic. This in-
crease of the crossover with harmonic number N is unex-
pected and not understood at present. The low current
behavior [(b V(¹o) ) ~ I]of the harmonic content of the
Auctuations is unexpected in the following sense. For a
diode, or some other grossly nonlinear element,
(V(¹o))~I . We, however, are measuring the har-
monic content of the conductance fluctuations. The pro-
portionality (b V(¹o)) ca I can be understood with the
aid of a simple model for fluctuating resistance. It is
possible that, at small enough bias current, the average
voltage at 2ai for fixed magnetic field does increase as I
but for our samples this signal is much too small to mea-
sure.
Figure 2(c) demonstrates another remarkable feature of

( b, V(¹0) ). We display the rms value (d V) obtained at
two Sxed currents as a function of N for 1 &N & 10. At
high currents (dLV) decays as N '. If this were to can-
tinue for all the higher harmonics, the total (hV)
defined as the average of the sum of 5V at all harmonics,

i EV(¹0), would diverge. Since the fluctuations at
different harmonics are uncorrelated, the total can be es-
timated from ' 1/2

=1.28V(co) .

Therefore (bg) measured at dc should be 30% larger
than obtained in an ac measurement at a single frequen-
cy. At excitations I ~ ka T/eR & the decay of ( 6V) with
increasing N is much stronger. In this range, less of a
discrepancy between a dc measurement and an ac mea-
surement would be expected.
Similar harmonic measurements were also performed

on a loop of gold {shown in the inset of Fig. 3). This sam-
ple allo~s the study of the nonlinear effects in a different
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FI{G. 2. (a) The Fourier transform of voltage fluctuations
measured at the driving frequency co (solid curve) and at its erst
harmonic (dashed curve) in a wire. The drive current is 10 nA.
(b) (d V(%co) ) as a function of drive current at T=0.01 K. {c}
(6V(¹o) ) as a function of harmonic number N for I=500 nA
() and for I= 10nA (o ).

material and for k/e Aharonov-Bohm oscillations as
well. A synopsis of the measured (b, V) appears in Fig.
3. The aperiodic fluctuations behave just as in the Sb
wire: the amplitude is proportional to I' at high
current and proportional to I at low current. The point
at which the power law changes from I to I' is shifted
toward higher current for the 2'. At high currents,
(b V(2') ) is about a factor of 4 smaller than (5V(co) )
(which contrasts with the factor of 2 in the Sb wire). For
the periodic oscillations there is a different result. For
the fundamental frequency, the fluctuation amplitude is
proportional to I'~ down to the lowest currents studied.
The absence of the linear part is somewhat perplexing be-
cause in all our previous experiments, the Ii /e voltage os-
cillations were found to increase linearly with increasing
current at low currents.
For this geometry we expect that Vc will be approxi-

mately the same for the h/e oscillations as for the
aperiodic fluctuations: Vc-2 pV [approximately 300
nA for the data in Fig. 3(a)]. (Also, eV&-k&T for these
data, which were obtained at T=0.04 K.) For this
reason the difference in break point between the aperiodic
fluctuation data and the Ii/e data is a puzzle. If we as-
sume that the same relative positions of the break points
for the aperiodic fluctuations will repeat for the li /e os-
cillations, we estimate that the break in the power law for

I (nA)

Figure 2 : The response of the voltage of an Antimony (Sb) wire (80nm thick and 100nm wide)
to a current modulated at frequency ω. The different curves correspond to the different Fourier

harmonics of the voltage δVn (response of the voltage at frequency nω) : rms(δVn) =
[
δV 2

n

]1/2
.

Figure from : R. A. Webb, S. Washburn, and C. P. Umbach, Experimental study of nonlinear
conductance in small metallic samples, Phys. Rev. B 37, p. 8455–8458 (1988).

5/ An experimental study of the non-linear response of a coherent Antimony wire was performed
by Webb and collaborators. In the experiment, the current I is imposed (instead of the voltage
V ) and the mesoscopic voltage fluctuations δV are measured (instead of δĨ). It is possible to
describe this situation by making the substitutions eV → Ĩ/g and δĨ → eδV g in the above
results, where g is the Drude conductance of the wire. Express δV 2 as a function of Ĩ in both
the linear and non-linear regimes.
The imposed current is modulated at a small frequency, I(t) = I0 cosωt with ω ∼ 100 Hz. Why
does the response have different harmonics, δV (t) =

∑
n δVn cos(nωt) ? Can you explain the

behaviour of the first harmonic δV1 with I (cf. Fig. 2) ?

6/ (Optional, difficult) : The study of the current-voltage characteristic correlator δĨ(V1)δĨ(V2)
exhibits correlation over a scale ∆V = V1− V2 ∼ ETh. Deduce that the differential conductance

gd(V )
def
= dĨ(V )

dV should change in sign.

Hint : use the results of questions 3 & 4 to draw the typical shape of Ĩ(V ).

To learn more :

• B. L. Al’tshuler and D. E. Khmel’nitzkĭı, Fluctuation properties of small conductors, Pis’ma Zh. Eksp.
Teor. Fiz. 42(7), 291–293 (1985) [JETP Lett. 42(7), 359–362 (1985)].

• A. I. Larkin and D. E. Khmel’niskĭı, Mesoscopic fluctuations of current-voltage characteristics, Zh.
Eksp. Teor. Fiz. 91, 1815–1819 (1986) [Sov. Phys. JETP 64(5), 1075–1077 (1986)].

• Christophe Texier and Johannes Mitscherling, Nonlinear conductance in mesoscopic weakly disordered

wires – Interaction and magnetic field asymmetry , Phys. Rev. B 97, 075306 (2018).
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Problem 2 : Effect of decoherence on coherent backscattering and
on Anderson localization

In this exercise, we discuss the effect of decoherence on the coherent backscattering (CBS) peak
and on the Anderson phase transition. At a phenomenological level, the effect of decoherence
can be accounted for by modifying the diffusion propagator according to

P̃ (q,Ω) =
1

−iΩ +Dq2
−→ 1

τ−1
ϕ − iΩ +Dq2

, (6)

where τϕ is the phase coherence time.

Decoherence and CBS We remind that the coherent part of the albedo of a semi-infinite
disordered medium illuminated by a plane wave is given by

αc =
c

4π`2

∫
dz1dz2e

−(z1+z2)/`

∫
d2ρ [P (ρ, z1 − z2,Ω = 0)− P (ρ, z1 + z2,Ω = 0)] e−ik⊥·ρ, (7)

where ` is the mean free path. This leads to αc(θ) = 3
8π

1
(1+|k⊥`|)2 for the CBS angular lineshape,

where k⊥ ' kθ in the limit of small reflection angle, |θ| � 1.

1. Without calculation, show that in the presence of decoherence the CBS lineshape becomes

αc(θ) =
3

8π

1(
1 +

√
(k`θ)2 + `2/L2

ϕ

)2 , (8)

and give Lϕ as a function of τϕ. What is the physical interpretation of Lϕ ?

2. On the same graph, plot schematically αc(θ) with and without decoherence. What are the
main effects of decoherence ?

3. Explain qualitatively why the CBS angular profile is not very much affected by decoherence
at large angles.

Decoherence and Anderson localization In three dimensions, the self-consistent equation

of localization 1
D(Ω) = 1

DB

[
1 + 1

πρ~
∫ d3Q

(2π)3
1

−iΩ+D(Ω)q2

]
leads to the following algebraic equation

for the frequency-dependent diffusion coefficient :

D(Ω)

DB
+

3

π(k`)2
− 3

2(k`)2

√
DB

D(Ω)

√
−3iΩτ = 1, (9)

where τ is the scattering time.

1. Recall what happens when k` =
√

3/π.

2. We now include decoherence and assume that τϕ � τ . By applying the Ansatz (6), give
the asymptotic expression of D(Ω = 0) as a function of k` and τϕ when k` �

√
3/π and

k`�
√

3/π. Give also D(Ω = 0) at k` =
√

3/π.

3. On the same graph, plot schematically D(Ω = 0) as a function of k` with and without
decoherence. Explain what is the effect of decoherence on the Anderson transition.
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4. The effect of decoherence on the evolution of atomic wave packets in the localization
regime has been studied in [1]. In this article, the mean square width 〈r2〉(t) of wave
packets spreading in a disordered potential was measured as a function of time, τϕ = 44τ ,
τϕ = 22τ and τϕ = 9τ , as shown in Fig. 3. How does 〈r2〉(t) vary with t at long times
(explain) ? Associate each value of τϕ to each curve a, b and c.

Figure 3 : Mean square width 〈r2〉(t) of a
wave packet expanding in a disordered poten-
tial in the presence of decoherence, for τϕ =
44τ , τϕ = 22τ and τϕ = 9τ . The localization
time is on the order of 10τ . Figure adapted
from [1].
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Solutions disponibles sur la page du cours : http://www.lptms.u-psud.fr/christophe_texier/
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