Mathématiques pour la Physique II

TD 6 : Compléments sur l'intégration

Notation : on écrira $\int_A \mathrm{d}x\, f(x) < \infty$ pour désigner une intégrale convergente.

Exercice 1 : Convergence d'intégrales de Riemann impropres

Discuter la convergence des intégrales impropres suivantes, en fonction de $\alpha > 0$

$$\int_0^\infty \frac{\mathrm{d} x \, x^2}{(1+x^2+x^4)^{\frac{\alpha+2}{4}}}, \quad \int_0^1 \frac{\mathrm{d} x}{[\sin(\pi x)]^{\alpha}}, \quad \int_1^\infty \mathrm{d} x \left(\frac{1}{\sqrt{1+x^2}} - \frac{1}{x}\right) \quad \text{et} \quad \int_0^\infty \mathrm{d} t \, \frac{\mathrm{e}^{-at} - \mathrm{e}^{-bt}}{t}$$

Exercice 2: Théorème d'Abel

- 1 Soit f(x) une fonction bornée (en valeur absolue) sur \mathbb{R}_+ et monotone avec $\lim_{x \to \infty} f(x) = f(x)$
- 0. Deux exemples : $f(x) = (1+x)^{-a}$ pour a > 0 ou $f(x) = 1/[1 + \ln(x+1)]$. Discuter la convergence de l'intégrale suivante

$$I = \int_0^\infty \mathrm{d}x \, f(x) \, \sin x \,. \tag{1}$$

Est-elle absolument convergente, semi-convergente ou divergente?

2 – (FACULTATIF) Démontrer le théorème suivant :

Théorème d'Abel : Soit f et g deux fonctions satisfaisant les propriétés :

- (i) $\lim_{x\to\infty} f(x) = 0$.
- (ii) f est dérivable et $\int_a^\infty dx \, |f'(x)| < \infty$.
- (iii) g est dérivable et |g(x)| est bornée par une constante sur $[a, +\infty[$. Alors

$$\int_{a}^{\infty} \mathrm{d}x \, f(x) \, g'(x) < \infty$$

Retrouver le résultat de la première question par application du théorème.

Exercice 3 : Convergence uniforme versus convergence dominée

• Soit $f_n(x)$ une suite de fonctions. La suite converge uniformément vers f(x) pour $x \in A$ si $\sup_{x \in A} |f_n(x) - f(x)| \to 0$ pour $n \to \infty$.

Une condition suffisante pour permuter limite et intégrale dans $\lim_{n\to\infty} \int_A dx f_n(x)$ est que la suite de fonctions soit uniformément convergente sur A, un intervalle de mesure finie.

• Le théorème de Lebesgue de la convergence dominée donne des conditions plus faibles pour permuter limite et intégrale.

- 1 Rappeler le théorème de Lebesgue de la convergence dominée.
- 2 Pour les suites de fonctions suivantes, peut-on appliquer le théorème sur la convergence uniforme ou le théorème de Lebesgue sur la convergence dominée pour permuter limite et intégrale?
 - (i) $\int_0^1 dx f_n(x)$ où $f_n(x) = \frac{n}{a n + 2 + (n+3)\cos(2\pi x)}$, avec a > 2.
 - (ii) $\int_0^1 \mathrm{d}x \, g_n(x)$ où $g_n(x) = x^n$.
- (iii) Tracer la fonction

$$h_n(x) = \begin{cases} n^{3/2}x & \text{pour } x \in [0, 1/n] \\ 1/\sqrt{x} & \text{pour } x \in [1/n, 1] \end{cases}$$

et discuter la convergence de $\int_0^1 dx h_n(x)$.

Exercice 4 : Dérivation sous le signe \int

- 1 Considérons l'intégrale $I(\lambda) = \int_a^b \mathrm{d}x \, f(x,\lambda)$ dépendant d'un paramètre λ . Rappeler les conditions permettant de permuter dérivation par rapport à λ et intégration.
- 2 Calculer les intégrales suivantes en utilisant la dérivation sous le signe \int :

$$\int_0^\pi \mathrm{d} x \, x^2 \sin x \qquad \text{et} \qquad \int_0^\infty \mathrm{d} x \, x^n \, \mathrm{e}^{-x} \quad \text{avec } n \in \mathbb{N} \, .$$

(ici on pourra aussi utiliser la dérivation par parties pour vérifier le résultat).

Exercice 5 : Causalité et analyticité

On souhaite établir une relation entre causalité d'une fonction et propriétés d'analyticité de sa transformée de Fourier. Soit $\chi(t)$ une fonction causale et tendant vers 0 pour $t \to \infty$,

$$\chi(t) = 0$$
 pour $t < 0$ avec $\int_0^\infty dt \, |\chi(t)| < \infty$. (2)

Le prolongement analytique de sa transformée de Fourier (aux fréquences complexes) est

$$\widetilde{\chi}(z) \stackrel{\text{def}}{=} \int_{-\infty}^{+\infty} dt \, \chi(t) \, e^{+izt} \quad \text{pour } z \in \mathbb{C} \,.$$
 (3)

1 – Montrer que

$$\boxed{\frac{\partial \widetilde{\chi}(z)}{\partial z^*} = 0 \quad \text{pour Im}(z) \geqslant 0}$$
(4)

(préciser pourquoi la propriété n'est pas vraie pour Im(z) < 0).

- **2** Que pouvez-vous conclure sur les propriétés analytiques de $\widetilde{\chi}(z)$?
- **3** Illustration : Analyser la transformée de Fourier $\tilde{\chi}(z)$ de $\chi(t) = \theta_{\rm H}(t)$ exp $\left\{-\left(\mathrm{i}\omega_0 + \frac{1}{\tau}\right)t\right\}$ pour $\tau > 0$, où $\theta_{\rm H}(t)$ est la fonction de Heaviside $(\theta_{\rm H}(t) = 1 \text{ pour } t > 0 \text{ et } = 0 \text{ pour } t < 0)$.

Commentaire : cette propriété a des conséquences extrêmement importantes en physique. En particulier, elle conduit aux célèbres relations de **Kramers-Kronig** reliant l'indice de *réfraction* d'un milieu optique et son coefficient d'*absorption*. Plus généralement, elle permet d'établir une relation entre parties réactive et dissipative d'une fonction de réponse.